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Incompressible Two-Phase Flow

Fractional formulation (no gravity or capillary forces):

−∇
(
kλ(S)∇p) = q, v = −kλ(S)∇p,

φ∂tS +∇ · (vf(S)) = 0

Numerical solution by operator splitting (each equation by a
specialised numerical method):

pressure: hierarchical multiscale method

saturation: finite volumes or streamlines

Iterated implicit (+ domain decomposition) converges within a few iterations and is

therefore an alternative to fully implicit!
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Multiscale Methods for the Pressure Equation

Small scale variations in the permeability can have a strong impact
on large scale flow and should be resolved properly.

the pressure may be well resolved on a coarse grid

the fluid transport should be solved on the finest scale possible

Multiscale method – accurate velocity fields on the fine scale:

Local-global upscaling and nested gridding (LGU-NG)

iterative global upscaling method
reconstructed fine-scale velocity

Multiscale finite volume method (MsFVM)

fine-scale pressure, reconstructed fine-scale velocity

Mixed multiscale finite element method (MsMFEM)

fine-scale velocity, coarse-scale pressure
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Multiscale Simulation

Coarse-scale velocity

Coarse linear system

⇑

Geomodel

⇒ ⇓

⇐

Fine-scale velocity

⇓

Fine-scale saturation
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Local-Global Upscaling and Nested Gridding
Three building blocks

1. Upscale transmissibility:

−∇ · k∇p = 0 in Ωlj

p = Ip∗ in ∂Ωlj
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K Kl j

T ∗lj =

∫
∂Kl∩∂Kj

v · nlj ds∫
Kl
p dx−

∫
Kj
p dx

2. Solve coarse-scale problem:

∑
j

T ∗lj(pl − pj) =

∫
Kl

q dx ∀Kl

3. Construct fine-scale velocity:

v = −k∇p, ∇ · v = q in Kl

v · n =
Tki(v

∗ · nlj)∑
γki⊂Γlj

Tki
on ∂Kl

(Here i runs over the underlying fine grid)
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Local-Global Upscaling and Nested Gridding

Global upscaling + fine-grid reconstruction = a ‘multiscale’
method:

Compute initial T ∗lj ’s using standard upscaling

Solve global coarse-scale pressure equation with T ∗lj ’s

Until convergence (in v and p)

Interpolate between pressures to get BC for local flow problems
Compute new T ∗lj ’s from local flow problems
Solve global coarse-scale pressure equation with new T ∗lj ’s

Solve coarse-scale problem (wells and BC) with upscaled T ∗lj ’s

Reconstruct fine-scale velocity field with nested gridding
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Multiscale Mixed Finite Elements

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V
and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
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and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.

Applied Mathematics SIAM GS05 9/27



Basis for the Velocity Field

For each coarse edge Γij define a
basis function

ψij : Ti ∪ Tj → R2

with unit flux through Γij and no flow
across ∂(Ti ∪ Tj).

Homogeneous medium Heterogeneous medium

We use ψij = −λK∇φij with

∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).
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Multiscale Mixed Finite Elements

Velocity basis functions ψij

⇑

Geomodel

=⇒ Coarse-grid approximation space

⇓

Coarse-scale velocity

⇓

Fine-scale velocity

For the MsMFEM the fine-scale velocity field is a linear
superposition of basis functions: v =

∑
ij v

∗
ijψij .
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Multiscale Finite-Volume Method

Construct basis functions for pressure: φj = φ(Kj).

Compute flux contributions: f∗j,l = −
∫
∂Kl

k∇φj · nl ds.
Solve coarse-scale problem:∑

j

p∗jf
∗
j,l =

∫
Kl

q dx

The idea is to express the pressure as a linear superposition of
the base functions: p∗ =

∑
j p

∗
jφj .

Reconstruct fine-grid velocity field from mass-conservative
field on coarse grid:

v = −k∇p, ∇ · v = q, in Kl

v · n = −k∇p∗ · nl on ∂Kl.
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Multiscale Finite-Volume Method

Pressure basis
functions

⇑

Geomodel

⇒ Mass balance equations
on coarse grid

⇓

Coarse-scale velocity

⇓

Fine-scale velocity
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Comparison of Methods
Linear Algebra

Efficient linear algebra is crucial for effcient pressure solution:

The finite volume formulation, used by both MsFVM and
LGU-NG results in Symmetric Positive Definite (SPD) linear
systems.

