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Topic of this talk

Aim:
To construct fast implicit solver for

600 v V(5) = Q(S), (1)

assuming no gravity and no capillary pressure.

Method:
Decompose (1) in sequence of local problems.
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Implicit First-Order Upwind Scheme 1D

Qi > S1 —> S > Q2
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Implicit First-Order Upwind Scheme 1D

Qi > S1 —> S > Q2

v

2ST-STY) - o F(ST) = Qu(S),

2SE-SET) + A F(S) = @alSE),
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Implicit First-Order Upwind Scheme 1D

S1 s Sk—1] Sk Sk+1 ce S
(%1 Vk—1 Vk Um—1
Consider the scheme
¢

(5757 + - (e F(SE1) — v F(S)) = @(57).

At Ax

where we have assumed v, > 0.
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Implicit First-Order Upwind Scheme 1D

51 Sk-1| Sk | Sk+1 Sm

V1 V-1 Vi Um—1
Consider the scheme

—v1
1 U1 U2

(8" =" )+ = o L | =Q9).

L
At

where we have assumed v;, > 0.
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Implicit First-Order Upwind Scheme 1D

S1 Sk-1| Sk | Sk+1 S

V1 V-1 Vi Um—1
Consider the scheme

—v1
1 U1 U2

R Tt | =,

At Ax

Um—1 O

where we have assumed v;, > 0.

Lower triangular matrix = equations can be solved in sequence.
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Implicit First-Order Upwind Scheme 2D

Then consider the same scheme in 2D with

m grid cells and fluxes given by the (sparse) kK — |

mxm-matrix v. Vkj
Sp— syt

ok %(Z max(vg;,0)£(Sp) + Z min(vkj, O)f(S?)) = Qr(Sk)-

SINTEF ks A CMWR, Copenhagen



Implicit First-Order Upwind Scheme 2D

Then consider the same scheme in 2D with
m grid cells and fluxes given by the (sparse) K
mxm-matrix v. Vkj

Again, this can be written in matrix notation

. f(s1)
STV = QM)
f(s3)

where

1 1 .
Vik = - zj: max(v;,0), Vij = T min(v;, 0).
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Implicit First-Order Upwind Scheme 2D

Then consider the same scheme in 2D with
m grid cells and fluxes given by the (sparse) K
mxm-matrix v. Vkj

Again, this can be written in matrix notation

. f(s1)
STV = QM)
f(s3)

where

1 1 .
Vik = - zj: max(v;,0), Vij = T min(v;, 0).

Is V triangular?
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“Homogeneous” Quarter five-spot

What does V look like?

—> —>

1 1 1

[ [ [
—> —>

1 1 1

l l l
—> —>
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“Homogeneous” Quarter five-spot

What does V look like?

Lower triangular
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“Heterogeneous” Quarter five-spot

What does V look like now?

—> —>
4 | 4
l ¥ l
—> —>
1 | 1
[ v [
—> —>
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“Heterogeneous” Quarter five-spot

What does V look like now?

—> —>
4 | 4
l ¥ l
—> —>
1 | 1
[ v [
—> —>

Not lower triangular
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Graph Interpretation

What can be done?
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Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

|
|

r 1 1
r 1 1

|
|
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Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

|
|

Can this directed graph be flattened
such that all arrows point to the right?

|

r 1 1
r 1 1

|
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Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

|
|

Can this directed graph be flattened
such that all arrows point to the right?

|

r 1 1
r 1 1
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|
|

What about this directed graph?

r i1
r 1

|
|
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|
|

What about this directed graph?

|

e
N «— O «— o
w —> o —> ©

|

X KN

1> 2 —> 3 4 > 5 > 6 7 —> 8 > 9

N X XS
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Topological sorting

Topological sorting:
Find sequence of vertex numbers (p1, ..., pm,) such that
pi <Dpj

whenever there is a directed edge from vertex i to vertex j.

