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The gap between academia and industry
Grids

Academic models:

Simple domains

Structured grids

Conforming grids

Industry models:
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The gap between academia and industry
Physics (Flow in porous media)

Academia:

Incompressible

Immiscible

Gravity?

Capillary forces?

Pseudofunctions

etc.

Industry:

Compressible

Miscible

Yes!

Yes.

Relative permeability???

etc., etc., etc., ...
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The gap between academia and industry
What is important

Academia:

Can it be published?

Nice plots!

Accuracy

Efficiency

Practical importance

Industry:

Money

Risk

Can it handle our models

Efficiency

Robustness
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Conjecture: MsMFEM has the following key features
Based on experience with synthetic Cartesian petroleum reservoir models
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Accurate: flow scenarios match
closely fine grid simulations.

Mass conservative: conserves mass
on coarse and fine grids.

Efficient: basis functions can be
computed in parallel and need not
be recomputed.

Flexible: unstructured and irregular
coarse grids are handled easily.

Robust: suitable for models with
highly oscillatory coefficients and
large grid-cell aspect ratios.
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Promoting multiscale methods to the industry
Possible scenarios

Do you want an amazing multiscale method?

A1: Multiscale method???

A2: But, multiscale methods are new and very complex, right?

A3: Have they been tested on realistic models?

A4: Yes, when it is implemented in my favourite software!

Promoting multiscale methods to the industry is a
challenge, but academia must make the first move!
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Bridging the gap between academia and industry

A prerequisite for conducting simulation studies on full-scale
real-field petroleum reservoir models is the ability to handle
grids on a corner-point format.

Model: corner-point grid without fractures and faults.

Physics: incompressible and immiscible two-phase flow,
neglecting effects from (gravity and) capillary forces.

Next: MsMFEM on corner-point grid geological models
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Corner-point grids
The industry standard for reservoir modeling and simulation

The corner-point, or pillar grid format, has become the industry
standard for reservoir modeling and simulation.

In a corner-point grid the grid-cell corner-points lie on pillars
(lines) that extend from the top to the bottom of the reservoir.
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Corner-point grids, cont.

The data structure for corner-point grids is logically Cartesian, i.e.,

1 the pillars are ordered in a logical Cartesian manner, and

2 each layer extends throughout the entire reservoir.

Layers may collapse to a hyperplane in certain regions.

Collapsed cells are labeled non-active. Active cells have polyhedral
shape with 5 – 8 corners.

In physical space, corner-point grids are unstructured!
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Corner-point grids, cont.
Examples of degenerate hexahedral cells in corner-point grids
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Generating a coarse grid for MsMFEM

Let K = {K} be a coarse grid with blocks of “arbitrary” shape,
and denote by T = {T} a fine subgrid of K

Applied Mathematics 12/26



Grid coarsening procedures

In order to avoid resampling of geological data, we assume that
grid blocks consists of a union of cells in the fine grid.

Partitioning in physical space:

Blocks have approximately equal volume :=)
Interfaces become very irregular :=(

Partitioning in index space:

Block volumes differ significantly, and blocks are irregular :=(
Interfaces are usually smooth :=)

Volume constrained partitioning in index space:

Blocks are irregular and number of neighbors increases :=(
Blocks have smooth faces, and approximately equal volume :=)
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Multiscale mixed finite element method
Examples of grid blocks that arise when partitioning in index space

Disconnected blocks are split into a family of connected subblocks.

Applied Mathematics 14/26



Multiscale mixed finite element method
Model problem

Let Ω denote a computational domain, and
consider the following model problem

v = −k∇p,
∇ · v = q in Ω,

v · n = 0 on ∂Ω.

Here k is a symmetric and positive definite tensor
with uniform upper and lower bounds in Ω.

We will refer to p as pressure and v as velocity.
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Multiscale mixed finite element method
The mixed formulation

In mixed FEMs one seeks v ∈ V and p ∈ U such that∫
Ω
k−1v · u dx−

∫
Ω
p ∇ · u dx = 0 ∀u ∈ V,∫

Ω
l ∇ · v dx =

∫
Ω
ql dx ∀l ∈ U.

Here V ⊂ {v ∈ (L2)d : ∇ · v ∈ L2} and U ⊂ L2.

