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Streamlines and a Multiscale Method
Towards Scalable, Robust and Fast Reservoir Simulation

1 Introduction
A robust reservoir simulator should be able to produce accurate
results at a reasonable computational cost for a wide range of
reservoir models. Depending on the application, the size and char-
acteristics of the reservoir data will be very different, as will the
challenges met by the simulator. E.g., for history-matching pur-
poses the crucial requirement is rapid simulation of relatively small
models, while for a detailed study of a water-injection scenario it
may be desirable to use a simulation model as close to the geo-
statistical model as possible. Thus, considering that modern geo-
statistics can produce models on the order of a billion unknowns,
a scalable reservoir simulator must also be capable of producing
results for very large models. By combining a streamline method
for the convective step with a recent multiscale approach for ob-
taining a conservative velocity field we hope to take a step towards
more scalable, more robust and faster reservoir simulation.

2 Mathematical Reservoir Model
The governing equations for two-phase (oil/water), immiscible, in-
compressible, isothermal, non-reactive and non-dispersive flow in
porous media can be written as [3],

−∇ · ~u = q, (1)

φ
∂Sw
∂t

+ ~u · ∇fw + ∇ · ~Gw = qfw, (2)

where ~u is the total Darcy velocity,

~u =
~~K · (λt∇P + λg∇D), (3)

Sw is the water saturation, q is the volumetric flowrate in the wells,
~~K is the absolute permeability tensor, P is pressure, D is depth,
λt and λg are the total and total gravity mobilities defined by,

λt =
krw
µw

+
kro
/µo

, λg = g(
krwρw
µw

+
kroρo
µo

), (4)

and fw and ~Gw are the fractional and gravity fractional flow of wa-
ter,

fw =
krw/µw
λt

, ~Gw =
~~K · g∇D

krw
µw

· kroµo
λt

(ρo − ρw). (5)

Here krj is the relative permeability of phase j, ρj the density, µj
the viscosity and g the gravity constant.

3 The Streamline Method
The streamline method is based on an IMPES approach for solv-
ing the above equations, where the pressure equation (1) is solved
by an implicit scheme and the saturation equation (2) is evolved
explicitly in time, assuming constant pressure during the time step.
The pressure is then recomputed using the updated phase satu-
rations, and the process is repeated.

However, instead of solving the full, three-dimensional equation
(2) directly, it is decoupled into multiple one-dimensional equa-
tions along streamlines. This approach intuitively makes sense
since the streamlines define the most natural of all possible “flow
grids”. The idea is to cover the reservoir with a suitable number
of streamlines, traced from injectors to producers (in the incom-
pressible case). The phase saturations are then mapped from the
numerical grid to the streamlines, and for each streamline a one-
dimensional equation is solved to obtain the saturations along the
streamline at the end of the IMPES time step. The streamline
saturations are then mapped back to the grid by some averaging
scheme, thus enabling solution of the pressure equation for the
next time step. Figure 1 illustrates the steps of the method.

(a) The initial saturation field is used to
evaluate mobilities and compute the
global pressures.

(b) The pressure defines the velocity
field, and the saturations from (a) are
mapped to streamlines.

(c) Saturations are moved forward along
the streamlines under the assumption
that the streamlines remain fixed dur-
ing the time step.

(d) Finally the streamline saturations are
mapped back onto the grid to yield a
new saturation field, and the process
can be repeated.

Figure 1: The steps of a streamline method.

3.1 Mathematical Formulation
Mathematically the transformation from three to one dimension
is performed by introducing the time-of-flight, denoted τ , along a

streamline,

τ (s) =

∫ s

0

φ(ζ)

|~u|
dζ, (6)

which is just the time it takes a particle to reach a distance s along
the streamline. Inserting the differential form of (6) into (2) then
yields the following one-dimensional equation along the stream-
line:

∂Sj
∂t

+
∂fj
∂τ

+
1

φ
∇ · ~Gj =

qfj
φ

(7)

This equation is considerably easier to solve than the original
three-dimensional version (2), and can be solved by any suitable
numerical scheme.

3.2 Properties
Two of the most important properties of the streamline method are:

• Speed. The method is very fast, and allows routine simulations
of million grid block cases even on single workstations.

• Scalability. Low memory requirements and completely in-
dependent processing of streamlines makes the streamline
method scalable both on serial and parallel computer architec-
tures.

It is also worth noting that the application area of the streamline
method is not restricted to the situation described above. In fact,
streamlines have been successfully applied to much more general
cases, e.g., multiphase, dispersive, compositional displacement
[5, 2] and unstructured grids [4].

4 A Mixed Multiscale FEM Method
The basic idea of a multiscale method is to incorporate fine scale
information into a solution on a coarser scale. Figure 2 shows a
schematic view of the overall strategy. The starting point (A) is
a coarse grid superimposed on a fine grid, with the relevant data
given on the fine grid. The first step (1) is to process the subgrids
within each coarse block to obtain some quantity representative of
the local behaviour. Having done this (B), step (2) combines these
quantities to yield a global solution on the coarse scale (C). From
here it is possible to continue with the computation on the coarse
scale, in which case the multiscale method may be seen as a gen-
eralization of upscaling. However, often it is both desirable and
feasible to also perform step (3), which is to recover a solution on
the fine grid.
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Figure 2: Schematic view of a multiscale method.

