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Model Equations.

Elliptic pressure equation:

v = −λ(S)K∇p
∇ · v = q

Hyperbolic saturation equation:

φ
∂S

∂t
+∇ · (vf(S)) = qw

Total velocity:

v = vo + vw

Total mobility:

λ = λw(S) + λo(S)

= krw(S)/µw + kro(S)/µo

Saturation water: S

Fractional flow water:

f(S) = λw(S)/λ(S)
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Motivation.

Small scale variations in the permeability can have a strong
impact on large scale flow and should be resolved properly.

the pressure may be well resolved on a coarse grid

the fluid transport should be solved on the finest scale
possible

Thus: a multiscale method for the pressure equation should
provide velocity fields that can be used to simulate flow on a
fine scale.

The MsMFEM basis functions predicts what the global flow
looks like locally.

problems can occur if large scale structures penetrate the
local domains

Thus: the shape of the local domains (the coarse grid) should
adapt to important large scale features.
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Multiscale Mixed Finite Elements

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
l∇ · v dx =

∫
ql dx, ∀l ∈ L2.

Multiscale discretization:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Grids and Basis Functions.

We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

Ti
Tj

We construct a coarse grid, and choose the discretization
spaces V and Ums such that:

For each coarse block Ti,there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function
ψij ∈ Ums.
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Basis Functions (Local Version).

Velocity:

For each coarse edge Γij we define a basis function
ψij = −λK∇φij with

∇ · ψij =

{
wi(x), for x ∈ Ti

−wj(x), for x ∈ Tj ,

with BCs ψij · n = 0 on ∂(Ti ∪ Γij ∪ Tj), and the
weight-functions wi, wj has average 1.

Pressure:

For each Ti we define

φi =

{
1, for x ∈ Ti

0, otherwise.
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Basis for Velocity - the Source Weights.

If
∫
Ti
qdx 6= 0 (Ti contains a source), then

wi(x) =
q(x)∫

Ti
q(ξ) dξ

.

Otherwise we may choose

wi(x) =
1

|Ti|
,

or to avoid high flow through low-perm regions

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ

.

The latter is more accurate - even for strong anisotropy.
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Basis Functions for Velocity.

X-component of 2D basis functions:
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Impact of Convex versus Non-Convex Support.

Heterogenous media:

We use tight support.
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Coarse Grid Refinement.

Question:

Does refining the coarse grid increase accuracy?

Error-measures for various coarse mesh-sizes.

Chen and Hou 2002:
error is bounded by

O(H +
√
ε+

√
ε

H
)
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Potential Problem-Scenarios for the MsMFEM.

Certain large scale features may cause problems:

Traversing barriers.

Reference. Coarse Grid. MsMFEM.

Cross-flow.

Reference. Coarse Grid. MsMFEM.

Can be ameliorated through coarse grid refinement/adaptation.
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Traversing Barriers.

Problems occur when a basis function forces flow through a
barrier:

Potential problem No problem

Problem-cases can be detected automatically through the
indicator

υij = ψij · (λK)−1ψij .

If υij(x) > C for some x ∈ Ti, then split Ti, and generate basis
functions for the new faces.
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Traversing Barriers.

Automatic approach: Direct approach:
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Cross-Flow.

The velocity field v experiences cross-flow over Γij if the
quantity ∫

Γij
|v · n| ds∣∣∣∫Γij
v · n ds

∣∣∣
is large. Edges of potential cross-flow can be detected by
solving a local pressure equation in Ωij .

The problem is solved by splitting one of the neighboring
blocks.
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Numerical Example: Barriers in 2D.

Saturation plots ( 0.5 PVI):
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Numerical Example: Barriers in 2D.

Watercut and saturation errors:

... and with barriers removed (same background perm):
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Numerical Example: Cross-Flow in 2D.

Saturation plots:

Watercut and saturation errors
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Numerical Example: Barriers in 3D.

Permeability field:

Grids:
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Numerical Example: Barriers in 3D.

Saturation plots:

Watercut and saturation errors:
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Concluding Remarks.

In this talk:

A local version of the MsMFEM.

Potential weaknesses can be fixed through coarse-grid
adaptation.

Great flexibility and robustness w.r.t. shapes of the coarse
grid-blocks.

Extensions and further work:

More general fine grids.

Adapting the coarse grids to fractures and faults.

Non-uniform coarse grids around wells.
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