In multiscale mixed FEMs the approximation space for velocity is
designed so that it embodies the impact of fine scale structures.
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Multiscale mixed finite element method
Pressure basis functions

Associate a basis function χm for pressure with each grid block:

U = span{χm : Km ∈ K} where χm =

{
1 if x ∈ Km,

0 else.
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Multiscale mixed finite element method
Velocity basis functions

Construct a velocity basis function for each interface ∂Ki ∩ ∂Kj :

V = span{ψij} where ψij = −k∇φij and φij is determined by
no-flow boundary conditions on (∂Ki ∪ ∂Kj)\(∂Ki ∩ ∂Kj), and

∇ · ψij =

{
q(Ki) in Ki,
−q(Kj) in Kj ,

where

q(K) =


|k|R

K |k| if
∫
K f dx = 0,

fR
K f

if
∫
K f dx 6= 0.

Homogeneous medium Heterogeneous medium
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Multiscale mixed finite element method
Subgrid discretization: Mixed finite element methods

To implement a mixed FEM on a CPG is a bit cumbersome
because degenerate cells have less than eight corners. Conforming
CPGs can, however, be subdivided into tetrahedra in such a way
that the non-degenerated tetrahedra form a conforming grid.

21
3

6

4

5
87

1 2
43

7 8

1 2

5 6
7 8

1 2

5 6

7

2

3 4

7 8

I

II
III

IV
V

VI

Applied Mathematics 19/26



Multiscale mixed finite element method
Subgrid discretization: Finite volume methods

Most commercial simulators employ a two-point flux
approximation scheme to discretize the pressure equation.

TPFA schemes are generally not convergent for CPGs.
Convergent MPFA schemes exist, but are difficult to
implement on CPGs with degenerated cells, and are not
capable of handling non-conforming grids.

Finite volume methods provide fluxes, but not velocity fields.

Implementation of MsMFEM requires that we can evaluate
(approximate) integrals of the following form:∫

Ki

ψij · k−1ψil dx.

Applied Mathematics 20/26



Multiscale mixed finite element method
Subgrid discretization: Mimetic finite difference methods

Mimetic FDMs allow easy treatment of non-conforming grids
with complex grid-cell geometries (including curved faces).

They employ a mixed formulation, but the local inner-product

(u, v)Ti =

∫
Ti

u · k−1v dx, u, v ∈ H1,div(Ti),

is replaced with a matrix-based inner-product

(u,v)Bi = uTBiv.

Here u,v ∈ Rni , where ni is the number of cell faces, and
Bi ∈ Rni×ni is a symmetric and positive definite matrix.
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Formula for calculating Bi in mimetic FDM

For polygons (with planar faces), a discrete version of the
Gauss-Greens formula can be written on the following form:

BiNk = C.

The rows of N are the unit normals for each face, and the
rows of C are the centroids of each face scaled by the area.

A class of solutions of this equation has the following form:

Bi =
1

|Ti|
Ck−1CT + ZUZT ,

where U is a given symmetric and positive definite matrix and
the columns of Z span the null space of NT .
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Multiscale mixed finite element method
Subgrid discretization techniques: pros and cons

Mixed FEM on tetrahedral subgrid:
Provides mass conservative velocity on tetrahedral subgrid :=)
Gives larger systems, and limited to conforming grids :=(

Finite volume methods:
Employed by commercial simulators :=)
TPFA not convergent, MPFA difficult to implement and
limited to conforming grids :=(

Mimetic finite difference methods:
Easy to implement and very flexible wrt. grids :=)
New? Less rigorous than mixed FEM? :=|
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Why multiscale?

Time t(n) to solve a linear system of dimension n: t(n) ∼ O(nα).
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Local work
Global work

Fine scale solution
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Fine scale solution

Local work
Global work

α = 1.2 α = 1.5
Computation time comparable to solving global fine-scale system
using a (very) efficient linear solver.
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Why multiscale?

Multiscale methods are easily parallelizable.

Multiscale methods have low memory requirements.

Robust and efficient linear solvers for systems that stem from
real-field petroleum reservoir models are (very) hard to find.

Computation of basis functions can often be made part
of a preprocessing step for multi-phase flow simulations.
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The road ahead

Aim: an efficient and seamless method that can handle
“arbitrary grids” and embodies the important fine scale
structures in models for petroleum reservoir simulation.

Ongoing work: MsMFEM with a mimetic FDM as the
subgrid discretization technique for non-conforming CPG
models that arise in presence of fractures and faults.

Next: More physics: miscible and compressible flow that can
be dominated by gravity and/or capillary forces.

Related activity: We are trying to develop a parallel
technology for the flow transport equations.
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