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This work is part of the GeoScale Research Project:

Develop a numerical methodology that facilitates reservoir

simulation studies on multi-million cell geological models.

Simulations should run within a few hours on desktop computers.
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This work is part of the GeoScale Research Project:

Develop a numerical methodology that facilitates reservoir

simulation studies on multi-million cell geological models.

Simulations should run within a few hours on desktop computers.

A cornerstone in the project is a multiscale mixed finite element

method (MsMFEM) that models pressure and filtration velocity.

To model the transport we explore two different strategies:

- streamline methods for convection dominated flow.

- an adaptive multiscale finite volume method.
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Geological models

Geological reservoir models give a geometric reservoir description

and a plausible distribution of rock permeability - the rocks ability

to transmit fluid - and porosity - the volume fraction open to flow.
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nGeological models may contain 106–109 grid cells and are often

characterized by large contrasts in the permeability field.
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Simulation models

For presentational simplicity we consider a model for incompressible

and immiscible two-phase flow without gravity and capillary forces:

∇ · k[λw(S) + λo(S)]∇p = q

φ∂tS +∇ · (fwv) = qw.

Here k denotes permeability, λi the mobility of phase i, φ porosity,

p pressure, S water saturation, fw = λw/(λw + λo) the fraction of

water in the flowing fluid, and v = vw + vo the total Darcy velocity.

Reservoir simulation models usually consist of 104–106 grid blocks.
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Traditional reservoir simulation

Coarse geomodel

⇑

Original geomodel

⇒

Coarse scale velocity

⇓

Coarse scale saturation

J back I



Reservoir simulation using multiscale methods 6 of 24

Reservoir simulation using multiscale methods

Coarse scale velocity

⇑

Original geomodel

⇒

Fine scale velocity

⇓

Fine scale saturation
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Multiscale mixed finite element methods
In a mixed FEM formulation one seeks v ∈ V and p ∈ U such that∫

Ω

k−1v · u dx−
∫

Ω

p ∇ · u dx = 0 ∀u ∈ V,∫
Ω

l ∇ · v dx =
∫
Ω
ql dx ∀l ∈ U.

Here V ⊂ {v ∈ (L2)d : ∇ · v ∈ L2, v · n = 0 on ∂Ω} and U ⊂ L2.

In MsMFEMs the approximation space for velocity V = span{ψij}
is designed so that it embodies the impact of fine scale structures.
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Velocity basis functions

⇑

Geomodel

⇒ Coarse grid approximation space

⇓
Coarse scale velocity

⇓

Fine scale velocity

The fine scale velocity field is expressed as a linear superposition of

the basis functions: v =
∑

ij vijψij where the coefficients vij are

obtained from the solution of the coarse scale system.
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MsMFEMs enjoy the following prop.:

They are accurate: flow scenarios

match closely fine grid simulations.

They are efficient: basis functions

need to be computed only once.

They are flexible: unstructured and

irregular grids are handled easily.

They are robust: suitable for mod-

eling flow in porous media with very

strong heterogeneous structures.
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Conclusion I: Multiscale methods for elliptic equations provide a

robust and efficient tool to get accurate velocity fields on fine grids,

... but solving the saturation equation on multi-million cell

geomodels becomes a bottle-neck in large flow simulations.

Is it possible to develop a similar multiscale methodology
for solving the saturation equation more efficiently?
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A multiscale framework for the saturation equation
Geomodel

Solve pressure equation ⇓ Fine scale saturation
Fine scale velocity ⇑

Upscale saturation field Downscale saturation field
⇓ ⇑

Coarse scale saturation at tn

Advance saturation to time tn+1 ⇒ Coarse scale saturation at tn+1
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A multiscale method for the saturation equation:

Assume that Sn is a saturation field on the fine grid {T} at t = tn,

and denote non-degenerate fine grid interfaces by γij = ∂Ti ∩ ∂Tj.

