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Problem
Simulation of immiscible, incompressible two-phase flow, modelled by Darcy’s
law and a continuity equation for each phase

vi = −kλi∇pi (1)

φ∂tSi +∇ · vi = qi . (2)

Model reformulation: elliptic pressure equation and hyperbolic saturation
equation

v = −kλ∇p, ∇ · v = q (3)

φ∂tS +∇ · (vf(S)) = 0 (4)
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Motivation

· Gap between geological and simulation models:

- High-resolution geomodels may have 107 − 108 cells

- Conventional (FV/FD) simulators are capable of about 105 − 106 cells

· Upscaling coefficients is not always the answer

- Loss of details and lack of robustness

· Simulation speed is crucial

- Large models = high runtime =⇒ parallel implementation?

- History matching, ranking, process optimization: require fast simulations
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Novel approach: multiscale FEM + streamlines

· streamline methods:

- well-known, fast simulation method that allows simulation of a few million
grid-block on single workstations

- works by convecting phase saturations along streamlines that are given by a
mass-conservative velocity field

· multiscale finite element methods:

- recent approach for solving elliptic equations with strongly heterogeneous
coefficients

- capable of producing conservative velocity fields at multiple scales
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Detour: upscaling elliptic problems

Find a∗ = a∗(x̄) such that if u and u∗ solve

∇ · q = f and ∇ · q∗ = f̄ ,

where q = −a(x)∇u and q∗ = −a∗(x̄)∇u∗, then

u∗ ∼ ū and q∗ ∼ q̄ .

Here the overbar denotes averaged quantities on a coarse grid.
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Upscaling permeability:

How do we represent fine-scale heterogeneities on a coarse scale?

· Arithmetic, geometric, harmonic, or power averaging ( ( 1
|V |

R
V

a(x)p dx)1/p )

· Equivalent permeabilities ( a∗xx = −QxLx/∆Px )
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Multiscale Finite Element Methods (MsFEMs)
Use appropriate ”coarse-scale” approximation spaces that are adaptive to the
local property of the elliptic differential operator.

MsFEMs are attractive for reservoir simulation:

· The elliptic ”parallelization”: subgrid resolution at a low cost.

· The flexibility: the natural ability to handle

- heterogeneous and anisotropic materials,

- irregular and unstructured grids.

· The ideal foundation for adaptive numerical schemes for the solution of
advective transport equations.
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The variational formulation (for homogeneous Dirichlet BC)∫
∇u · a(x)∇v dx =

∫
fv dx ∀v ∈ H1

0

and the mixed formulation (for homogeneous Neumann BC)∫
a(x)−1q · p dx =

∫
u ∇ · p dx ∀p ∈ H1,div

0∫
v ∇ · q dx =

∫
fv dx ∀v ∈ L2

provide a foundation for multiscale finite element methods for elliptic problems.

J back I



Multiscale Finite Element Methods (MsFEMs) 8 of 21

In multiscale methods we seek the solution in low dimensional spaces that are
adaptive to the local property of the differential operator.

· MsFEM: Variational formulation, Ums ⊂ H1
0 .

· Mixed MsFEM: Mixed formulation, Qms ⊂ H1,div
0 , U = P0.

· MsDGM: Mixed formulation, Qms ⊂ H1,div
0 , Ums ⊂ H1

0 .

Hence, these methods allow us to recover detailed fine-grid ”solutions” from the
multiscale coarse-grid solutions.
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Base functions are computed numerically and satisfy

ψij = −kλ∇φij, ∇ · ψij = ±

{
1
|K|, if

∫
K
f dx = 0 ,

fR
K f dx

, if
∫

K
f dx 6= 0

in Ki ∪Kj, a prescribed boundary condition ψij · nij = νij on Γij = ∂Ki ∩ ∂Kj,
and no-flow conditions on ∂(Ki ∪Kj)\Γij.
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We then seek v ∈ Qms = span {ψij} and p ∈ U = p̂+ P0(K) such that∫
Ω

(kλ)−1v · u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

λg

λ
G · u dx∫

Ω

l ∇ · v dx =
∫

Ω

ql dx

for all u ∈ Qms and l ∈ U .