The mixed finite element formulation yields a saddle point
problem (indefinite system), which is generally thought to be
harder to solve.

However, the MsMFEM can be reformulated as an equivalent
Mixed Hybrid FEM† that results in a SPD system.

† Hybrid MFEM: lifting the restriction of continuous edge velocities and reintroducing
continuity by applying“Lagrange multipliers” (edge pressures)
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Comparison of Methods
Computational Complexity – Order of Magnitude Argument

Assumptions

Dominating factor is solution of linear systems, i.e., we ignore
the time associated with assembly and determination of
boundary conditions for local problems.

Time to solve linear system of size N :

t(N) ∼ Nα, α ≤ 2 for multigrid, etc

Example: Cartesian D-dimensional grid, Nc coarse blocks, each
with Ns fine blocks, m iterations in LGU-NG.

Method Local Global
MsFVM (2D + 1) ·Nc ·Nα

s + 1 ·Nα
c

MsMFEM D · 2α ·Nc ·Nα
s + Dα ·Nα

c

LGU-NG (D + 1 + 2D·αm) ·Nc ·Nα
s + D ·m ·Nα

c

Applied Mathematics SIAM GS05 15/27



Comparison of Methods
Computational Complexity – Order of Magnitude Argument

Typical complexity as a function of coarse grid size:
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Comparison of Methods
Computational Complexity – Order of Magnitude Argument

Example: 3D (128x128x128), α = 1.5 and m = 3
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Comparison of Methods
Computational Complexity – In a Real Implementation

In practice†:

Assembly time may become significant when solving many
small problems since vectorization is harder.

Efficient linear solvers typically require an initial setup phase,
therefore the solution of many small systems may be more
time-consuming than anticipated.

Note

The multiscale methods are not necessarily more efficient than
direct solution of a single fine scale problem, but they allow
solution of bigger problems, and for non-linear problems where
local properties need to be recomputed only in limited regions they
have a significant performance advantage.

† At least for our fairly naive implementations.
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A Few Words About Implementation...

In our experience:

The really difficult part is the well model!

MsFVM and LGU-NG: based upon dual grid
−→ special cases (along global boundaries and internal
structures) that complicate the implementation

MsMFEM: coarse grid = union of cells in fine grid
−→ problem with dual grid avoided
Given a numerical method that works on the fine grid the
implementation is straightforward. (Very few lines of
MATLAB code for simple grids!)
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Fluvial Reservoirs

Example (Bottom layer from SPE10 comparative solution project)

Reference MsFVM MsMFEM LGU-NG

Velocity fields may differ both locally and globally, but all methods
produce qualitatively similar saturation profiles
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Fluvial Reservoirs (cont’d)

Error in saturation field as function of coarse grid size:
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Anisotropic Medium / High Aspect Ratios

Example

Logarithm of kx
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Improvements for MsFVM

Example (Anisotropic medium, revisited)

MsFVM MsFVM – NG MsFVM global BC
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Instability issues for the MsFVM are reduced or eliminated by using
global boundary conditions or by replacing the reconstruction
procedure with nested gridding
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Global Boundary Conditions

An initial global fine scale pressure solution p0 can be exploited to
improve accuracy of two-phase flow simulations

MsFVM:

x

x

i

j

φj=0

j)=1(xφj

φ=0j =0jφk−

φj(x) =
p0(x)− p0(xj)

p0(xi)− p0(xj)

x ∈ [xi, xj ].

MsMFEMHomogeneous medium Heterogeneous medium

ψij · nij =
k∇p0 · nij∫

∂Ki∩∂Kj
k∇p0 · nij ds

x ∈ ∂Ki ∩ ∂Kj .
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Shale Barriers and High-Permeable Channels

Example

Logarithm of kx
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MsMFEM LGU-NG
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Shale Barriers and High-Permeable Channels (cont’d)

Error in saturation field as function of coarse grid size:

MsMFEM: almost perfect solution by adaptive grid or global boundary conditions
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Conclusions

All three reasonably accurate on typical problems

LGU-NG least efficient, convergence problems on barrier case,
no apparent way of utilizing a fine-grid solution

MsFVM most accurate on barrier case, completely off on the
anisotropic case. Problem fixed by NG, but still less accurate
than MsMFEM

MsMFEM simpler to implement, no particular weakness
(except possibly barrier case, as discussed by Krogstad),
generally best of the three for random media.

Global BC give nearly perfect results for MsFVM and
MsMFEM
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