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Q Introduction
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Geological Reservoir Description

@ Geological reservoir models: O(10°) — O(10°) grid cells.

@ Oscillating coefficients, Kmax/Kmin : O(10°) — O(1012).
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Simulation Models and Upscaling

@ Geological models too large for standard simulators.
@ Industry solution: Upscaling
@ Simulation models: O(10*) — ©O(10°) grid cells.

@ Unfortunately: Fine-scale variations may be important.
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Incompressible Two-Phase Flow

Fractional flow formulation (no gravity or capillary forces):

( = —KMN(S)Vp,
Pressure (elliptic): {U t(S)Vp,
Vv =gq
Saturation (hyperbolic): 9,5+ V - (vf(8)) =0

Solution method: Operator splitting.
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Multiscale Simulation

Coarse-scale solution

Coarse linear system

Geomodel

Fine-scale saturation
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© Three Multiscale Methods for the Pressure Equation
@ Adaptive Local-Global Upscaling / Nested Gridding
@ Multiscale Mixed Finite Elements

@ Multiscale Finite Volumes
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Adaptive Local-Global Upscaling / Nested Gridding

1. Upscale
transmissibility:
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2. Solve coarse-scale problem:

Zm(m—pj)Z/ gdx VK
j Ki
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3. Construct fine-scale velocity:

v=—-KVp, V-v=¢q InK;
_ Tkz(v* . nlj)

on 0K
Z'Ykicrlj ki

(Here 4 runs over the underlying fine grid)
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Multiscale Mixed Finite Elements

Velocity basis functions 1 —— Coarse-grid approximation

4

space

Coarse-scale velocity

Fine-scale velocity

For the MsMFEM the fine-scale velocity field is a linear
superpogﬁonofbasSfuncﬁons:v::ELjv%wﬁ.
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Multiscale Finite-Volume Method

Pressure basis = Mass balance equations

4

functions on coarse grid

Coarse-scale velocity

Geomodel

For the MsFVM the fine-scale pressure field is a linear
superposition of basis functions: p = >, p’ ¢;.
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e Comparison
@ Numerical Experiments
@ Computational Complexity
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Numerical Experiments
Fluvial Reservoir — Fine Grid Solution

Layer 85 from the 10th SPE Comparison Project
@ Fine grid: 60 x 220
@ Coarse grid: 10 x 22
@ Cell aspect ratio: dz/dy = 2

(a) logio K (b) Reference solution (4x grid)
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Numerical Experiments
Fluvial Reservoir — Fine Grid Solution

(d) ALGU-NG
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Numerical Experiments
Fluvial Reservoir — Fine Grid Solution
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Saturation error as a function of coarse grid size.
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Numerical Experiments
Fluvial Reservoir — Coarse Grid Solution

(a) Reference solution (4x (b) MsMFEM (c) MsFVM
grid)

(d) ALGU-NG (e) Pressure Method (f) Harmonic-Arithmethic
Averaging

@ Upscaled grid size: 15 x 55
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Numerical Experiments
Fluvial Reservoir — Coarse Grid Solution
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@ Saturation equation solved on the upscaled grid.
@ Errors computed on the upscaled grid.
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Numerical Experiments
Fluvial Reservoir — Coarse Grid Solution
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@ Saturation equation solved on the fine grid.

@ Errors computed on the upscaled grid.
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Numerical Experiments
Log-Normal Permeability — Uncorrelated

Uncorrelated Log-Normal Permeability
@ 100 realizations
@ Fine grid: 64 x 64
@ Coarse grids: 4 x 4,8 x 8,16 x 16, and 32 x 32.

el
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(a) Sample realization (logio K) (b) Reference solution
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umerical Experiments
Log-Normal Permeability — Uncorrelated
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Mean saturation error as a function of coarse grid size.
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Numerical Experiments
Log-Normal Permeability — Uncorrelated
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Mean and standard deviation of the saturation error for the coarse
grid of size 8 x 8.
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Numerical Experiments

Log-Normal Permeability — Spacially Correlated

Spacially Correlated Log-Normal Permeability
@ 100 realizations
@ Same grids as before
@ Dimensionless correlation length 0.1 in each direction.

(a) Sample realization (logio K) (b) Reference Solution
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Numerical Experiments
Log-Normal Permeability — Spacially Correlated
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Mean saturation error as a function of coarse grid size.
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Numerical Experiments

Log-Normal Permeability — Spacially Correlated
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Mean and standard deviation of the saturation error for the coarse
grid of size 8 x 8.
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Numerical Experiments
Vertical Channels

Vertical High-Permeability Channels:
@ 100 realizations
@ Same grids as before

@ Dimensionless correlation length 10 in the vertical direction
and 0.1 in the horizontal direction.

@ Conditioning on artificial data to produce the channels.
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umerical Experimen
Vertical Channels
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Mean saturation error as a function of coarse grid size.
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Numerical Experiments
Vertical Channels
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Mean and standard deviation of the saturation error for the coarse
grid of size 8 x 8.
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Numerical Experiments
Vertical Channels

One of the bad realizations for the MsFVM :

@ Solution is smeared out inside coarse cells.
@ We will return to this problem in a moment.
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Numerical Experiments
Diagonal Channels

Diagonal High-Permeability Channels:
@ 100 realizations
@ Same grids as before
@ Similar to previous case, but rotated 45°.

(a) Sample realization (log1o K) (b) Reference Solution
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Numerical Experiments
Diagonal Channels
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Mean saturation error as a function of coarse grid size.
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Numerical Experiments
Diagonal Channels
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Mean and standard deviation of the saturation error for the coarse
grid of size 8 x 8.
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Numerical Experiments
Diagonal Channels

One of the bad realizations for the MSMFEM and ALGU-NG :

(c) MsMFEM

(d) ALGU-NG
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Comparison

Anisotropic Medium / High Aspect Ratio

Spacially correlated log-normal permeability:

=

(a) Reference (4 x grid) ) MsMFEM

(c) MsFVM (d) ALGU-NG
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Computational Complexity
Order of Magnitude Argument

Example: 3D (128x128x128), o« =1.2and m =3
4_.5x 10° S :
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al CCIMsMFEM| |
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Computational Complexity
Comments

Direct solution more efficient, so why bother with multiscale?
@ Full simulation: O(10?) steps.
@ Basis functions need not be recomputed

x 10°
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Also:
@ Possible to solve very large problems
@ Easy parallelization
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A Few Words About Implementation

In our experience:

@ MsFVM and ALGU-NG:
Dual grid — Special cases (along external boundaries
and internal structures)

® MsMFEM :
Coarse grid cell is union of fine grid cells —
— Implementation straightforward given a fine grid method.
— Method quite indepent of coarse grid cell geometry.
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(a) Shale Barriers (b) MsMFEM coarse grid!
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@ cConclusions
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Conclusions

@ All three methods: High accuracy on typical data.

@ MsMFEM: Advantage for uncorrelated data and media
where the trends are aligned with the grid.

@ MsFVM: Advantage when the grid is not aligned with the
main flow direction (multi-point stencil).

@ MsFVM: Trouble for anisotropic media / high aspect ratios

@ MsMFEM and MsFVM have similar computational
complexity, ALGU-NG is less efficient
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