The GeoScale Project — Reservoir Simulation on a

SINTEF

Geological Scale

Knut—Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

Texas, December 2005

Applied Mathematics . .

Nov 2005

[m]

1/34



@ The GeoScale Project
@ Objectives
@ Facts

© Multiscale Pressure Solution
@ Background: Upscaling
@ Multiscale Mixed Finite Elements
@ Accuracy and Robustness
@ Computational Complexity
@ Advantage: Flexibility

© Future Work

@ SINTEF Applied Mathematics . . e Nov 2005 < O 2/34



The GeoScale Project (2004-08)

Primary objective:

Establish mathematical and numerical technology that facilitates
direct simulation on high-resolution geomodels in 3D.
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The GeoScale Project (2004-08)

Primary objective:
Establish mathematical and numerical technology that facilitates
direct simulation on high-resolution geomodels in 3D.

Secondary objectives:

@ Develop better simulation methods for industry-standard
geomodels with small-scale heterogeneity, irregular grids and
multiple wells.

e Simulations should run within a few hours timeframe on
standard desktop computers

e Simulations should scale well with increasing computational
resources

@ Promote technology to industrial end-users

o Establish industrial funding
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The GeoScale Project (2004-08)

Partners:
SINTEF and Univ. Bergen, Oslo, Trondheim
Funding:
1,8 million $ over 4 years from Research Council of Norway
+ 3-4 PhD grants (RCN, UoB, NTNU)
+ 2 postdoc grants (RCN, EU)
Collaboration:
Stanford, Texas A&M, ETH Ziirich,
Schlumberger Moscow Research, Statoil Research Centre
Contact:
http://www.math.sintef .no/geoscale/

Knut-Andreas.Lie@sintef .no
+47 22 06 77 10 / +47 930 58 721
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Simulation on Geological Models

For various reasons, there is a need for
direct simulation on high-resolution
geomodels. This is difficult:
@ K spans many length scales and
has multiscale structure

max K/ min K ~ 103-10%°

@ Details on all scales impact flow
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Simulation on Geological Models

For various reasons, there is a need for
direct simulation on high-resolution
geomodels. This is difficult:
@ K spans many length scales and
has multiscale structure

max K/ min K ~ 103-10%°

@ Details on all scales impact flow

Gap between simulation models and geomodels:
o High-resolution geomodels may have 107 — 10° cells
e Conventional simulators are capable of about 10° — 10° cells

o 5/34
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State-of-the-art in Industry

10th SPE Comparative Solution Project

@ Geomodel: 60 x 220 x 85 ~ 1,1 million grid cells
@ Simulation: 2000 days of production
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10th SPE Comparative Solution Project

Upscaling results reported by industry
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Developing an Alternative to Upscaling

We seek a methodology that:

@ gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

@ is robust and flexible with respect to the coarse grid

@ is robust and flexible with respect to the fine grid and the
fine-grid solver

@ is accurate and conservative

@ is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard method
Upscaled model:
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From Upscaling to Multiscale Methods

Standard method
Upscaled model:

Building blocks:
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From Upscaling to Multiscale Methods

Standard method Two-scale method
Upscaled model: Geomodel:
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From Upscaling to Multiscale Methods

Standard method
Upscaled model:

Building blocks:

—

@ SINTEF

Two-scale method
Geomodel:

TZ

1.;'

e |

4

Building blocks:

Applied Mathematics .

Nov 2005



From Upscaling to Multiscale Methods

Standard method
Upscaled model:

Building blocks:

—

@ SINTEF

Two-scale method

Geomodel:

TZ

1.;'

e |

4

Building blocks:

Applied Mathematics .

Nov 2005

[m]

9/34



From Upscaling to Multiscale Methods

Standard method

Two-scale method
Upscaled model: Geomodel:
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From Upscaling to Multiscale Methods

Standard method

Upscaled model:
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Multiscale Mixed Finite Elements
Formulation

Mixed formulation:

Find (v,p) € Hy'™ x L? such that
-1 1,div
/()\K) u-vdm—/pv'udazzo, Vu € Hy™",

/zv-vdxz/qu, Ve e L2

Multiscale discretisation:
Seek solutions in low-dimensional subspaces

U™ c Hy™ and V € L2,

where local fine-scale properties are incorporated into the basis
functions. |
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.
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Multiscale Mixed Finite Elements

Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

)

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.

@ For each coarse edge I';;, there is a basis function ¢;; € U™?.
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Multiscale Mixed Finite Eleme

Basis for the Velocity Field

For each coarse edge [';;, define a basis
function

bij : T;UT; — R?

with unit flux through I';; and no flow
across O(T; U Tj).

