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the geomodel needs to be upscaled before input to a simulator.

However:

8 Upscaling necessarily implies loss of fine-scale information.

8 Upscaling is not always very robust (no universal appoach).

8 Upscaling may be a time-consuming process.
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IMPES Equations (2-phase)

IMPES = IMplicit Pressure, Explicit Saturation.

• Total velocity:

v = vo + vw

• Total mobility:

λ = λw(S) + λo(S)

= krw(S)/µw + kro(S)/µo

• Saturation water: S
• Fractional flow water:

f(S) = λw(S)/λ(S)
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Mixed formulation of the pressure equation:

Find (v, p) ∈ H1,div
0 × L2 such that

∫

(λK)−1u · vdx−

∫

p∇ · vdx = 0, ∀u ∈ H1,div
0 ,

∫

l∇ · vdx =

∫

qldx, ∀l ∈ L2.

Multiscale discretisation: Seek solutions in low-dimensional
subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine scale properties are incorporated into the basis
functions.
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We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

We construct a coarse grid, and choose the discretisation
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• For each coarse block Ti,there is a basis function φi ∈ V .
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Basis functions for the velocity field

For each coarse edge Γij define a basis function

ψij : Ti ∪ Tj → R2

with unit flux through Γij , and no flow across ∂(Ti ∪ Tj).

We use ψij = −λK∇φij with

∇ · ψij =











fi(x)/
∫

Ti
fi(x)dx for x ∈ Ti,

−fj(x)/
∫

Tj
fj(x)dx for x ∈ Tj ,

0 otherwise,

with BCs ψij · n = 0 on ∂(Ti ∪ Tj).
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Basis functions for the velocity field cont.

If
∫

Ti
qdx 6= 0 (Ti contains a source), then

fi(x) = q(x).

Otherwise we may choose

fi(x) = 1,
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mixed FEM (for quadrilateral elements).



MMsFEM Velocity Basis - Comments

For homogeneous coefficients the MMsFEM with the basis
defined above reduces to the lowest order Raviart-Thomas
mixed FEM (for quadrilateral elements).

MMsFEM can therefore be viewed as an extension to the case
where the coefficients can vary within each element.

x-component of the 2D basis function for homogeneous
and heterogeneous coefficients.
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V = P0(T ).

However, for consistency with the conservative velocity field and
better accuracy in the near-well region we add more resolution
in the well blocks by writing p = p̄+ p̂, with p̄ ∈ V and p̂ a
well-block correction term having (blockwise) zero average.

One possible definition for p̂:

p̂|Ti
= ρi − ρ̄i where ρi =

∑

j

vijφij |Ti
and ρ̄i =

∫

Ti

ρidx.

Here φij is the pressure solution assiciated with basis function
ψij , while vij is the corresponding basis coefficient (i.e., the
coefficient in v =

∑

ij vijψij).



Basis functions for the pressure

The pressure basis functions φi are piecewise constants, i.e.,
V = P0(T ).

However, for consistency with the conservative velocity field and
better accuracy in the near-well region we add more resolution
in the well blocks by writing p = p̄+ p̂, with p̄ ∈ V and p̂ a
well-block correction term having (blockwise) zero average.

Using the relation p = p̄+ p̂ for the pressure a standard
Peaceman-type well model can be used on the coarse scale.
(The fine-scale well transmissibilities enter the global system in
a natural way when writing out the well equations.)



MMsFEM Properties

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on a subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks



MMsFEM Properties
Back

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on a subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks

Fast:
The method is fast when avoiding regeneration of (most of) the
basis functions at every time step



Back...



Streamlines

The saturation equation

φ
∂S

∂t
+ v · ∇f(S) = 0

is transformed to an equation along streamlines using

v · ∇ = |v|
∂

∂s
= φ

∂

∂τ

to give a 1D equation along streamlines:

φ
∂S

∂t
+
∂f(S)

∂τ
= 0.

Here τ is the time-of-flight along the streamline.



IMPES Streamline Method

The starting point is an initial saturation field.



IMPES Streamline Method

The pressure is computed using the initial saturations to
evaluate the mobility terms.



IMPES Streamline Method

The pressure defines a velocity field and the streamline are
traced from injectors to producers while picking up the grid block
saturations.



IMPES Streamline Method

Saturations are moved forward along the streamlines under the
assumption that the streamlines remain fixed during the time
step.



IMPES Streamline Method

Finally the streamline saturations are mapped back onto the grid
to yield a new saturation field, and the process may now be
repeated.



Streamline Method Properties
Back

Speed:
Solving a series of 1D problems along streamlines is
considerably faster than solving the full 3D equation.

Scalability:
The method scales well with increasing model size. Also,
streamlines are processed independently, thus making the
method well-suited for parallel implementation.

Limitations:

8 Hard to account for capillary pressure.

8 For highly compressible flow the efficiency advantage over
conventional FV-methods may vanish.



Back...



2D Example

A simple quarter five-spot of size 60 x 60.



2D Example

A simple quarter five-spot of size 60 x 60.

Fluvial reservoir, Upper Ness formation. Strongly varying
permeability and porosity. (Excerpted from the SPE case to be
described later. )



2D Example
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Different Upscaling Factors



10th SPE Comparative Solution Project - Model 2

Model size is 1200 x 2200 x 170 ft.



10th SPE Comparative Solution Project - Model 2

Producer A

Producer B

Producer C

Producer D
Injector

Injection rate is 5000 bbl/day. The producers
are specified with a bottom hole pressure of
5000 psi.



10th SPE Comparative Solution Project - Model 2

Producer A

Producer B

Producer C

Producer D
Injector

Discretization is 60 x 110 x 85 = 1.122M
blocks.



10th SPE Comparative Solution Project - Model 2

Producer A

Producer B

Producer C
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Injector

Tarbert

The top 35 layers is a Tarbert formation. Both
permability and porosity varies greatly, but the
variation is relatively smooth.

10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

220

−4

−2

0

2

4

6

8



10th SPE Comparative Solution Project - Model 2

Producer A

Producer B

Producer C

Producer D
Injector

Upper Ness

The bottom 50 layers is an Upper Ness se-
quence. This part is characterized by numer-
ous high-flow channels.
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Physical Parameters

Relative Permeabilities:

• kro = (1 − S∗)2

• krw = (S∗)2

• S∗ = S−Swc
1−Swc−Sor

• Sor = Swc = Swi = 0.2

PVT Data:

• µo = 3.0 cP
• µw = 0.3 cP

Model assumptions:
• Immiscible
• Isothermal
• Non-reactive
• Incompressible
• Ignorable gravity effects



Upscaling
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Our Reference Solution

Producer A:
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MMsFEM Results (Coarse Grid: 5 x 11 x 17)
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Concluding Remarks

Conclusions

4 MMsFEM seems promising as an alternative to upscaling
for the IMPES pressure equation.

4 MMsFEM combined with a streamline method has potential
for obtaining fine grid solutions on large geomodels.

Extenstions and further work
• Non-orthogonal (corner-point) and unstructured grids
• Three-phase and multi-component flows
• Efficiency and parallellization
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