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@ How can we promote multiscale methods to the oil-industry
@ Gap between academic research and industry needs

© Industry-standard geological models
@ The corner-point format
@ Coarse grid-generation

© Muiltiscale mixed finite element method
o Coarse grid formulation
@ Subgrid discretization

@ Why consider multiscale methods
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The gap between academia and industry

Grids

Academic models: Industry models:
@ Simple domains
@ Structured grids

@ Conforming grids
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The gap between academia and industry

Physics (Flow in porous media)

Academia: Industry:
@ Incompressible o Compressible
@ Immiscible e Miscible
o Gravity? @ Yes!
o Capillary forces? @ Yes.
@ Pseudofunctions @ Relative permeability???
o etc. @ etc., etc., etc., ...
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The gap between academia and industry

What is important

Academia: Industry:
@ Can it be published? @ Money
@ Nice plots! @ Risk
@ Accuracy @ Can it handle our models
o Efficiency o Efficiency
@ Practical importance @ Robustness
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Conjecture: MSMFEM has the following key features

Based on experience with synthetic Cartesian petroleum reservoir models

Accurate: flow scenarios match
closely fine grid simulations.

Mass conservative: conserves mass
on coarse and fine grids.

Efficient: basis functions can be
computed in parallel and need not
be recomputed.

Flexible: unstructured and irregular
coarse grids are handled easily.

Robust: suitable for models with
highly oscillatory coefficients and
large grid-cell aspect ratios.
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Promoting multiscale methods to the industry

Possible scenarios

Do you want an amazing multiscale method? )
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Promoting multiscale methods to the industry

Possible scenarios

Do you want an amazing multiscale method? )

Al: Multiscale method?7?
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Promoting multiscale methods to the industry

Possible scenarios

Do you want an amazing multiscale method? )

A2: But, multiscale methods are new and very complex, right?
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Promoting multiscale methods to the industry

Possible scenarios

Do you want an amazing multiscale method? )

A3: Have they been tested on realistic models?
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Promoting multiscale methods to the industry

Possible scenarios

Do you want an amazing multiscale method? )

A4: Yes, when it is implemented in my favourite software!
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Promoting multiscale methods to the industry

Possible scenarios

@ Promoting multiscale methods to the industry is a
challenge, but academia must make the first move!

SINTEF Applied Mathematics =} 7/26



Bridging the gap between academia and industry

A prerequisite for conducting simulation studies on full-scale
real-field petroleum reservoir models is the ability to handle
grids on a corner-point format.

@ Model: corner-point grid without fractures and faults.

@ Physics: incompressible and immiscible two-phase flow,
neglecting effects from (gravity and) capillary forces.
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Bridging the gap between academia and industry

A prerequisite for conducting simulation studies on full-scale
real-field petroleum reservoir models is the ability to handle
grids on a corner-point format.

@ Model: corner-point grid without fractures and faults.

@ Physics: incompressible and immiscible two-phase flow,
neglecting effects from (gravity and) capillary forces.

Next: MsMFEM on corner-point grid geological models J
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Corner-point grids

The industry standard for reservoir modeling and simulation

The corner-point, or pillar grid format, has become the industry
standard for reservoir modeling and simulation.

In a corner-point grid the grid-cell corner-points lie on pillars
(lines) that extend from the top to the bottom of the reservoir.
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Corner-point grids, cont.

The data structure for corner-point grids is logically Cartesian, i.e.,

@ the pillars are ordered in a logical Cartesian manner, and

@ each layer extends throughout the entire reservoir.

Layers may collapse to a hyperplane in certain regions.

Collapsed cells are labeled non-active. Active cells have polyhedral
shape with 5 — 8 corners.
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Corner-point grids, cont.

The data structure for corner-point grids is logically Cartesian, i.e.,

@ the pillars are ordered in a logical Cartesian manner, and

@ each layer extends throughout the entire reservoir.
Layers may collapse to a hyperplane in certain regions.