Modification of pressure space: the functions p̂ ∈ L2(Ω) vanish outside well blocks and satisfyZ
K

p̂ dx = 0, v̂ = −kλ∇p̂ + kλgG, ∇ · v̂ = q, v̂ · n = νK

in the well blocks for some boundary condition νK ≈ v · n on ∂K.
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Properties of MMsFEM

· Mass conservative

- Mass conservative velocities on the fine (sub)grid

· Incorporation of small-scale effects into coarse-grid solution

- A robust alternative to upscaling for computations on the coarse grid

- A (fast) pressure solver for computations on the fine grid

- Natural support for adaptive fluid transport computations

· Scalability (and natural parallelisation)

- Base functions are processed independently
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· Flexibility of subgrids

- No restrictions on subgrids

- The shape of coarse grid blocks can be (almost) arbitrary

- Any numerical method can be used for subgrid problems

· Potential speed

- Computationally efficient if regeneration of all base functions in each
time-step is avoided

However: MMsFEM gives an indefinite linear system that may be a bit harder to
solve −→ currently limitations in our prototype solver

J back I



Streamline methods 13 of 21

Streamline methods
Interpret the saturation equation φ∂tS + v · ∇f(S) = 0 as an equation along
streamlines using

v

|v|
=

[dx
ds
,
dy

ds
,
dz

ds

]T

or v · ∇ = |v| ∂
∂s

Transformation using time-of-flight τ

|v| ∂
∂s

= φ
∂

∂τ

dx

dsdy

s(x,y)

gives a family of 1-D transport equations along streamlines

∂tS + ∂τf(S) = 0. (5)
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Streamline algorithm

1. Calculate pressure distribution and velocity field on background grid

2. Trace streamlines (using analytical approximation algorithm)

3. Project saturation from physical space to streamlines

4. Solve transport equation (5) along streamlines

5. Project streamline saturations back to grid in physical space

Streamlines are an attractive alternative to FD: fast, parallel, less diffusion, less
restrictive time-step conditions
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Saturation at time n

Initial streamline saturations Front−tracking solution Final streamline saturations

Saturation at time n+1
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Numerical examples: SPE10 model 2
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60× 220× 85 grid, λw ∝ S2, λo ∝ (1− S)2, µo = 3.0 cP, µw = 0.3 cP

2000 days of production at bhp 4000 psi. Injection: 5000 bbl/day.
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Numerical examples: 2-D quarter five-spots
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Nested gridding: upscale (kλ), solve for pressure and then subgrid problem for velocities
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Relative L1 error in saturation for Tarbert and Upper Ness

Upsc. factor Global BC Local BC Nested gridding Upscaled

2× 2 1.013e-02 1.094e-02 3.094e-02 6.801e-02

3× 3 1.219e-02 1.732e-02 3.814e-02 1.005e-01

5× 5 1.421e-02 2.889e-02 5.033e-02 1.497e-01

10× 10 2.523e-02 5.377e-02 7.643e-02 2.415e-01

2× 2 3.644e-02 4.132e-02 1.672e-01 2.383e-01

3× 3 4.360e-02 6.705e-02 1.868e-01 2.864e-01

5× 5 4.881e-02 9.659e-02 2.373e-01 3.812e-01

10× 10 8.477e-02 1.981e-01 4.848e-01 7.217e-01

Global BC: νij given by initial pressure solution

Local BC: νij scaled according to flux and K
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Numerical results: SPE10 benchmark
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Producer A; data taken from http://www.spe.org/csp
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Coarse grid: 5× 10× 17
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Final remarks

· Novel method:

- robust alternative to upscaling

- has potential for large geomodels

· Extensions and further work

- non-orthogonal (corner-point) and unstructured grids

- threephase and multicomponent flows

- efficiency and parallellisation

- numerical linear algebra for indefinite systems

- fractures
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