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Outline

· Model problem and mixed FEM formulation.

· Preconditioning mixed FEM eqs. and eqs. with multiple scales.

· The construction of a multiscale DD preconditioner.

· A family of multiscale multigrid preconditioners for elliptic eqs.

· Two alternative iterative schemes for solving mixed FEM eqs.

· Numerical results and concluding remarks.
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Model problem

We consider the following elliptic model problem:

−∇ · k(x)∇u+ c(x)u = f in Ω,

(−k(x)∇u) · n = 0 on ∂Ω.

Here c is a non-negative function in L2(Ω) and k is a symmetric

positive definite tensor with uniform upper and lower bounds:

0 < α ≤ ξTk(x)ξ
ξTξ

≤ β <∞ ∀ξ ∈ Rd\{0}, ∀x ∈ Ω.

J back I



The mixed formulation 3 of 33

The mixed formulation

The mixed formulation of the model problem reads:

Find q ∈ H1,div
0 (Ω) and u ∈ L2(Ω) such that∫
Ω
k−1q · p dx −

∫
Ω
u ∇ · p dx = 0∫

Ω
v ∇ · q dx +

∫
Ω
cuv dx =

∫
Ω
fv dx

for all p ∈ H1,div
0 (Ω) and v ∈ L2(Ω).
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The mixed FEM formulation
Replacing H1,div

0 (Ω) and L2(Ω) with finite dimensional subspaces

Q = span{ψi} and V = span{φm} we obtain:

Find q =
∑

i qiψi and u =
∑

m umφm such that∫
Ω
k−1q · ψj dx −

∫
Ω
u∇ · ψj dx = 0∫

Ω
φn∇ · q dx +

∫
Ω
cuφn dx =

∫
Ω
fφn dx

for all ψj and φn.
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Thus, the mixed FEM formulation gives rise to the linear system[
B −CT

C D

] [
q
u

]
=

[
0
f

]
,

where

q =
∑

i

qiψi, u =
∑
m

umφm, fm =
∫

Ω

fφm dx,

and

B = [
∫

Ω

k−1ψi ·ψjdx],C = [
∫

Ω

φm div(ψj)dx],D = [
∫

Ω

cφmφndx].
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Properties of the mixed linear system:
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Properties of the mixed linear system:

· Mixed formulations give rise to saddle point problems:

- The mixed linear system is indefinite.

· B is SPD, and B−1 is dense.

· D is non-negative and D + CB−1CT is SPD.

· B and D (may) contain multiple scales.
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How do we design efficient multigrid or domain decomposition

preconditioners for linear systems that arise from mixed FEMs?
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How do we design efficient multigrid or domain decomposition

preconditioners for linear systems that arise from mixed FEMs?

· Details at all scales have a strong impact on the solution:

- we need to construct subspace correction operators that reflect

“all” scales, and employ proper intergrid transfer operators.

· Multiscale1 finite element methods (MsFEMs) honor the subgrid

scales and give rise to natural intergrid transfer operators that

are adaptive to the local property of the differential operator.
1Multiscale methods: Methods that incorporate fine scale information into a set of coarse

scale equations in a way which is consistent with the local property of the differential operator.
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Preconditioning mixed FEM equations
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Preconditioning mixed FEM equations

· Multigrid methods and domain decomposition methods are for

the most part geared toward positive definite systems.

· To use MG or DD techniques to construct preconditioners for

indefinite systems on the present form, we can

- employ an inexact Uzawa type algorithm and develop a MG or

DD preconditioner for the resulting systems,

- develop a preconditioner for the full mixed system where some

blocks are MG or DD preconditioners for a submatrix (e.g., B).
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Preconditioning elliptic eqs. with multiple scales
The convergence rate of traditional MG methods and DD methods

may deteriorate for elliptic problems with multiple scale coefficients.

Define c(x) = 0 and let k(x) be a scalar periodic function:
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We now scale the coefficients so that

max(k(x))/min(k(x)) = 2p,

and investigate a DD method with an optimal rate of convergence.
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Standard MG methods experience a similar deterioration in the

convergence rate, though possibly to a lesser degree.

