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Two-Phase Flow in Porous Media

Pressure equation:

−∇
(
K(x)λ(S)∇p) = q, v = −K(x)λ(S)∇p,

Fluid transport:

φ∂tS +∇ · (vf(S)) = ε∇
(
D(S,x)∇S

)
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Flow in Porous Media, cont’d

Porous sandstones often have repetitive layered structures, but
faults and fractures caused by stresses in the rock disrupt flow
patterns1:

1
Photo: Silje Søren Berg, CIPR, Univ. Bergen

Applied Mathematics NSCM-18 4/36



Scales in Porous Media Flow

The scales that impact fluid flow in oil reservoirs range from

the micrometer scale of pores and pore channels

via dm–m scale of well bores and laminae sediments

to sedimentary structures that stretch across entire reservoirs.
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Geological Models
The knowledge database in the oil company

Geomodels consist of geometry and
rock parameters (permeability K and
porosity φ):

K spans many length scales and
has multiscale structure

maxK/minK ∼ 103–1010

Details on all scales impact flow

Gap between simulation models and geomodels:

High-resolution geomodels may have 107 − 109 cells

Conventional simulators are capable of about 105 − 106 cells

Traditional solution: upscaling of parameters
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Upscaling Geomodels

Upscaling a geomodel to a
coarser simulation grid:

Combine cells to derive
coarse grid

Derive new efficient cell
properties

Fewer cells ⇒ faster
simulation/less storage

However:

Robust upscaling can be
difficult and work-intensive

⇑

Applied Mathematics NSCM-18 7/36



Upscaling the Pressure Equation

Assume that u satisfies the
elliptic PDE:

−∇
(
a(x)∇u

)
= f.

Upscaling amounts to finding a
new field a∗(x̄) on a coarser grid
such that

−∇
(
a∗(x̄)∇u∗

)
= f̄ ,

u∗ ∼ ū, q∗ ∼ q̄ .
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Here the overbar denotes averaged quantities on a coarse grid.
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Upscaling the Pressure Equation, cont’d

How do we represent fine-scale heterogeneities on a coarse scale?

Arithmetic, geometric, harmonic, or power averaging(
1
|V |

∫
V a(x)

p dx
)1/p

Equivalent permeabilities ( a∗xx = −QxLx/∆Px )
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State-of-the-art in Industry
10th SPE Comparative Solution Project

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

Geomodel: 60× 220× 85 ≈ 1, 1 million grid cells

Simulation: 2000 days of production
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10th SPE Comparative Solution Project
Upscaling results reported by industry
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Developing an Alternative to Upscaling

Observation:

Variations on small scale can have large impact on large-scale
flow patterns

We therefore seek a methodology which:

gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

is robust and flexible with respect to the coarse grid

is robust and flexible with respect to the fine grid and the
fine-grid solver

is accurate and conservative

is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard method
Upscaled model:

⇓

⇑

Building blocks:

Two-scale method
Geomodel:

⇓

⇑

Building blocks:

⇓

⇑
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From Upscaling to Multiscale Methods, cont’d

1 Global upscaling methods (Nielsen, Holden, Tveito)

global boundary conditions, minimization of error functional

2 Local-global upscaling methods (Durlofsky et al.)

global boundary conditions + iterative improvement

3 Nested gridding (Gautier, Blunt & Christie)

Upscaling + local reconstruction of fine-scale velocities

4 Multiscale finite elements

basis functions with subscale resolution
finite elements (Hou & Wu) – pressure
mixed elements (Chen & Hou; Aarnes et al.) — velocity
finite volumes (Jenny et al.) — pressure

5 Variatonal multiscale methods (Hughes et al.; Arbogast;
Larson & Målqvist; Juanes)

direct decomposition of the solution, V = Vc ⊕ Vf
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Multiscale Mixed Finite Elements
Formulation

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Multiscale Mixed Finite Elements
Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V
and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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Multiscale Mixed Finite Elements
Basis for the Velocity Field

For each coarse edge Γij , define a basis
function

ψij : Ti ∪ Tj → R2

with unit flux through Γij and no flow
across ∂(Ti ∪ Tj).

Homogeneous medium Heterogeneous medium

We use ψij = −λK∇φij with

∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).
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Multiscale Mixed Finite Elements
Basis for Velocity Field, cont’d

Homogeneous coefficients and rectangular support domain:
basis function = lowest order Raviart-Thomas basis

MsMFEM = extension to cases with subscale variation in
coefficients and non-rectangular support domain

Homogeneous medium Heterogeneous medium
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Multiscale Mixed Finite Elements
Summary

Velocity basis functions ψij

⇑

Geomodel

=⇒ Coarse-grid approximation space

⇓

Coarse-scale velocity

⇓

Fine-scale velocity

For the MsMFEM the fine-scale velocity field is a linear
superposition of basis functions: v =

∑
ij v

∗
ijψij .
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Properties of the MsMFEM

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on coarse grid and on the subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks

Fast:
The method is fast when avoiding regeneration of (most of) the
basis functions at every time step
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Examples: Accuracy
SPE10 Revisited (5× 11× 17 Coarse Grid)
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Multiscale vs. Upscaling
SPE10, Layer 85 (15× 55 Grid)
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Multiscale vs. Upscaling
Saturation Errors on the Upscaled Grid
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Multiscale vs. Upscaling/Downscaling
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Multiscale vs. Upscaling
Saturation Errors on the Fine Grid
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Robustness
SPE10, Layer 85 (60× 220 Grid)
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Computational Complexity
Order of Magnitude Argument

Example: 3D (128x128x128), α = 1.2 and m = 3
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Computational Complexity
Comments

Direct solution more efficient, so why bother with multiscale?

Full simulation: O(102) steps.

Basis functions need not be recomputed
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Also:

Possible to solve very large problems

Easy parallelization
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Strongly Heterogeneous Structures

Logarithm of kx
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Problem: Traversing Barriers

Problems occur when a basis function forces flow through a barrier:

Potential problem No problem

Problem-cases can be detected automatically through the indicator

υij = ψij · (λK)−1ψij .

If υij(x) > C for some x ∈ Ti, then split Ti, and generate basis
functions for the new faces.
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Barrier Case, revisited

Reference Uniform coarse grid Non-uniform grid Barrier grid
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Flexibility wrt. Grids
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Flexibility wrt. Grids
Around Flow Barriers
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Flexibility wrt. Grids
Around Wells
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Flexibility wrt. Grids
Fracture Networks

2

2
Courtesy of M. Karimi-Fard, Stanford
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Concluding Remarks

Upscaling is and will be an important part of the reservoir
modelling workflow

Multiscale methods may replace upscaling/downscaling for
simulation purposes, because they:

give better resolution

are more flexible

may be faster

However, a lot of (exciting) research needs to be done..
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