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Displacement Theory

Assumptions:
• One-dimensional flow
• Immiscible fluids
• Incompressible fluids
• Homogeneous rigid porous medium
• Multiphase flow extension of Darcy’s law
• Gravity and capillarity are not considered
• Constant fluid viscosities
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Displacement Theory cont’d

Mass conservation for each phase:

∂t(mα)+∂x(Fα) = 0, α = w, g, o

mα = ραSαφ

Fα = −ραkλα ∂xp

Saturations add up to one:

∑

α=w,g,o

Sα ≡ 1
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Displacement Theory cont’d

If the fractional flow approach is used:
• “Pressure equation”

∂x(vT ) = 0

vT = −
1

φ
kλT ∂xp

• System of “saturation equations”

∂t

(

Sw

Sg

)

+ vT ∂x

(

fw

fg

)

=

(

0

0

)
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Displacement Theory cont’d

Saturation triangle:
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Character of the System

The character of the system

∂t

(

u

v

)

+ vT ∂x

(

f

g

)

=

(

0

0

)

⇔ ∂tu + vT ∂xf = 0

is determined by the eigenvalues (ν1, ν2) and eigenvectors
(r1, r2) of the Jacobian matrix:

A(u) := Duf =

(

f,u f,v

g,u g,v

)

Hyperbolic: The eigenvalues are real and the Jacobi matrix is
diagonalizable. Strictly hyperbolic: distinct eigenvalues ν1 < ν2.

Elliptic: The eigenvalues are complex.
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Character of the System cont’d

It was long believed that the system was strictly hyperbolic for
any set of relative permeability functions

However: existence of elliptic regions proved 1985–95
• Bell et al., Fayers, Guzmán and Fayers, Hicks and Grader, ..

• Shearer and Trangenstein, Holden et al, ...

Approach in the existing literature:
• Assume “reasonable” conditions for relative permabilities

on the edges
− “Zero-derivative” conditions
− “Interaction” conditions

• Infer loss of strict hyperbolicity inside the saturation
triangle
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Character of the System cont’d

Traditional assumed behavior of fast eigenvectors (r2)
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Character of the System cont’d

Consequences of ellipticity of the system:
• Flow depends on future boundary conditions
• The solution is unstable: arbitrarily close initial and injected

saturations yield nonphysical oscillatory waves

However:
• The elliptic region can be shrunk to an umbilic point only

if interaction between phases is ignored:

krα = krα(Sα), α = 1, . . . , 3

• This model is not supported by experiments and
pore-scale physics

• Umbilic points still act as “repellers” for classical waves
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Relative Permeabilities

Juanes and Patzek – New approach:
• Assume the system is strictly hyperbolic
• Infer conditions on relative permeabilities

Key observation:
• Whenever gas is present as a continuous phase, its

mobility is much higher than that of the other two fluids
• Fast paths←→ changes in gas saturation
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Relative Permeabilities

Proposed behavior of eigenvectors (r1, r2)
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Relative Permeabilities cont’d

Two types of conditions:
• Condition I. Eigenvectors are parallel to each edge
• Condition II. Strict hyperbolicity along each edge

In particular, on the OW edge:
Condition Frac. flows Mobilities

I g,u = 0 ⇔ λg,u = 0

II g,v − f,u > 0 ⇔ λg,v > λw,u − λT,u
λw

λT

Condition II requires that the gas relative permeability has a
positive derivative at its endpoint saturation.

17.11.04 – p. 13



Relative Permeabilities cont’d

Remarks:
• Necessary condition for strict hyperbolicity
• Can be justified from pore-scale physics (bulk flow

vs. corner flow)
• Supported by experimental data (Oak’s steady-state)
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Relative Permeabilities cont’d

A simple model:

krw(u) = u2

krg(v) =
(

βgv + (1− βg)v
2
)

, βg > 0

kro(u, v) = (1− u− v)(1− u)(1− v)

with reasonable values of viscosities:

µw = 1, µg = 0.03, µo = 2 cp

and a small value of the endpoint slope: βg = 0.1
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Relative Permeabilities cont’d

Oil isoperms:

  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1

PSfrag replacements

W

G

O

kro = 0.2

kro = 0.4

kro = 0.6

17.11.04 – p. 16



Analytical Solution

Riemann problem: Find a weak solution to the 2× 2 system

∂tu + vT ∂xf = 0, −∞ < x <∞, t > 0

u(x, 0) =

{

ul if x < 0

ur if x > 0

Previous work:
• Sequence of two successive two-phase displacements

(Kyte et al., Pope, ..)
• Triangular systems (Gimse et al., ..)