A topological sort of the vertices in a directed graph can be found in
linear time as the post-order of the depth-first traversal of the
reversed graph.
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|

|

oo —@

r
r

|
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

—@—0
r i1
r 1
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

o-6-0
r i1
r 1
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

o-0-0
P
.‘) 5 — 6
r 1
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

o-0-0
o
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

o-0-0
P
.‘) 5 — 6
r 1

SINTEF CMWR, Copenhagen



Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

o-6-0
r i1
r 1
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

" —@—0
r i1
r 1

1 > 4 > 7
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|

|

oo —@

r
r

1 > 4 > 7 > 8

|
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

7*>8*>’
r ot
4%5%.
r 1

— 2 —> 3

1 > 4 > 7 > 8
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

D ®—@

1 > 4 > 7 > 8
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

7 — 8 *).
|
4 — 5 H‘
r 1
1 —~@—@

1 > 4 > 7 > 8
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

1 > 4 > 7 > 8
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

7 — 8 *).
rvot
4 — 5 H‘
r 1
1 —~@—@

/TN

1> 4 > 7 —> 8 > 5
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

@@

1> 4 > 7 > 8 > 5 —> 2

D
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

7*>8*>’
r ot
4%5%.
r i1

— 2 — 3

/TN

1> 4—>7—>8—>5—>2—>3

D
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|

l

5 —o—@

|

= —> s —> N
N «— O «—

/TN

1—>4—>7—>8—>5—>2—>3>6

N XS
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

|
|

|

= —> s —> N
N «— O «—
w —> o —> ©

l

SO

1> 4 >7—>8 >5—>2—>3—>6—>9

N XS
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Triangularisation of the coefficient matrix

By rearranging the rows and columns in the order
(1,4,7,8,5,2,3,6,9), we obtain a triangular V:

—> —>
2 I 2
w w .

—> —>
2 | A * *
w 7 w N

—> —>

*
L %k k B3 |

Duff and Reid. An implementation of Tarjans algorithm for block triangularisation of a matrix. 1978.
Dennis, Martinez and Zhang. Triangular decomposition methods for solving reducible nonlinear systems. 1994.
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Triangularisation of the coefficient matrix

Again, this can be written in matrix notation
. F(57)
- (dn _ adn—-1 : — Qn
At(S S+ L : PQ(S™).
f(5)

where § = PS,L=PVPTand Pisa permutation matrix
obtained from a topological ordering of the grid cells.
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Implicit First-Order Upwind Scheme 2D

Vkj

Sn Sn71
Lk i(z]: max(vg;,0)£(Sp) + 2]: min(”kjvo)f(sgﬂ)) = Qr(S%)-
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Implicit First-Order Upwind Scheme 2D

Vkj

Find u;, € V}, such that
Slrcl B Sl?il n fran Qn n
k= | F(SE) vVt Y [ onf(SE, S okg) = | Qu(Si)on,
K At K T JoK K

For all v;, € V},.

Here f is the upwind flux given by

N

f(Sk, Sj,vr;) = f(Sk) max(vy;,0) + f(S;) min(vky, 0).
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Delineation of Reservoirs

Consider a domain with multiple injectors at positions (x, ..., Xp).
Solve

v-VC; = Q;

where @; > 0 for the injector at injector x; and zero elsewhere.

0 otherwise.

1 x on streamline from injector i,
Ci(x) =
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Porosity of the model 2 of the SPE Comparative Solution Project.
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Delineation of Reservoirs Continued

Model 2 of the SPE Comparative Solution Project™.

Size: 60 x 220 x 85 (1.122 mill. grid blocks)
Simulation time: a few minutes.

Christie and Blunt Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
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Twophase Flow in 2D

First-order upwind 2nd-order discontinuous Galerkin

Solution after 0.2 PVI

Solution after 0.3 PVI.

Water flooding in layer 6 of the same model computed with 3 pressure
updates.
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Model 2 of the SPE Comparative Solution Project

At=1 day, 40 minutes At=20 days, 2 minutes
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Watercut curves computed with the first-order upwind scheme (solid
line) and with FrontSim (dashed).
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Highlights

Why is this a good idea
@ Extremely fast solvers: O(n) operations for n unknowns.
@ Local control over Newton iteration.
@ Small memory requirements.
@ Based on well-known conservative discretisation.

Similar to streamline methods in performance: millions of grid
cells on desktop computers!

SINTEF CMWR, Copenhagen



	Motivation
	The Implicit First-Order Upwind Scheme
	One-dimensional case
	Two-dimensional case
	Reordering of equations and unknowns

	Examples
	One-Phase Flow
	Two-Phase Flow