We use q;bij = —AKVQZ)Z] with

wi(z), forx €T,

Vi =
Vi —wj(z), forxz ey,

with boundary conditions v;; - n = 0 on 9(T; U Tj).
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Multiscale Mixed Finite Elements
The Source Weights

If sz’ gdx # 0 (T; contains a source), then

wiz) q(x)

Jr, a(€) d€
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Multiscale Mixed Finite Elements
The Source Weights

If [;. qdz # 0 (T; contains a source), then

wiz) q(x)

Jr, a(€) d€

Otherwise we may choose

1
wi*) = 17 %
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Multiscale Mixed Finite Elements
The Source Weights

If sz’ gdx # 0 (T; contains a source), then

wi(x) = — 92

Jr, a(€) d€

Otherwise we may choose

_ 1 palats!
wi(w) = ok %7‘\%5

or to avoid high flow through low-perm regions

The latter is more accurate - even for strong anisotropy.
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Multiscale Mixed Finite Elements

Basis for Velocity Field, cont'd

Homogeneous coefficients and rectangular support domain:
basis function = lowest order Raviart-Thomas basis

MsMFEM = extension to cases with subscale variation in
coefficients and non-rectangular support domain

Homogeneous medium Heterogeneous medium
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Multiscale Mixed Finite Elements

Velocity basis functions 1;; —— Coarse-grid approximation space

4

_ 4

Coarse-scale velocity

Fine-scale velocity

For the MsMFEM the fine-scale velocity field is a linear
superposition of basis functions: v = Zij U;}%g‘-
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Properties of the MsMFEM

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on coarse grid and on the subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks

Fast:
The method is fast when avoiding regeneration of (most of) the
basis functions at every time step
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Advantages: Accuracy

SPE10 Benchmark (5 x 11 x 17 Coarse Grid)
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Nested gridding: upscaling + downscaling
SINTEF
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Advantage: Robustness

SPE10, Layer 85 (60 x 220 Grid)

Logarithm of horizontal permeability Reference saturation profile

o o N ok

MsMFEM saturation profile

Coarse grid (6 x 22) saturation profile MsMFEM saturation profile

1.2

Coarse grid (3 x 11) saturation profile
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Multiscale vs. Upscaling
SPE10, Layer 85 (15 x 55 Grid)

ALGU-NG pressure method harmonic-arithmetic

saturation computed on the coarse grid
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Multiscale vs. Upscaling

Saturation Errors on the Upscaled Grid
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400 500

reference (240 x 880)

ALGU-NG
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Multiscale vs. Upscaling

Saturation Errors on the Fine Grid
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Advantage: Computational Complexity

Order-of-Magnitude Argument

Assume:
@ N =n-m grid blocks in geomodel
@ n coarse blocks, each containing m fine blocks

@ linear algebra with complexity N¢ for N unknowns

Direct solution:
N¢ operations for a two-point finite volume method

Multiscale solution:
dn - (2m)® + (dn)“ operations using a two-point FVM for
fine-scale solution )
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Computational Complexity, cont'd

Example 3D (128x128x128), o = 1.2

x107
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I Solution of global system
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Fine scale solution
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Computational Complexity, cont'd

Example 3D (128x128x128), o = 1.3

x10°

T T
I Computation of basis functions
18l - I Solution of global system i

Fine scale solution
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Comparison of Methods
Comments

In practice:
@ Assembly time may become significant when solving many
small problems since vectorization is harder.
o Efficient linear solvers typically require an initial setup phase,

therefore the solution of many small systems may be more
time-consuming than anticipated.
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Computational Complexity, cont'd

Comments

Direct solution may be more efficient, so why bother with multiscale?

x10"

e Full simulation: O(10?) time
steps.

I Computation of basis functions
I Solution of global system

6k

o BaSIS funCtionS need nOt be Fine scale solution
recomputed

Also:

@ Possible to solve very large 7 7
problems | |
o Easy parallelization

8x8x8 16x16x16 32x32x32 64x64x64
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Computational Complexity
Comparison with other methods

Example: 3D (128x128x128), « =1.2 and k =3
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Flexibility

Multiscale mixed formulation:
coarse grid = union of cells in fine grid

@ Given a numerical method that
works on the fine grid, the
implementation is straightforward.

@ One avoids resampling when going
from fine to coarse grid, and vice
versa J

Other formulations:

MsFVM and (A)LGU: based upon dual grid — special cases that
complicate the implementation
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Flexibility wrt. Grids

Permeability field / Coarse grid Coarse grid cell
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Flexibility wrt. Grids

Around Flow Barriers
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Multiscale methods
e Well models (adaptive gridding, multilaterals)
@ More general grids (block-structured, PEBI, ..)
o Compressibility, multiphase and multicomponent
o Adaptivity

@ Fractures and faults

Applications:
e Multiscale history matching

@ Carbonate reservoirs
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