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Gap between geological and reservoir simulation
models.
Modern geostatistical methods can produce models
of size 107 − 109, which currently is well out of reach
for any reservoir simulator.
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Motivation

Gap between geological and reservoir simulation
models.

Upscaling not necessarily robust.
Upscaling is often a manual and very time-
consuming procedure. Many methods exist, but
no universal approach. Aslo, upscaling inherently
means loss of fine-scale information that may effect
the global flow behaviour.
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Motivation

Gap between geological and reservoir simulation
models.

Upscaling not necessarily robust.

Simulation speed is crucial.
Fast simulation is necessary not only for large mod-
els, but also for special applications like history-
matching, uncertainty assessment, and process op-
timization.
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Strategy

We hope to take a step in the right direction by combining
a streamline method

Well-known, fast simulation method which allows
million grid-block simulations on single workstations.

Works by convecting the phase saturations along
streamlines given a mass conservative velocity field.
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Strategy

We hope to take a step in the right direction by combining
a streamline method with a multiscale method.

Recent approach for solving elliptic equations with
strongly heterogeneous coefficients.

Capable of producing conservative velocity fields at
multiple scales.
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Assumptions

The simple model considered here covers two-phase flow
including gravity, but disregards the following effects:

Compressibility

Dispersivity

Miscibility

Thermal effects

Reactive terms



Mathematical Model

Mass balance and Darcy’s law yields:

−∇ · ~u = q,

and,

φ
∂Sw

∂t
+ ~u · ∇fw + ∇ · ~Gw = qfw,

where ~u is the total Darcy velocity,

~u =
~~K · (λt∇P + λg∇D).
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The Streamline Method

Based on an IMPES strategy for solving the flow
equations.

IMplicit Pressure, Explicit Saturation.

Decouples the flow equations by simply
evaluating initial phase mobilities and solving
the pressure equation separately.

Assumes constant pressure during a time step
to be able to move the phase saturations forward
in time.



The Streamline Method

Based on an IMPES strategy for solving the flow
equations.

The full 3D saturation equation is decoupled into
multiple 1D equations to be solved along streamlines.



Streamline Steps

The starting point is an initial saturation field.



Streamline Steps

The pressure is computed using the initial saturations to
evaluate the mobility terms.



Streamline Steps

The pressure defines a velocity field and the streamline are
traced from injectors to producers while picking up the grid
block saturations.



Streamline Steps

Saturations are moved forward along the streamlines under
the assumption that the streamlines remain fixed during the
time step.



Streamline Steps

Finally the streamline saturations are mapped back onto
the grid to yield a new saturation field, and the process may
now be repeated.
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Speed.
The method is very fast and allows simulation of mil-
lion grid block models on single workstations.
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Speed.

Scalability.
Low memory requirements and completely indepen-
dent processing of streamlines makes the stream-
line method scalable both on serial and parallel com-
puter architectures.
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Speed.

Scalability.

Also worth noting...
The method is not restricted to the simple model
used here, and has been successfully applied to
multiphase, dispersive, compositional displacement.
Has also been used on unstructured grids.



Multiscale
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Schematic view of a multiscale method.
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MMsFEM

A Mixed Multiscale Finite Element Method

−∇ · ~u = −∇ ·
~~K · (λt∇P + λg∇D) = q

Find (~uh, Ph) ∈ Vh × Πh such that,

∫

Ω

(
~~Kλt)

−1 ~uh · ~vh d~x =

∫

Ω

Ph ∇ · ~vh d~x −

∫

Ω

λg

λt

D∇ · ~vh d~x ∀~vh ∈ Vh,

∫

Ω

Qh ∇ · ~uh d~x =

∫

Ω

qQh d~x, ∀Qh ∈ Πh.



MMsFEM

A Mixed Multiscale Finite Element Method

Vh = span {~ψ}, where ~ψ captures the local behaviour of the

differential operator L = −∇ ·
~~Kλt∇.



MMsFEM Basis

One possibility:

Let K = {K} be a partition (grid) of Ω and define the basis functions
~ψij by,

(∇ · ~ψij)|K = −∇ ·
~~Kλt∇φij =







1

|K| , in non-well blocks,
q

∫

K
q d~x

in well blocks,

where each ~ψij is associated with Γij = ∂Ki ∩ ∂Kj and
~ψij · ~n = νij on Γij and zero elsewhere on the boundary. The
boundary conditions νij should reflect the heterogenities at the
boundaries and the radial flow pattern near wells. Also they must
be scaled to ensure compatibility.
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For homogeneous coefficients the MMsFEM with the basis
defined above reduces to the lowest order Raviart-Thomas
mixed FEM (for quadrilateral elements).



MMsFEM Basis

For homogeneous coefficients the MMsFEM with the basis
defined above reduces to the lowest order Raviart-Thomas
mixed FEM (for quadrilateral elements).

MMsFEM can therefore be viewed as an extension to the
case where the coefficients can vary within each element.
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2D Example:



MMsFEM Basis

2D Example:

x-component of the 2D basis function for homogeneous and
heterogeneous coefficients.
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Properties

Mass conservative.
The particular choice of basis described yields a
mass-conservative fine grid velocity field which can
be used for streamline tracing.
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Mass conservative.

Automatic incorporation of small-scale effects into a
coarse grid solution.



Properties

Mass conservative.

Automatic incorporation of small-scale effects into a
coarse grid solution.
Thus the method can be viewed as a robust alter-
native to upscaling if computations are continued on
the coarse grid.
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Mass conservative.

Automatic incorporation of small-scale effects into a
coarse grid solution.

Subgrid flexibility.
The method puts no restrictions on the subgrids, and
any numerical method may be used for the subgrid
problems.
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Scalability.
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Mass conservative.

Automatic incorporation of small-scale effects into a
coarse grid solution.

Subgrid flexibility.

Scalability.
The basis functions are processed individually, thus
the method is well suited for parallel implementation.
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Properties

Mass conservative.

Automatic incorporation of small-scale effects into a
coarse grid solution.

Subgrid flexibility.

Scalability.

Potential speed.
Can be computationally efficient if recomuptation of
the basis functions at every time step is avoided.



Example

10th SPE Comparative Solution Project, Model II:

1200 x 2200 x 170 ft.

60 x 110 x 85 blocks.

5 x 11 x 17 coarse blocks.

Too large for conventional reservoir simulators!



Example

3DSL fine grid and upscaled solution after 800 days of simulation.



Example

Our fine grid solution (left) and MMsFEM/Streamline solution (right) after
800 days of simulation.



Example
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By combining the streamline method with MMsFEM we
obtain an overall strategy which is very scalable and may
help bridge the gap between geological and reservoir
simulation models.



Concluding Remarks

By combining the streamline method with MMsFEM we
obtain an overall strategy which is very scalable and may
help bridge the gap between geological and reservoir
simulation models.

In particular true for a parallel implementation, but
experiments with adaptive basis recomputation have
shown that typically less than 10% of the MMsFEM basis
functions need to be recomputed at every time step.
Thus, there is a great potential for accelerating also serial
computations.
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alternative to upscaling for large reservoir models. We
believe the MMsFEM will prove to be more robust
because of its inherent flexibility and firm mathematical
foundation.



Concluding Remarks

Even this plain implementation of the MMsFEM provides
alternative to upscaling for large reservoir models. We
believe the MMsFEM will prove to be more robust
because of its inherent flexibility and firm mathematical
foundation.

Moreover, with more information available, for instance
knowledge of the initial flow pattern, better boundary
conditions can be developed, which improves the
accuracy of the MMsFEM considerably.
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