Collapsed cells are labeled non-active. Active cells have polyhedral
shape with 5 — 8 corners.

In physical space, corner-point grids are unstructured! J
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Corner-point grids, cont.

Examples of degenerate hexahedral cells in corner-point grids
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Generating a coarse grid for MsMFEM

Let £ = {K} be a coarse grid with blocks of “arbitrary” shape,
and denote by 7 = {T'} a fine subgrid of K
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Grid coarsening procedures

In order to avoid resampling of geological data, we assume that
grid blocks consists of a union of cells in the fine grid.
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Grid coarsening procedures

In order to avoid resampling of geological data, we assume that
grid blocks consists of a union of cells in the fine grid. J

@ Partitioning in physical space:
o Blocks have approximately equal volume :=)
o Interfaces become very irregular :=(
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Grid coarsening procedures

In order to avoid resampling of geological data, we assume that
grid blocks consists of a union of cells in the fine grid. J

@ Partitioning in physical space:
o Blocks have approximately equal volume :=)
o Interfaces become very irregular :=(

@ Partitioning in index space:

e Block volumes differ significantly, and blocks are irregular :=(
o Interfaces are usually smooth :=)

@ Volume constrained partitioning in index space:

o Blocks are irregular and number of neighbors increases :=(
e Blocks have smooth faces, and approximately equal volume :=)
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Multiscale mixed finite element method

Examples of grid blocks that arise when partitioning in index space

Disconnected blocks are split into a family of connected subblocks.

v Nz S
= =
= T K~
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Multiscale mixed finite element method

Model problem

Let € denote a computational domain, and
consider the following model problem

v = —kVp,

Vv = q inQ,
v-n = 0 ondQ.

Here k is a symmetric and positive definite tensor
with uniform upper and lower bounds in 2.

We will refer to p as pressure and v as velocity.
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Multiscale mixed finite element method

The mixed formulation

In mixed FEMs one seeks v € V and p € U such that

/klv'uda:—/pv-udx =0 Vu eV,
Q Q

/lV-Udac = /qld:c Vi e U.
Q Q

Here V. Cc {ve (L2)?:V-v € L?} and U C L2
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Multiscale mixed finite element method

The mixed formulation

In mixed FEMs one seeks v € V and p € U such that

/klv'uda:—/pv-udx =0 Vu eV,
Q Q

/lV-vdx = /qld:c Vi e U.
Q Q
Here V. Cc {ve (L2)?:V-v € L?} and U C L2

In multiscale mixed FEMs the approximation space for velocity is
designed so that it embodies the impact of fine scale structures.
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Multiscale mixed finite element method

Pressure basis functions

Associate a basis function Y, for pressure with each grid block:

1 ifze K,
0 else.

U =span{xy, : K, € K} where x,, = {
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Velocity basis functions

Multiscale mixed finite element method

Construct a velocity basis function for each interface 0K; N 0K;:

V' = span{v;;} where 1;; = —kV¢;; and ¢;; is determined by

no-flow boundary conditions on (0K; U 0K ;)\(0K; N 0Kj), and
Kz‘ in KZ',

-y — { q(Ki)

—q(K;) in Kj,
where
L [ fde =0
(l(lkf) = J}fflkl . K 7
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Multiscale mixed finite element method

Subgrid discretization: Mixed finite element methods

To implement a mixed FEM on a CPG is a bit cumbersome
because degenerate cells have less than eight corners. Conforming
CPGs can, however, be subdivided into tetrahedra in such a way
that the non-degenerated tetrahedra form a conforming grid.
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Multiscale mixed finite element method

Subgrid discretization: Finite volume methods

@ Most commercial simulators employ a two-point flux
approximation scheme to discretize the pressure equation.

e TPFA schemes are generally not convergent for CPGs.

e Convergent MPFA schemes exist, but are difficult to
implement on CPGs with degenerated cells, and are not
capable of handling non-conforming grids.

@ Finite volume methods provide fluxes, but not velocity fields.

