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This work is part of the GeoScale Research Project:

Develop a numerical methodology that facilitates reservoir
simulation studies on multi-million cell geological models.

Simulations should run within a few hours on desktop computers.
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This work is part of the GeoScale Research Project:

Develop a numerical methodology that facilitates reservoir
simulation studies on multi-million cell geological models.

Simulations should run within a few hours on desktop computers.
A cornerstone in the project is a multiscale mixed finite element
method (MsMFEM) that models pressure and filtration velocity.

To model the transport we explore two different strategies:
- streamline methods for convection dominated flow.
- an adaptive multiscale finite volume method.
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Geological models

Geological reservoir models give a geometric reservoir description
and a plausible distribution of rock permeability - the rocks ability
to transmit fluid - and porosity - the volume fraction open to flow.

Scale distribution

-8 -6 -4 -2 0 2 4 6
Logarithm of permeability

Geological models may contain 10910 grid cells and are often
characterized by large contrasts in the permeability field.
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Simulation models

For presentational simplicity we consider a model for incompressible
and immiscible two-phase flow without gravity and capillary forces:

Vk[)‘w(s) —l_)‘o(S)]vP = (q
gbats + V- (fwv) — Quw-
Here k& denotes permeability, \; the mobility of phase 7, ¢ porosity,

p pressure, S water saturation, f, = Ay /(A + Ao) the fraction of
water in the flowing fluid, and v = v,, + v, the total Darcy velocity.

Reservoir simulation models usually consist of 10*~10° grid blocks.
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Traditional reservoir simulation

Coarse geomodel

Coarse scale velocity

&

Coarse scale saturation
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Reservoir simulation using multiscale methods

Coarse scale velocity Fine scale velocity
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& L=
S Y

Fine scale saturation
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Multiscale mixed finite element methods
In a mixed FEM formulation one seeks v € V' and p € U such that

/klv-uda:—/pv-udx =0 Vu eV,
Q Q

/lv-vdaz :qulda: Vie U.
Q

Here V C {v € (L?)?:V-v e L?* v-n=00n 00} and U C L?.

In MsMFEMs the approximation space for velocity V' = span{v;}
Is designed so that it embodies the impact of fine scale structures.
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Velocity basis functions =  Coarse grid approximation space

4

Coarse scale velocity

The fine scale velocity field is expressed as a linear superposition of
the basis functions: v =}, v;;1;; where the coefficients v;; are
obtained from the solution of the coarse scale system.
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MsMFEMs enjoy the following prop.:

They are accurate: flow scenarios
match closely fine grid simulations.

They are efficient: basis functions
need to be computed only once.

They are flexible: unstructured and
irregular grids are handled easily.

They are robust: suitable for mod-
eling flow in porous media with very
strong heterogeneous structures.
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Conclusion |: Multiscale methods for elliptic equations provide a
robust and efficient tool to get accurate velocity fields on fine grids,

... but solving the saturation equation on multi-million cell
geomodels becomes a bottle-neck in large flow simulations.

Is it possible to develop a similar multiscale methodology
for solving the saturation equation more efficiently?
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A multiscale framework for the saturation equation

Sl Geomodel

Fine scale saturation
Fine scale velocity M

Upscale saturation field Downscale saturation field

i

Coarse scale saturation at ¢,

Advance saturation to time t,,.; = Coarse scale saturation at ¢,, 4
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A multiscale method for the saturation equation:

Assume that S™ is a saturation field on the fine grid {T'} at t = ¢,
and denote non-degenerate fine grid interfaces by v;; = 07; N JT}.

1: For each K in the coarse grid, do

_ _ At
S e = 8" e + / qudr — D Fi(5™)],
fK¢dx K ’Y@C@K

where FZ](S) = max{fw(Si)v@-j, —fw(Sj)?}ij}.
2: Map S™"!|x onto the fine grid: S"T!|x = I (S™T1).
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The interpolation operators are defined by Ix(S) = xx(x,t(5)),
where x i Is determined by

¢a§_tK+v.[waO]:qw in KY = KU{T : 0K NoT # 0},

with v = v(SY), x% = S, and f,, = 1 on the inflow boundary
FEI — {Vij C GKE - K, C KE, Vij < O}
The time ¢(S) is determined by requiring mass conservation:

/}(IK(Sde:S/quda:.

SINTEF « back »



A multiscale framework for the saturation equation 14 of 24

Test case: 10th SPE comparative solution project (model 2).

. Fine grid: 60 x 220 x 85 (1.122 - 10° fine grid cells.)

- Coarse grid: 6 x 22 x 17 (2244 coarse grid blocks).

. Mobilities: Ay, = 5%/, and X, = (1 —5)?/ .

. Viscosities: f1,, = 3.0-107* and 1, = 3.0 - 1073,

SINTEF < back >



A multiscale framework for the saturation equation 15 of 24

To assess the accuracy of a solution S we compute the discrepancy
between S and a reference solution S, using the following norms:

|1Srer (5 2) =S ()] 12

€Er " — ¢ 7

(S( t)) HSref('at) — Sref('a O)HL;
ngef(',t) — g(at)HLé

eC(S('at)) — S

ngef('at) — Sref('7 O)HLZ
Here S denotes the coarse grid saturations corresponding to S, and
ISI2 = [ (59 da.
¢ Q
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Results for pure multiscale algorithm:
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The x—marks correspond to the standard upstream scheme on {K}.
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Domain decomposition method for the saturation equation:

For all grid blocks K, let K¥ = K U{T : 0K N 0T # 0}, and do
1: For T, € K¥, compute:

AN
S,?+1/2 _ SIL"_ / T Sn—l—l/Q dr — FZ* 7
oi|Ti| \ Jr, ( ) Z /
J#u
. FZ](Sn) If Yij C 0K and Vij < 0.
where 5 = { F;;(S™1/2)  otherwise.

2: For T € K7, set S*tt = git1/2
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Results for multiscale and domain decomposition algorithm:
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Domain decomposition type localization procedures provide a
natural environment for the development of adaptive schemes.

Q fine
/ Adaptive algorithm:

- Use DD method in transient
flow regions (Q2gne).

- Update coarse grid saturation
in regions with slow transients.

Map saturation in .oarse ONtO

£
a4
N
j fine grid using {/x}.

Q coarse
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An adaptive multiscale method for the saturation equation

1: Compute S in Qg6 using the DD method.

2: Set S™T!1 = 5" in Qcoarse and compute

_ _ At
Sn+1|K — Sn|K + / dw dr — Z Fij(5n+1)
fK¢dx K Vi COK

3: Map S™ "k onto the fine grid: S| = I (S™T1).
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Results for the adaptive multiscale algorithm:
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Water-cut curves: fraction of water in produced fluid.

Producer 1 Producer 2
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o: Coarse.
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Log. of horiz. permeability Reference solution Solution for DD algorithm
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Conclusions

To run simulations directly on geological models require faster
and more flexible simulators than what we have available today.
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A multiscale method for the pressure equation together with
an adaptive multiscale method for saturation equations may
offer an alternative to upscaling based reservoir simulation.
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Conclusions

To run simulations directly on geological models require faster
and more flexible simulators than what we have available today.

A multiscale method for the pressure equation together with
an adaptive multiscale method for saturation equations may
offer an alternative to upscaling based reservoir simulation.
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