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Motivation

· Modern reservoir simulators are not able to run routine

simulations on geological grid models.

· Upscaling techniques are used to create coarsened grid models

for day-to-day simulation.

- The price to pay is less reliable results.

· Multiscale methods offer the possibility of bridging the gap

between the geoscale and the simulation scale.
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Model problem (Incompressible two-phase flow)

Incompressible two-phase flow is modeled by the Darcy law:

vi = −kλi(∇pi − ρiG)

and the continuity equations for each phase

φ∂tSi +∇ · vi = qi .
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Assuming So + Sw = 1 we deduce an elliptic equation for pressure

v = −kλ∇p+ kλgG and ∇ · v = q.

and the following advection-diffusion equation for water saturation

∇ ·
[
fw(v + kλo(ρo − ρw)G+ kλo

∂pcow

∂Sw
∇Sw)

]
= qw.
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· The permeability k typically span over many length scales.

- The velocity field can have a multiple scale structure.

· Details at all scales have a strong impact on the solutions.

- Conventional numerical methods which are not adaptive to the

information at the subgrid scales may give poor accuracy.

- A prohibitively large number of variables are often needed to

resolve all the subgrid scales.

· Hierarchical or multiscale modeling approaches are needed.
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The Multiscale Finite Element Methods
The multiscale finite element methods (MsFEMs) is a class of

FEMs for (nearly) elliptic problems with multiple scale coefficients.

Multiscale methods: Methods that incorporate fine scale

information into a set of coarse scale equations in a way which

is consistent with the local property of the differential operator.

The MsFEMs are based upon the construction of appropriate

”coarse-scale” approximation spaces that are adaptive to the

local property of the elliptic differential operator.
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A mixed MsFEM for reservoir simulation
Let the reservoir Ω be partitioned into mutually disjoint elements

K = {K} of arbitrary shape and size.

The proposed multiscale method seeks v ∈ V and p ∈ U such that∫
Ω

(kλ)−1v · u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

λg

λ
G · u dx∫

Ω

l ∇ · v dx =
∫

Ω

ql dx

for all u ∈ {v ∈ V : v · n = 0 on ∂Ω} and l ∈ P0(K).
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V = span{ψij : meas(∂Ki ∩ ∂Kj) > 0} where ψij is defined by

ψij = −kλφij, ∇ · ψij = ±

{
1
|K| if

∫
K
f dx = 0,

fR
K f dx

if
∫

K
f dx 6= 0,

and no-flow boundary conditions on (∂Ki ∪ ∂Kj)\(∂Ki ∩ ∂Kj).
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U = p̂+ P0(K) where p̂ is defined by

p̂ =
{

0 if
∫

K
f dx = 0,

π(K) if
∫

K
f dx 6= 0,

and π(K) is related to v =
∑

ij vijψij by

π(Ki) =
∑

j

vij

(
φij −

∫
Ki

φij

|Ki|
dx

)
.
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Some of the features that makes this MsFEM an attractive tool for

reservoir simulation are:

· The elliptic ”parallelization”: subgrid resolution at a low cost.

· The flexibility: the natural ability to handle

- heterogeneous and anisotropic materials,

- irregular and unstructured grids.

· The ideal foundation for adaptive numerical schemes for the

solution of advective transport equations.
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The saturation equation

· The pressure equation stands for the majority of the CPU time in

reservoir simulation.

- The proposed MsFEM provides a basis geoscale simulation.

· Is it possible to exploit all information inherent in the MsFEM

solution when solving the saturation equation?

· If so, is it worthwhile – will the simulated saturation profiles be

closer to the true flow scenario in the reservoir?
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Alternative 1: Streamline simulation

· Streamline methods offer the possibility of rapid reservoir

performance predictions, and are accepted as a complementary

technology to traditional FD based simulation.

· Streamline methods are disputed because

- They require a sequential IMPES formulation.

- They do not account for capillary pressure.

- The speed advantage may diminish for compressible flow.
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Alternative 2: Coarse scale FD simulation

· FD methods allow us to incorporate complex physics, but

available computing resources prevents geoscale simulation.

- Coarse scale FD simulation is the only valid option.

· Some of the primary drawbacks with this approach are:

- The need to compute pseudofunctions.

- Important subgrid information is neglected.

- Strong numerical diffusion.
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Alternative 3: Multiscale FD simulation

· Multiscale method for the advection–diffusion equations may

take many different forms. Some examples are:

- Methods based on the separation of scales.

- Methods that resolve the subgrid scales locally

and the large scales on a coarse grid.

- Methods that incorporate fine scale information into an

equation modeling the transport at the coarse scale level.

· The pros and cons of these methods are yet to be established.
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Numerical Test Case (two-phase flow)
We show results for the multiscale–streamline methodology on the

second test case used in the 10th SPE comparative solution project.

Injector
Producer 3

Producer 4

Producer 1

Producer 2

170ft.

1200ft.

2200ft.

· 60× 220× 85 cells.

· Sim. time: 2000 days.

· Prod. at 4000 psi bhp.

· No-flow BC.
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Water-cut curves for

· Reference solution

· Mixed MsFEM

· NG-method

using Alternative 1:

Streamline simulation.
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· Reference solution

· MMsFEM (12x22x1)

· MMsFEM (12x22x3)

for the 3 top layers and

the 3 bottom layers.
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Conclusions

· Improved reservoir descriptions demand better and faster

simulation tools that can handle grid models with > 106 cells.

· The mixed MsFEM has shown promising results in terms of

computing accurate velocity fields at a low cost.

- The well-model for the mixed MsFEM should be improved.

· Streamline methods is a natural option for solving the saturation

equation, but coarse scale FD methods and multiscale FD

methods may also be good alternatives.
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Announcement
A Workshop on multiscale modeling with applications to fluid flow

and material science will take place in Oslo, Norway, October 18-20.

The final day will put emphasis on the use of multiscale methods in

reservoir management.

Please visit

www.cma.uio.no/conferences/2004/multiscale workshop.html

for further information.
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