@ Implementation of MsMFEM requires that we can evaluate
(approximate) integrals of the following form:

/ Vij kM da.
K;
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Multiscale mixed finite element method

Subgrid discretization: Mimetic finite difference methods

@ Mimetic FDMs allow easy treatment of non-conforming grids
with complex grid-cell geometries (including curved faces).

@ They employ a mixed formulation, but the local inner-product

(u,v), = / w-k o de, u,ve HYYY(T),
T,

is replaced with a matrix-based inner-product
(u,v)B, = u'B;v.

Here u, v € R™, where n; is the number of cell faces, and
B; € R™*™ is a symmetric and positive definite matrix.

@ SINTEF Applied Mathematics . . e o 21/26



Formula for calculating B; in mimetic FDM

e For polygons (with planar faces), a discrete version of the
Gauss-Greens formula can be written on the following form:

B;Nk =C.

The rows of N are the unit normals for each face, and the
rows of C are the centroids of each face scaled by the area.

@ A class of solutions of this equation has the following form:

1

=_—cCkct +zuz?,
|T:]

B;

where U is a given symmetric and positive definite matrix and
the columns of Z span the null space of N7
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Multiscale mixed finite element method

Subgrid discretization techniques: pros and cons

e Mixed FEM on tetrahedral subgrid:

o Provides mass conservative velocity on tetrahedral subgrid :=)
o Gives larger systems, and limited to conforming grids :=(
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Multiscale mixed finite element method

Subgrid discretization techniques: pros and cons

e Mixed FEM on tetrahedral subgrid:

o Provides mass conservative velocity on tetrahedral subgrid :=)
o Gives larger systems, and limited to conforming grids :=(

@ Finite volume methods:

o Employed by commercial simulators :=)
e TPFA not convergent, MPFA difficult to implement and
limited to conforming grids :=(

o Mimetic finite difference methods:

o Easy to implement and very flexible wrt. grids :=)
o New? Less rigorous than mixed FEM? :=|

SlNTEF Applied Mathematics . . A =] 23/26



Why multiscale?

Time t(n) to solve a linear system of dimension n: t(n) ~ O(n®). )

3 I Local work I Local work
[_1Global worl 5 [_Global work
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3 3 3 3 4 3 3 3 3

Fine scale solution
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Computation time comparable to solving global fine-scale system
using a (very) efficient linear solver.
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Why multiscale?

@ Multiscale methods are easily parallelizable.
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Why multiscale?

@ Multiscale methods are easily parallelizable.

@ Multiscale methods have low memory requirements.
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Why multiscale?

@ Multiscale methods are easily parallelizable.
@ Multiscale methods have low memory requirements.

@ Robust and efficient linear solvers for systems that stem from
real-field petroleum reservoir models are (very) hard to find.
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Why multiscale?

Multiscale methods are easily parallelizable.

Multiscale methods have low memory requirements.

Robust and efficient linear solvers for systems that stem from
real-field petroleum reservoir models are (very) hard to find.

Computation of basis functions can often be made part
of a preprocessing step for multi-phase flow simulations.

Saturation Error Saturation Error

——— MsMFEM —— MsMFEM
026 MsFVM MsFVM
- == Ms-NSUM - == Ms-NSUM

BF computed only once BF comp. at each timestep
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The road ahead

@ Aim: an efficient and seamless method that can handle
“arbitrary grids” and embodies the important fine scale
structures in models for petroleum reservoir simulation.
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The road ahead

@ Aim: an efficient and seamless method that can handle
“arbitrary grids” and embodies the important fine scale
structures in models for petroleum reservoir simulation.

@ Ongoing work: MsMFEM with a mimetic FDM as the
subgrid discretization technique for non-conforming CPG
models that arise in presence of fractures and faults.

@ Next: More physics: miscible and compressible flow that can
be dominated by gravity and/or capillary forces.

@ Related activity: We are trying to develop a parallel
technology for the flow transport equations.
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