Analysis:
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Standard MG methods experience a similar deterioration in the

convergence rate, though possibly to a lesser degree.

Analysis:

· The coarse subspace correction operator does not reflect smaller

scales, i.e., the scales that are not resolved by the coarse grid.

- the subspace correction has poor approximation properties at

the “coarse grid nodal points”.

- the coarse to fine grid interpolation operator (induced by the

FEM approximation space) do not honor subgrid information.
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Since MsFEM serve as a remedy to these problems, we construct

multigrid type preconditioners for elliptic systems where

· the inter grid transfer operators are obtained from MsFEM

approximation spaces.

· the coarse grid operator is based on an algebraic variant of the

MsFEM construction.

· The multigrid smoothers are replaced with a single level domain

decomposition sweep.
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The multiscale finite element method (MsFEM)
The MsFEM seeks a function ums in a multiscale approximation

space Vms and solves the variational formulation

a(ums, v) = (f, v) ∀v ∈ Vms.

Here (·, ·) is the inner product in L2 and a(·, ·) is the bilinear form

a(u, v) =
∫

Ω

∇u · k∇v + cuv dx.

Vms is spanned by special multiscale base functions φi.
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The base functions φi are constructed by solving a homogeneous

equation inside a family of coarse grid elements K = {K}.

−∇ · k∇u+ cu = 0 in K ∈ K,

and prescribed boundary conditions on ∂K.
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Assume that the model equation is discretized at the subgrid scale

with a FEM so that the corresponding linear system is on the form

Ax = b where ai,j = a(ξi, ξj), and bi = (f, ξi).

Furthermore, express the MsFEM base functions φi as a linear

combination of the FEM base functions:

φi =
∑

j

rj,iξj

and define the coarse to fine grid interpolation operator R0 = [ri,j].
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The MsFEM correction, in algebraic form, now reads as follows.

x̃ = xn + Pms(x− xn) = xn + Qms(b−Axn)

Here

· Pms = QmsA = R0(RT
0 AR0)−1RT

0 A

· r:,j = (I−
∑

i PKi)RBC

· PK = QKA = RK(RT
KARK)−1RT

KA
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robust coarse grid solvers for “arbitrary” SPD matrices.
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A framework for the construction of DD
preconditioners for multiscale elliptic systems

· We shall use the algebraic form of the MsFEM to construct

robust coarse grid solvers for “arbitrary” SPD matrices.

· By combining these coarse solvers with distributed local subspace

corrections, we obtain DD preconditioners that are less sensitive

to the problem coefficients than traditional DD preconditioners.

· These auxiliary DD preconditioners will then be used to design

effective iterative schemes for mixed systems with multiple scales.
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· Sufficient overlap: ∀x ∈ Ω ∃i : distance(x, ∂Ωi) > δH.
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A super convergence result:
In 1D, that is if Ω ⊂ R, then H1(Ω) = Vms +H1

0(K).

V

H

H

1

1

ms

0

(

(

Ω)

K)

Since Vms is orthogonal to H1
0(K) with respect to a(·, ·), this

decomposition is a direct sum.
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If u is the solution to the variational formulation

u ∈ H1(Ω) such that a(u, v) = (f, v) ∀v ∈ H1(Ω),

then u = ums + u∗ where

u∗ ∈ H1
0(K) such that a(u∗, v) = (f, v) ∀v ∈ H1

0(K).
ums ∈ V ms such that a(ums, v) = (f, v) ∀v ∈ V ms.

The preconditioner Ψ−1 = Qms +
∑

K∈KQK is an ideal

preconditioner for one dimensional problems: Ψ−1A = I.
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Additive and multiplicative DD algorithms
The DD preconditioner is now determined by the order in which we

perform the subspace corrections. Two possible choices are

Multiplicative
Schwarz

SD Family 1

SD Family 2SD Family 2

MsFEM

SD Family 1

MsFEM

Additive
Schwarz r=b−Ax

SD Family 2

r=b−Ax

For the AS algorithm, the resulting DD preconditioner Ψ becomes

Ψ−1 = Qms +
∑

Ωi∈F1

QΩi
+

∑
Ωi∈F2

QΩi
, Q = R(RTAR)−1RT.
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Condition number estimates
The Schwarz analysis framework can be used to estimate the

condition number of the preconditioned linear system Ψ−1A.