1: For each K in the coarse grid, do

S̄n+1|K = S̄n|K +
4t∫

K
φdx

∫
K

qw dx−
∑

γij⊂∂K

Fij(Sn)

 ,
where Fij(S) = max{fw(Si)vij,−fw(Sj)vij}.

2: Map S̄n+1|K onto the fine grid: Sn+1|K = IK(S̄n+1).
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The interpolation operators are defined by IK(S̄) = χK(x, t(S̄)),
where χK is determined by

φ
∂χK

∂t
+∇ · [fwv

0] = qw in KE = K ∪ {T : ∂K ∩ ∂T 6= ∅},

with v0 = v(S0), χ0
K = S0, and fw = 1 on the inflow boundary

ΓE
in = {γij ⊂ ∂KE : Ki ⊂ KE, vij < 0}.

The time t(S̄) is determined by requiring mass conservation:∫
K

IK(S̄)φdx = S̄

∫
K

φdx.
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Test case: 10th SPE comparative solution project (model 2).

Injector
Producer 3

Producer 4

Producer 1

Producer 2

170ft.

1200ft.

2200ft.

· Fine grid: 60× 220× 85 (1.122 · 106 fine grid cells.)

· Coarse grid: 6× 22× 17 (2244 coarse grid blocks).

· Mobilities: λw = S2/µw and λo = (1− S)2/µo.

· Viscosities: µw = 3.0 · 10−4 and µo = 3.0 · 10−3.
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To assess the accuracy of a solution S we compute the discrepancy

between S and a reference solution Sref using the following norms:

eF (S(·, t)) =
‖Sref(·, t)− S(·, t)‖L2

φ

‖Sref(·, t)− Sref(·, 0)‖L2
φ

,

eC(S(·, t)) =
‖S̄ref(·, t)− S̄(·, t)‖L2

φ

‖S̄ref(·, t)− S̄ref(·, 0)‖L2
φ

.

Here S̄ denotes the coarse grid saturations corresponding to S, and

‖S‖2
L2

φ
=

∫
Ω

(Sφ)2 dx.
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Results for pure multiscale algorithm:
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The x–marks correspond to the standard upstream scheme on {K}.
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Domain decomposition method for the saturation equation:

For all grid blocks K, let KE = K ∪ {T : ∂K ∩ ∂T 6= ∅}, and do

1: For Ti ∈ KE, compute:

S
n+1/2
i = Sn

i +
4t
φi|Ti|

∫
Ti

qw(Sn+1/2) dx−
∑
j 6=i

F ∗ij

 ,

where F ∗ij =
{
Fij(Sn) if γij ⊂ ∂K and vij < 0.
Fij(Sn+1/2) otherwise.

2: For Ti ∈ KE, set Sn+1
i = S

n+1/2
i .
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Results for multiscale and domain decomposition algorithm:
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Domain decomposition type localization procedures provide a

natural environment for the development of adaptive schemes.
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Ω

Ω

coarse

fine
Adaptive algorithm:

· Use DD method in transient

flow regions (Ωfine).

· Update coarse grid saturation

in regions with slow transients.

· Map saturation in Ωcoarse onto

fine grid using {IK}.
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An adaptive multiscale method for the saturation equation

1: Compute Sn+1 in Ωfine using the DD method.

2: Set Sn+1 = Sn in Ωcoarse and compute

S̄n+1|K = S̄n|K +
4t∫

K
φdx

∫
K

qw dx−
∑

γij⊂∂K

Fij(Sn+1)

 .
3: Map S̄n+1|K onto the fine grid: Sn+1|K = IK(S̄n+1).
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Results for the adaptive multiscale algorithm:
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Water-cut curves: fraction of water in produced fluid.

x: Ref.

–: DD.

--: AdMs.

-·: Ms.

o: Coarse.
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Conclusions

To run simulations directly on geological models require faster

and more flexible simulators than what we have available today.

A multiscale method for the pressure equation together with

an adaptive multiscale method for saturation equations may

offer an alternative to upscaling based reservoir simulation.
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