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Model Equations.

Elliptic pressure equation: @ Total velocity:
v=—-AS)KVp V= Vo + Uy
V.-v=q

@ Total mobility:

Hyperbolic saturati tion:
ypernolic saturation equation \ = )\w(s) + )\O(S)

¢7 + V- (vf(S)) = qu = krw(S)/ tw + kro(S)/ o

@ Saturation water: S
@ Fractional flow water:

f(8) = Au(5)/A(S)
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Small scale variations in the permeability can have a strong
impact on large scale flow and should be resolved properly.

@ the pressure may be well resolved on a coarse grid

@ the fluid transport should be solved on the finest scale
possible
Thus: a multiscale method for the pressure equation should
provide velocity fields that can be used to simulate flow on a
fine scale.

The MsMFEM basis functions predicts what the global flow
looks like locally.

@ problems can occur if large scale structures penetrate the
local domains

Thus: the shape of the local domains (the coarse grid) should
adapt to important large scale features.

v
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Multiscale Mixed Finite Elements

Mixed formulation:
Find (v, p) € Hy'™ x L? such that

_ 1.di
/(/\K) lu-vdx—/pv-udxzo, Vu € Hy ™",

/lV-vdﬂs:/qldaj, Vi e I

Multiscale discretization:
Seek solutions in low-dimensional subspaces

U™ c Hy™and v e L2,

where local fine-scale properties are incorporated into the basis
functions.

v
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Grids and Basis Functions.

We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

)

We construct a coarse grid, and choose the discretization
spaces V and U™ such that:

@ For each coarse block T;,there is a basis function ¢; € V.

@ For each coarse edge I';;, there is a basis function
1/Jij e Ums,
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Basis Functions (Local Version).

Velocity:

For each coarse edge [';; we define a basis function
wij = —)\quﬁi]’ with

Vi = wi(z), forxzeT;
v —wj(x), forx e Tj,

with BCs ¢;; - n = 0 on 9(T; U T;; U Tj), and the
weight-functions w;,w; has average 1.

Pressure:
For each T; we define

& = 1, forxzeT;
‘1o, otherwise.
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Basis for Velocity - the Source Weights.

If fT, qdx # 0 (T; contains a source), then

i) = q(x)

I a(€) dé

Otherwise we may choose

o 1 Latatss
wi(w) = 2k %,\ﬁi

or to avoid high flow through low-perm regions

trace(K (z)) £

wi(z) = [, trace(K (€)) d¢”

The latter is more accurate - even for strong anisotropy.
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Basis Functions for Velocity.

X-component of 2D basis functions:

support Homogeneous coeflicients - Convex support

support Heterogeneous coefiicients - Convex support

AN y
/ /!/.' a
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Impact of Convex versus Non-Convex Support.

Heterogenous media:
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We use tight support.

SINTEF

Applied Mathematics . + & & & «

SIAM GS05 « o

10/21



Coarse Grid Refinement.

Question:

Does refining the coarse grid increase accuracy?

Error-measures for various coarse mesh-sizes.

Relative error in energy-norm

Relative error in L%-norm

04 04
> W 02
0 0

Pt S

&
Relative eror in saturation at 0% PVI

S
Max error in watan:ul N

Chen and Hou 2002:
error is bounded by

O(H+ﬁ+\/§)

4
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Potential Problem-Scenarios for the MSMFEM.

Certain large scale features may cause problems:

Traversing barriers.
g ™
/ - L
Reference. Coarse Grid. MsMFEM.
Cross-flo.
""";
Reference. Coarse Grid. MsMFEM.

Can be ameliorated through coarse grid refinement/adaptation.
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Traversing Barriers.

Problems occur when a basis function forces flow through a
barrier:

A

RS T S,

Potential problem No problem

Problem-cases can be detected automatically through the
indicator

vij = g - (AK) ™ 9y
If v;;(x) > C for some x € T;, then split 7;, and generate basis
functions for the new faces.

v
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Traversing Barriers.

Automatic approach: Direct approach:

mEmy

|—_;-|; mﬂ(;’f
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Cross-Flow.

@ The velocity field v experiences cross-flow over [';; if the
quantity
frij |v-n|ds

‘fr“v-nds‘

is large. Edges of potential cross-flow can be detected by
solving a local pressure equation in €2;;.

@ The problem is solved by splitting one of the neighboring
blocks.
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Numerical Example: Barriers in 2D.

Saturation plots ( 0.5 PVI):

Permeability field Reference solution

TN, —

v
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Numerical Example: Barriers in 2D.

Watercut and saturation errors:

Watercut

Reference

Coarse Bx6

Non uniform, rectangular
— Non uniform, general

Relative error in saturation

Relative coarse ertor in saturation

Coarse 6x6

Non uniform, rectangular

Non uniform, general

— Coarse 6x6

Non uniform, rectangular

Non uniform, general

Watercut

Relative eror in saturation

and with barriers removed (same background perm):

Relative coarse error in saturation
1
Coarse 6x6 Coarse 6x6
08 //_' o Non uniform, rectangular o Non uniform, rectangular
Non uniform, general Non uniform, general
06
- E
10 10 R
04
— Reference
—— Coarse 66
02 2 2
Non uniform, rectangular 10 10
Non uniform, general
0
0 o0z 04 08 08 1 o 05 1 15 2 o s 1 15 2
V.
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Numerical Example: Cross-Flow in

Saturation plots:

Permeability field Reference Coarse grid Non uniform grid

v
Watercut and saturation errors
Watercut Relative error in saturation Relative coarse error in saturation
1 0.25 025
= Coarse 5x11 Coarse 5x11
08 0z Non-uniform 0z Non-uniform
06 015 015
04 01 01
Refference
02 Coarse 5x11 0.05 0.05
Non-uniform
o o
4
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Numerical Example: B

Permeability field:

Grids:

Non-uniform grid, hexahedral cells Non-uniform grid, general cells General grid-cell
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Numerical Example: Barriers in 3D.

Saturation plots:

Saturation-plot from reference solution Saturation-plot from coarse-grid solution

Watercut and saturation errors:
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Concluding Remarks.

In this talk:
@ A local version of the MsMFEM.

@ Potential weaknesses can be fixed through coarse-grid
adaptation.

@ Great flexibility and robustness w.r.t. shapes of the coarse
grid-blocks.

Extensions and further work:
@ More general fine grids.
@ Adapting the coarse grids to fractures and faults.

@ Non-uniform coarse grids around wells.
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