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Motivation

Aim: Construct a fast method to compute flow in porous media
Method: Discontinuous Galerkin Method (DGM)

reservoir flow

groundwater flow
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Summary

The Time-Of-Flight Equation

Fluids flow with velocity v obtained from Darcy‘s law,

v = −K
µ
∇p

The time-of-flight of a particle along
a streamline, Ψ:

T (x) =

∫
Ψ

ds
|v(x(s))|

The time-of-flight is the solution of a boundary value
problem:

v(x) · ∇T = 1, T = 0 onΓ+
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Solution Space

Space for approximate solution Th:

V (n)
h = {ϕ : ϕ|K ∈ Q(n−1)},

where Qn = span{xpyq : 0 ≤ p, q ≤ n}

Ω

K

No continuity across inter-element boundaries

v

x x x

T T

DGM SFEM

K ∼ 0K > 0
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Variational Formulation

For all elements K , and for all ϕ ∈ C∞(K ):

∫
K

v · ∇T

ϕ dxdy

=

∫
K

1

ϕ dxdy
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Variational Formulation

For all elements K , and for all ϕ ∈ C∞(K ):∫
∂K

T

h

ϕ

h

v · nK ds −
∫

K
T

h

v · ∇ϕ

h

dxdy =

∫
K

ϕ

h

dxdy
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Variational Formulation

For all elements K , and for all ϕh ∈ Vh:∫
∂K

T hϕhv · nK ds −
∫

K
T hv · ∇ϕh dxdy =

∫
K

ϕh dxdy
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Variational Formulation

For all elements K , and for all ϕh ∈ Vh:

∫
∂K

f̂ (Th, T ext
h , v · nK )ϕhds −

∫
K

T hv · ∇ϕh dxdy =

∫
K

ϕh dxdy

Natvig, Lie, Eikemo, Berre, Dahle, Eigestad Discontinuous Galerkin Methods



The Time-Of-Flight Equation
The Discontinuous Galerkin Method

Tracer Flow
Multiphase Flow

Summary

The Discontinuous Galerkin Space Discretisation
Reordering
Numerical Results

Numerical Flux Function

The numerical flux function
depends only on the values of
Th at the discontinuities

K

v

n

The numerical flux function:

f̂ (Th, T ext
h , v · nK ) = Th max(v · nK , 0) + T ext

h min(v · nK , 0)
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Solution Procedure

∫
∂K

f̂ (Th, T ext
h , v · nK )ϕhds −

∫
K

Thv · ∇ϕhdxdy =

∫
K

ϕhdxdy

FK (T ) − RK TK = BK
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Solution Procedure

The upwind flux can be written

FK (T ) = F+
K TK + F−

K TΩ\K ,

where F+
K approximates the flux out of each element and

F−
K the flux entering from neighbour elements

The system may then be written as

F+
K TK − RK TK = BK − F−

K TΩ\K
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Reordering

An elementwise solution is possible by exploiting the
causality of the equation

This sequence can be computed before solving the
resulting system (using a depth-first search)

Reduction in runtime:

Nm × Nm system −→ N systems of size m ×m
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Elementwise solution

A few grid cells and
streamlines...

and the corresponding fluxes
and a possible sequence of
operations
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L2-errors and convergence rates

Ex: Linear rotation, v = (y ,−x):

Table: L2-errors and the convergence rates in a smooth domain.

N 1. order 2. order 3. order 4. order
10 3.36e-03 3.13e-05 1.74e-07 2.77e-09
20 1.52e-03 1.15 7.42e-06 2.08 2.24e-08 2.96 1.45e-10 4.25
40 8.01e-04 0.92 1.95e-06 1.93 2.90e-09 2.95 9.58e-12 3.92
80 4.14e-04 0.95 5.02e-07 1.96 3.69e-10 2.97 6.22e-13 3.94

160 2.05e-04 1.01 1.25e-07 2.01 4.60e-11 3.01 3.84e-14 4.02
320 1.02e-04 1.01 3.10e-08 2.01 5.73e-12 3.00 2.39e-15 4.01
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Top Layer in SPE 10
n = 1

Comparison of DGM with a reference solution
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Comparison of DGM with a reference solution
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Top Layer in SPE 10
n = 3

Comparison of DGM with a reference solution
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Top Layer in SPE 10
n = 4

Comparison of DGM with a reference solution
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Flow Around Strong Discontinuities

n = 1

TOF using DGM Reference solution
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Flow Around Strong Discontinuities

n = 3

TOF using DGM Reference solution
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Stationary Distribution of Tracers
Numerical results

Tracer Flow

Linear transport equation:

∂tc +∇ · (vc) = 0
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Tracer Flow

Stationary distribution of tracers:

∂tc +

∇ · (vc) = 0
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Stationary Distribution of Tracers
Numerical results

Tracer Flow

Stationary distribution of tracers:

c∇ · v + v · ∇c = 0
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Stationary Distribution of Tracers
Numerical results

Tracer Flow

Stationary distribution of tracers:

c∇ · v +

v · ∇c = 0
Time-of-flight equation:

v · ∇T = 1
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Stationary Distribution of Tracers
Numerical results

Tracer Flow

Stationary distribution of tracers:

v · ∇c = 0

The linear equations for element K are

F+
K Ci,K − RK Ci,K = −F−

K Ci,Ω\K , i = 1, ..., n

Natvig, Lie, Eikemo, Berre, Dahle, Eigestad Discontinuous Galerkin Methods



The Time-Of-Flight Equation
The Discontinuous Galerkin Method

Tracer Flow
Multiphase Flow

Summary

Stationary Distribution of Tracers
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Top layer in SPE 10

Comparison of the approximate tracer distribution using 1. and 5. order DGM
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Top layer in SPE 10

Order 1 - Piecewise constant polynomials
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3D: 15 layers of SPE 10
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Implicit DG Solution

Consider flow of two or more phases

St +∇ ·
(
vF (S)

)
= 0

where F has positive characteristics

Using product rule and semi-discretization

Sn+1 + ∆t v · ∇F (Sn+1) = Sn −∆t F (Sn)∇ · v

Discretization by DGM

Reordering as for v · ∇T = 1 −→ elementwise solution of
N nonlinear m ×m systems

For large models: reordered dG + domain decomposition
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WAG Injection (3-Phase Flow)

Water (t = 0.075) Gas (t = 0.075)

2nd order dG method with minmod postprocessing
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Implicit DG Solution
Numerical Results

WAG Injection (3-Phase Flow)

Water (t = 0.125) Gas (t = 0.125)

2nd order dG method with minmod postprocessing
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WAG Injection (3-Phase Flow)

Water (t = 0.175) Gas (t = 0.175)

2nd order dG method with minmod postprocessing
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Summary

Higher-order discontinuous Galerkin methods are
implemented

Fast elementwise solution strategy

Runtime of the methods are O(N) for N unknowns

Effective approximation of stationary tracer distribution

Promising results for multiphase flow
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