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Motivation

- Modern reservoir simulators are not able to run routine
simulations on geological grid models.

- Upscaling techniques are used to create coarsened grid models
for day-to-day simulation.

- The price to pay is less reliable results.

- Multiscale methods offer the possibility of bridging the gap
between the geoscale and the simulation scale.
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Model problem (Incompressible two-phase flow)

Incompressible two-phase flow is modeled by the Darcy law:
vi = —kX\i(Vp; — piG)
and the continuity equations for each phase
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Assuming S, + S, = 1 we deduce an elliptic equation for pressure
v =—kAVp+Ek\,G and V-v=gq.
and the following advection-diffusion equation for water saturation

OPcow

fw(v—l—k)\o( pw)G_l_k)‘ 85

——VSu)| = quw-
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- The permeability & typically span over many length scales.

- The velocity field can have a multiple scale structure.

- Details at all scales have a strong impact on the solutions.

- Conventional numerical methods which are not adaptive to the
information at the subgrid scales may give poor accuracy.

- A prohibitively large number of variables are often needed to
resolve all the subgrid scales.

- Hierarchical or multiscale modeling approaches are needed.
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The Multiscale Finite Element Methods

The multiscale finite element methods (MsFEMs) is a class of
FEMs for (nearly) elliptic problems with multiple scale coefficients.

Multiscale methods: Methods that incorporate fine scale
information into a set of coarse scale equations in a way which
Is consistent with the local property of the differential operator.

The MsFEMs are based upon the construction of appropriate
" coarse-scale” approximation spaces that are adaptive to the
local property of the elliptic differential operator.
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A mixed MsFEM for reservoir simulation

Let the reservoir ) be partitioned into mutually disjoint elements
JC = { K} of arbitrary shape and size.

The proposed multiscale method seeks v € V' and p € U such that

/(k)\)_lv-uda;—/pv-udx = /QG-uda}
Q Q Q A

/lV-vdaz = /qldaz
Q Q

forallue {veV:v-n=0o0ndN} and | € Py(K).
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V = span{t;, : meas(0K; N 0K ;) > 0} where v;; is defined by

Vij = —kAQij, V- i; =%
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U = p+ Po(K) where p is defined by

A_{ 0 if [.fdz=0,
P=\ m(k) i [ fda+#0,

and 7(K) is related to v = ), vi;1bi; by
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Some of the features that makes this MsFEM an attractive tool for
reservoir simulation are:

- The elliptic " parallelization”: subgrid resolution at a low cost.

- The flexibility: the natural ability to handle
- heterogeneous and anisotropic materials,

- irregular and unstructured grids.

- The ideal foundation for adaptive numerical schemes for the
solution of advective transport equations.
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The saturation equation

- The pressure equation stands for the majority of the CPU time in
reservoir simulation.

- The proposed MsFEM provides a basis geoscale simulation.

- Is it possible to exploit all information inherent in the MsFEM
solution when solving the saturation equation?

- If so, is it worthwhile — will the simulated saturation profiles be
closer to the true flow scenario in the reservoir?
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Alternative 1: Streamline simulation

- Streamline methods offer the possibility of rapid reservoir

performance predictions, and are accepted as a complementary
technology to traditional FD based simulation.

- Streamline methods are disputed because
- They require a sequential IMPES formulation.
- They do not account for capillary pressure.

- The speed advantage may diminish for compressible flow.
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Alternative 2: Coarse scale FD simulation

- FD methods allow us to incorporate complex physics, but
available computing resources prevents geoscale simulation.

- Coarse scale FD simulation is the only valid option.

- Some of the primary drawbacks with this approach are:
- The need to compute pseudofunctions.
- Important subgrid information is neglected.

- Strong numerical diffusion.
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Alternative 3: Multiscale FD simulation

- Multiscale method for the advection—diffusion equations may
take many different forms. Some examples are:

- Methods based on the separation of scales.

- Methods that resolve the subgrid scales locally
and the large scales on a coarse grid.

- Methods that incorporate fine scale information into an
equation modeling the transport at the coarse scale level.

- The pros and cons of these methods are yet to be established.
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Numerical Test Case (two-phase flow)

We show results for the multiscale—streamline methodology on the
second test case used in the 10th SPE comparative solution project.
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- 60 x 220 x 85 cells.
- Sim. time: 2000 days.
-+ Prod. at 4000 psi bhp.

- No-flow BC.
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Conclusions

- Improved reservoir descriptions demand better and faster
simulation tools that can handle grid models with > 10° cells.

- The mixed MsFEM has shown promising results in terms of
computing accurate velocity fields at a low cost.

- The well-model for the mixed MsFEM should be improved.
- Streamline methods is a natural option for solving the saturation

equation, but coarse scale FD methods and multiscale FD
methods may also be good alternatives.
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Announcement

A Workshop on multiscale modeling with applications to fluid flow
and material science will take place in Oslo, Norway, October 18-20.

The final day will put emphasis on the use of multiscale methods in
reservolr management.

Please visit
www.cma.uio.no/conferences /2004 /multiscale_workshop.html

for further information.
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