New results by Juanes and Patzek:
• A complete classification all wave types
• Solution of Riemann problem (structure of waves)
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Analytical Solution cont’d

Self-similarity (“stretching”, “coherence”):
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∫ t

0 vT (τ) dτ
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Analytical Solution cont’d

Using self-similarity, the Riemann problem is a boundary value
problem:

(A(U)− ζI)U ′ = 0, −∞ < ζ <∞

with boundary conditions

U(−∞) = ul, U(∞) = ur

Strict hyperbolicity −→ wave separation:

ul
W1−→ um

W2−→ ur
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Analytical Solution cont’d

Schematic of Riemann solution
  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1

PSfrag replacements

W

G

O

ul

ur

ζ

ul

ur

17.11.04 – p. 20



Analytical Solution cont’d
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Wave Structure: Rarefactions

If the solution is smooth, it satisfies:

(A(U)−ζI)U ′ = 0

↗ ↖

eigenvalue (νp) eigenvector (rp)

A smooth solution
(rarefaction) must lie
on a curve whose tan-
gent is in the direction of
the eigenvector (integral
curve)

  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1
PSfrag replacements

W

G

O

1-family (slow paths)
2-family (fast paths)

17.11.04 – p. 21



Wave Structure: Rarefactions cont’d

Admissibility of a rarefaction wave
• To avoid a multiple-valued solution, νp must increase

monotonically along the curve

ul
Rp

−→ ur

• Thus, rarefaction curves Rp are subsets of integral
curves Ip
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Wave Structure: Shocks

If the solution is discontinuous, it must
satisfy the Rankine-Hugoniot jump
condition: ζ

u−

u+

- σ

f(u+)− f(u−) = σ ·
[

u+ − u−

]

The set of states which can be con-
nected satisfying the jump condition is
called the Hugoniot locus
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Wave Structure: Shocks cont’d

Admissibility of a shock wave
• Not every discontinuity satisfying the jump condition is a

valid shock
• Characteristics of the p-family must go into the shock (Lax

entropy condition):

νp(u−) > σp > νp(u+),

• Thus, shock curves Sp are subsets of Hugoniot loci Hp
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Wave Structure: Rarefaction-Shocks

Genuine nonlinearity: eigenvalues vary monotonically along
integral curves

This is not the case in multiphase flow, where each wave may
involve rarefactions and shocks

Inflection locus: set of points at which eigenvalues attain a
local maximum when moving along integral curves
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Wave Structure: Rarefaction-Shocks cont’d

Properties of the inflection loci:
• Single curves, transversal to integral

curves
• Correspond to maxima of eigenvalues

Consequences:
• At most one rarefaction and one shock
• Rarefaction is always slower than shock:

ul
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−→ u∗

Sp

−→ ur
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Wave Structure: Rarefaction-Shocks cont’d

Admissibility of a rarefaction-shock wave
• Eigenvalue νp must increase monotonically along the curve

ul
Rp

−→ u∗

• The shock must satisfy the extended-Lax entropy
condition:

νp(u∗)= σp > νp(ur)
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Wave Structure cont’d

Complete set of solutions: 9 different wave configurations
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Complete Set of Solutions
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Complete Set of Solutions cont’d
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Complete Set of Solutions cont’d
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Example 1

Injection of water and gas into an oil-filled core (with some
mobile water)

Problem of great practical interest

Injected saturation Initial saturation

Sg = 0.5 Sg = 0
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Example 1 cont’d
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Example 1 cont’d
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The Cauchy Problem: Front Tracking

first interaction second interaction

Start (t = 0): piecewise constant inital data
−→ sequence of local Riemann problems
−→ p.w discontinuities between (x,t)-rays
While t < tend:

track discontinuities
solve Riemann problems
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Example 2
• Initially, reservoir filled with 80% oil and 20% gas
• Alternate cycles of water and gas injection
• Front-tracking solution (with ∆u = 0.005

• Half a million Riemann solves ∼ 5 sec on a desktop PC

0 1 2
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Streamline Methods

Interpret the saturation equation φ∂tS + v · ∇f(S) = 0 as an
equation along streamlines using

v

|v|
=
[dx

ds
,
dy

ds
,
dz

ds

]T

or v·∇ = |v|
∂

∂s

Transformation using time-of-flight τ

|v|
∂

∂s
= φ

∂

∂τ

dx

dsdy

s(x,y)

gives a family of 1-D transport equations along streamlines

∂tS + ∂τf(S) = 0.
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Streamline Simulation

Figure from Yann Gautier
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Example 4: SPE 10 Tarbert Formation

10 10 10 10 10 10 10−2 −1 0 1 2 3 4 

• 30 × 110 × 15 upscaled
sample from Tarbert
formation

• Initial composition:
(Sw, Sg) = (0.0, 0.2)

• 2000 days of production

• Either: continuous water
injection

• Or: water-alternating-gas
every 200 day

Data reduction is used to speed up front-tracking solution: weak
interactions are treated as being of type S1S2.
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Example 4 cont’d

Oil production:
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water injection water alternating gas injection

Runtimes: 8 hr 20 min for Eclipse, 2 hr 13 min for streamlines
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