4.1 MMsFEM
The MMsFEM methods are mixed FEMs that use an approxima-
tion space Vh for the Darcy velocity ~u that captures the local be-
haviour of the differential operator L = −∇ ·

~~Kλt∇. The approxi-
mation space is spanned by a set of basis functions ~ψ = −

~~Kλt∇φ,
where φ satisfies Lφ = fK inside each coarse block K for some
appropriate source term fK and boundary condition νK . By a spe-
cial choice of such basis functions the MMsFEM yields a conser-
vative velocity field suitable for streamline tracing also on the fine
grid.

Letting Ω be the reservoir domain and Πh the space of piecewise
constants, the mixed FEM formulation of the pressure equation (1)
reads:

Find (~uh, Ph) ∈ Vh × Πh such that,
∫

Ω

(
~~Kλt)

−1 ~uh · ~vh d~x =

∫

Ω

Ph∇ · ~vh d~x−

∫

Ω

λg
λt
D∇ · ~vh d~x ∀~vh ∈ Vh,

∫

Ω

Qh∇ · ~uh d~x =

∫

Ω

qQh d~x, ∀Qh ∈ Πh.
(8)

Denote the coarse grid faces by Γij = ∂Ki ∩ ∂Kj. Then
Vh = span{~ψij} where each ~ψij is associated with the face Γij,
and defined by,

(∇ · ~ψij)|K = −∇ ·
~~Kλt∇φij =







1
|K|

, in non-well blocks,
q

∫

K q d~x
in well blocks.

(9)

Each basis function ~ψij is non-zero in the interior of blocks Ki
and Kj, as well as on the interface Γij itself where the bound-
ary condition νij must be satisfied. Away from the wells it is rea-
sonable to expect that the velocity is determined by the pressure
drop across the face, thus νij is assumed proportional to the face
transmissibility. In well blocks the radial flow pattern is also taken
into account, thus νij is taken to be proportional to the product of
the face transmissibility and the radial distance to the well. The
boundary conditions are also scaled to ensure compatibility, i.e.,
to ensure that

∫

Γij
νijd s = 1.

The resulting MMsFEM method can be viewed as an extension
of the Raviart-Thomas mixed FEM to the case where the coeffi-
cients can vary within each element. Figure 3 illustrates this for a
2D example.

(a) Homogeneous (b) Heterogeneous

Figure 3: x-component of a 2D basis function for homogeneous
and heterogeneous coefficients. In the homogeneous case the
basis reduces to the lowest order Raviart-Thomas basis, but in the
heterogeneous case it is changed by the small-scale variations.

4.2 Properties
Some of the most important properties of the MMsFEM are:

• Mass conservative on the fine grid. The particular choice of
basis functions described above yields a mass-conservative fine
grid velocity field which can be used for streamline tracing.

• Automatic incorporation of small-scale effects into a coarse
grid solution. Thus the method may be viewed as a robust
alternative to upscaling if subsequent computations are per-
formed on the coarse scale.

• Subgrid flexibility. The method does not limit the subgrids in
any way, and they can be tuned to model physical features such
as fractures or faults. Also, any numerical method (not only
FEMs) can be used for the subgrid problems.

• Scalability. The basis functions are processed individually, and
the method is thus very well suited for parallel implementation.
Also, on a single processsor system the memory requirement is
reduced since the global problem only has to be solved on the
coarse scale.

• Potential speed. Can be computationally very efficient if re-
computation of the basis functions at every time step is avoided,
e.g. by using some adaptive scheme based on a measure of
the changing mobility field.

5 Example
The data is Model 2 from the 10th SPE Comparative Solution
Project [1]. Dimensions are 60 × 220 × 85, and there is a single
injector in the middle and producers in the four corners. Figure
4 compares an upscaled solution to the results obtained with the
MMsFEM/Streamline method. The MMsFEM coarse grid only has
a resolution of 5×11×17, but still the solution has a very high level
of detail and is close to the reference. The watercut curves show
that the error is comparable to that of the pseudo-based upscaling
techniques.

(a) 3DSL Upscaled (b) MMsFEM

(c) Fine Grid Reference
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Figure 4: Comparison of MMsFEM and upscaling.

6 Concluding Remarks
By combining a multiscale method for the pressure equation (1)
with a streamline method for the saturation step (2) we obtain a
simulation strategy that is very scalable and may help bridge the
gap between geostatistical and reservoir simulation models. The
approach is also robust in the sense that many different situations
can be handled efficiently by tuning the subgrids to model vari-
ous physical features. Experiments with adaptive recomputation
of the basis functions have shown that less than 10% of the func-
tions needs to be recomputed at every time step, thus MMsFEM
can accelerate the already very fast streamline method for large
reservoir models.
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