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Multiscale Methods for Elliptic PDEs

@ Intended application: Flow (pressure)
equation in reservoir simulation.

@ Problem: Number of unknowns exceeds
capabilities of existing approaches.

@ Goal: Include effect of fine-scale features,
but only solve a coarse-scale equation.

@ Means: Pre-compute fine-scale numerical
solutions to local problems.

@ Result: Mass-conservative fine-scale
approximations.
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Model Problem

@ Here we focus on capturing the effect of the fine-scale
variation in the coefficients.

@ To isolate this effect we consider incompressible,
isothermal one-phase flow in a closed reservoir,

V-u=y, u=-KVp, u-n=0o0no0Q,

i.e., the variable-coefficient Poisson equation with
homogeneous Neumann boundary conditions.

@ SINTEF £ : CMWRXVI ~ & 4/21



Mixed Formulation

Find (u, p) € Hy®™(Q) x L2(Q) such that,

(Kt uv)—(p, V-v) =0 vv e Hy™(Q),
(V-u,l) =(g, 1) vl € L3(Q).

@ Standard MFEM: Seek solution in finite-dimensional
subspaces, V;, x W, C Hy™(Q) x L2(Q).

@ Fine-scale approximation spaces constructed from
piecewise polynomials on elements.

@ SINTEF et CMWRXVI ~ & 5/21



Mixed Formulation

Find (u, p) € Hy"(Q) x L*(Q) such that,

(Kt u v)—(p, V-v) =0 Vv € Hy™(Q),
(V-u,l) =(q, 1) Vi € L3(Q).

@ Multiscale MFEM: Seek solution in finite-dimensional
subspaces Vi, x Wi C Hy™(Q) x L2(Q).

@ Coarse-scale approximation spaces constructed from local
numerical solutions.

@ SINTEF et CMWRXVI ~ & 5/21



Two Standard Mixed Finite-Element Methods

Lowest order Raviart-Thomas method (RTO):

e W]T0: Piecewise constants.
e VIT0: Interface normal velocity is constant.
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Two Standard Mixed Finite-Element Methods

Lowest order Brezzi-Douglas-Marini method (BDM1):

e WPEPM!: Piecewise constants.
@ VEDMI: Interface normal velocity is linear.

i - vRTO BDM1
In particular: V;*% C Vi .
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The Multiscale Mixed Finite-Element Method

MsMFEM is a generalization of the lowest order
Raviart-Thomas (RT0) method on the coarse mesh:

@ For each coarse cell T;, there is a constant basis function
for pressure, ¢; € Wg .

@ For each coarse edge I';;, there is a generalized basis
function for velocity, ¥,; € Vg p.
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The Multiscale Mixed Finite-Element Method (2)

The velocity basis functions 1;; are constructed by solving,

O = J 0@ Jgwil€) de, for z € Ty,
Y= —wj(x)/ ij w;(§) d¢, for z € Ty,

subject to no-flow conditions in each two-element domain, for
some weight function w;(z).

For constant coefficients these basis functions reduce to the
standard RTO velocity basis functions.
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The Numerical Subgrid Upscaling Method

Instead of generalizing standard MFEM basis functions, NSUM
includes localized subgrid variations in the approximation
spaces:

Wan =W @ Wi(T) =Wy & Wy,
T;€T(Q)

Viur=Vu @ Viul)=VuoV
T, €Ty (Q)

@ Both the coarse- and fine-scale spaces can be any
standard MFEM spaces.

@ The most common choices are BDM1 on the coarse scale
and RTO on the fine scale.
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The Numerical Subgrid Upscaling Method (2)

Localization, i.e.,
Vh-n =0, Vv, € Vh(TZ)

allows a decoupling of the fine and coarse scales:

@ First, a subgrid correction to each coarse-scale basis
function is computed.

@ The final solution can then be obtained by solving a single
coarse-scale system.

However:

@ Localization limits coarse inter-element flow to be
determined by the coarse-scale basis only.
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Combining the Two Methods

Starting from the BDM1/RTO0 version of NSUM:

@ Remember that V10 ¢ yBDMIL

@ Replace the RTO part of the NSUM coarse-scale (BDM1)
velocity space by the generalized MsMFEM basis {;; }.

@ The NSUM subgrid corrections to the generalized basis
functions will be zero.

@ Computational cost ~ cost of NSUM.

@ Same approach can be used for any MFEM M on the
coarse scale, as long as VR0 ¢ vM,
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Homogeneous Model

@ Homogeneous quarter five-spot.
@ Fine mesh: 64 x 64 cells of unit size.

Reference solution obtained on a 4 x refined mesh.
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Homogeneous Model (2)

Multiscale velocity solutions on an 8 x 8 coarse mesh:

MsMFEM

Ms-NSUM  Ms-BDM1
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Diagonal Channel

@ Diagonal channel, quarter five-spot configuration.
@ Fine mesh: 64 x 64 cells of unit size.
@ Reference solution obtained on a 4x refined mesh.
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Diagonal Channel (2)

Multiscale velocity solutions on an 8 x 8 coarse mesh:

MsMEEM

Ms-NSUM  Ms-BDM1
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Fluvial Model Slice

@ Slice from Tenth SPE Comparison Project,
Model 2.

@ Fine mesh: 220 x 60 cells, here scaled to unit
size.

@ Reference solution obtained on a 4x refined
mesh.
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Fluvial Model Slice (2)

Multiscale velocity solutions on a 5 x 11 coarse mesh:

MsMFEM NSUM Ms-NSUM  Ms-BDM1
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Fluvial Model Slice (3)

Velocity error as a function of coarse-mesh:
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Spatiatlly Correlated Log-Normal Permeability

@ Spatially correlated log-normal permeability.

@ 100 realizations.

@ Quarter five-spot configuration.

@ Fine mesh: 100 x 100 cells of unit size.

@ Reference solution obtained on a 4 x refined mesh.
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Spatiatlly Correlated Log-Normal Permeability (2)

Mean and std.dev. of velocity error (10 x 10 coarse mesh):
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Concluding Remarks

By introducing the MsMFEM generalized basis functions into
the NSUM framework, we obtain a family of multiscale
finite-element methods that:

@ Correctly represents inter-element flow near particular
features such as channels.

@ Are less sensitive to grid-orientation effects.

@ Are easy to generalize to higher order for relatively smooth
problems.

@ Provide opportunities for adaptive schemes based on
accuracy/efficiency trade-offs.
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