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Multiscale Methods for Elliptic PDEs

Intended application: Flow (pressure)
equation in reservoir simulation.

Problem: Number of unknowns exceeds
capabilities of existing approaches.

Goal: Include effect of fine-scale features,
but only solve a coarse-scale equation.

Means: Pre-compute fine-scale numerical
solutions to local problems.

Result: Mass-conservative fine-scale
approximations.
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Model Problem

Here we focus on capturing the effect of the fine-scale
variation in the coefficients.

To isolate this effect we consider incompressible,
isothermal one-phase flow in a closed reservoir,

∇ · u = q, u = −K∇p, u · n = 0 on ∂Ω,

i.e., the variable-coefficient Poisson equation with
homogeneous Neumann boundary conditions.
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Mixed Formulation

Find (u, p) ∈ H1,div
0 (Ω)× L2(Ω) such that,

(K−1 · u, v)− (p, ∇ · v) = 0 ∀v ∈ H1,div
0 (Ω),

(∇ · u, l) = (q, l) ∀l ∈ L2(Ω).

Standard MFEM: Seek solution in finite-dimensional
subspaces, Vh ×Wh ⊂ H1,div

0 (Ω)× L2(Ω).

Fine-scale approximation spaces constructed from
piecewise polynomials on elements.
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Mixed Formulation

Find (u, p) ∈ H1,div
0 (Ω)× L2(Ω) such that,

(K−1 · u, v)− (p, ∇ · v) = 0 ∀v ∈ H1,div
0 (Ω),

(∇ · u, l) = (q, l) ∀l ∈ L2(Ω).

Multiscale MFEM: Seek solution in finite-dimensional
subspaces VH,h ×WH,h ⊂ H1,div

0 (Ω)× L2(Ω).
Coarse-scale approximation spaces constructed from local
numerical solutions.
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Two Standard Mixed Finite-Element Methods

Lowest order Raviart-Thomas method (RT0):

W RT0
h : Piecewise constants.

VRT0
h : Interface normal velocity is constant.

CMWR XVI 6/ 21



Two Standard Mixed Finite-Element Methods

Lowest order Brezzi-Douglas-Marini method (BDM1):

W BDM1
h : Piecewise constants.

VBDM1
h : Interface normal velocity is linear.

In particular: VRT0
h ⊂ VBDM1

h .
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The Multiscale Mixed Finite-Element Method

MsMFEM is a generalization of the lowest order
Raviart-Thomas (RT0) method on the coarse mesh:

Ti Tj

For each coarse cell Ti, there is a constant basis function
for pressure, φi ∈ WH,h.
For each coarse edge Γij , there is a generalized basis
function for velocity, ψij ∈ VH,h.
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The Multiscale Mixed Finite-Element Method (2)

The velocity basis functions ψij are constructed by solving,

∇ ·ψij =

{
wi(x)/

∫
Ti

wi(ξ) dξ, for x ∈ Ti,

−wj(x)/
∫
Tj

wi(ξ) dξ, for x ∈ Tj ,

subject to no-flow conditions in each two-element domain, for
some weight function wi(x).

For constant coefficients these basis functions reduce to the
standard RT0 velocity basis functions.
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The Numerical Subgrid Upscaling Method

Instead of generalizing standard MFEM basis functions, NSUM
includes localized subgrid variations in the approximation
spaces:

WH,h = WH

⊕
Ti∈TH(Ω)

Wh(Ti) = WH ⊕Wh,

VH,h = VH

⊕
Ti∈TH(Ω)

Vh(Ti) = VH ⊕Vh.

Both the coarse- and fine-scale spaces can be any
standard MFEM spaces.
The most common choices are BDM1 on the coarse scale
and RT0 on the fine scale.
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The Numerical Subgrid Upscaling Method (2)

Localization, i.e.,

vh · n = 0, ∀vh ∈ Vh(Ti)

allows a decoupling of the fine and coarse scales:
First, a subgrid correction to each coarse-scale basis
function is computed.
The final solution can then be obtained by solving a single
coarse-scale system.

However:

Localization limits coarse inter-element flow to be
determined by the coarse-scale basis only.
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Combining the Two Methods

Starting from the BDM1/RT0 version of NSUM:

Remember that VRT0 ⊂ VBDM1.

Replace the RT0 part of the NSUM coarse-scale (BDM1)
velocity space by the generalized MsMFEM basis {ψij}.

The NSUM subgrid corrections to the generalized basis
functions will be zero.

Computational cost ≈ cost of NSUM.

Same approach can be used for any MFEM M on the
coarse scale, as long as VRT0 ⊂ VM .
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Homogeneous Model

Homogeneous quarter five-spot.
Fine mesh: 64× 64 cells of unit size.
Reference solution obtained on a 4× refined mesh.
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Homogeneous Model (2)

Multiscale velocity solutions on an 8× 8 coarse mesh:
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Diagonal Channel

Diagonal channel, quarter five-spot configuration.
Fine mesh: 64× 64 cells of unit size.
Reference solution obtained on a 4× refined mesh.
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Diagonal Channel (2)

Multiscale velocity solutions on an 8× 8 coarse mesh:
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Fluvial Model Slice
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Slice from Tenth SPE Comparison Project,
Model 2.

Fine mesh: 220× 60 cells, here scaled to unit
size.

Reference solution obtained on a 4× refined
mesh.
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Fluvial Model Slice (2)

Multiscale velocity solutions on a 5× 11 coarse mesh:
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Fluvial Model Slice (3)

Velocity error as a function of coarse-mesh:
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Spatiatlly Correlated Log-Normal Permeability

Spatially correlated log-normal permeability.
100 realizations.
Quarter five-spot configuration.
Fine mesh: 100× 100 cells of unit size.
Reference solution obtained on a 4× refined mesh.
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Spatiatlly Correlated Log-Normal Permeability (2)

Mean and std.dev. of velocity error (10× 10 coarse mesh):
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Concluding Remarks

By introducing the MsMFEM generalized basis functions into
the NSUM framework, we obtain a family of multiscale
finite-element methods that:

Correctly represents inter-element flow near particular
features such as channels.

Are less sensitive to grid-orientation effects.

Are easy to generalize to higher order for relatively smooth
problems.

Provide opportunities for adaptive schemes based on
accuracy/efficiency trade-offs.
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