For the two-level additive Schwarz algorithm we have

κ(Ψ−1
A A) ≤ C0(1 + C)γ(k, c).

Here C0 depends on the subdomain overlap and γ(k, c) depends on

the regularity of the coefficients k and c.

In particular, γ(k, c) will depend strongly on coefficient aspect

ratios if we do not use a multiscale coarse solver.
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Multiscale DD preconditioner as part of multigrid
The multiscale DD preconditioner construction can also be

incorporated into a multigrid framework.

V−cycle

Level 4

Level 3

Level 2

Level 1

Level 0 00A x =b0

W−cycle

A x =b

A x =b

A x =b

A x =b 4 4 4

3 3 3

2 2 2

1 1 1

Here the algebraic form of the MsFEM is used to construct intergrid

transfer operators, and linear systems at the next coarser level.
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In multigrid methods only an approximate solution is computed at

all levels except possibly the coarsest level.
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In multigrid methods only an approximate solution is computed at

all levels except possibly the coarsest level.

· The smoothing sweeps must reflect subscale information, e.g., a

sweep of a single level DD preconditioner.

· By employing algebraic MsFEM to create the coarser level linear

systems we automatically ensure that:

- interpolation operators properly reflect subscale information,

- coarse systems incorporate subgrid information in a manner

that is consistent with local properties of the elliptic operator.
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Two alternative solution strategies
One can solve the mixed system with PCG by hybridization:

Su = f , S = D + CB−1CT,

for u with a suitable preconditioner, e.g., MS = D + CB−1
0 CT.

MS is the matrix that we obtain from a TPFA finite volume

scheme with interface transmissibilities equal to

b−1
i,i =

(∫
Ω

ψi · k−1ψi dx

)−1

.
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..., or one can solve the full system using preconditioned GMRES:[
Ψ−1

B Ψ−1
B CTΨ−1

S
0 Ψ−1

S

] [
B −CT

C D

] [
q
u

]
=

[
Ψ−1

B CTΨ−1
S f

Ψ−1
S f

]
.

Note that solving the mixed linear system is equivalent to solving[
B −CT

0 S

] [
q
u

]
=

[
0
f

]
and that [

B −CT

0 S

]−1

=
[
B−1 B−1CTS−1

0 S−1

]
.
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Numerical test case (flow in porous media)
For our numerical examples we extract permeabilities λ(x) and

porosities φ(x) from an oil reservoir model that was used to test

and validate upscaling techniques for reservoir simulation.
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The full 3D reservoir model consist of 60× 220× 85 cells.

The top 35 layers is a so-called Tarbert formation, while the

bottom 50 layers is a fluvial Upper Ness formation.

For our numerical examples, we define k(x) = λ(x) and

c(x) = νφ(x) where ν is a constant positive parameter.

We thus test the proposed precondition iterative schemes on mixed

FEM equations that arise from the following equation:

−∇ · λ(x)∇u+ νφ(x)u = f in Ω,
(−λ(x)∇u) · n = 0 on ∂Ω.
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When we compare the PCG with the PGMRES algorithm we need

to keep in mind that:
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When we compare the PCG with the PGMRES algorithm we need

to keep in mind that:

· each iteration of the PCG algorithm involves solving two SPD

systems: one for B (the action of S) and one for MS.

· For the PCG algorithm we report N0(NB/NMS
) where

- N0 = # PCG iterations for Su = f with preconditioner MS.

- NB = # PCG iterations for Bp = q with preconditioner ΨB.

- NS = # PCG iterations for MSu = f with preconditioner ΨS.
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Each iteration of the PGMRES involves one sweep of each DD

preconditioner.

Indeed, the action of the full preconditioner on a vector [p,v] is[
Ψ−1

B Ψ−1
B CTΨ−1

S
0 Ψ−1

S

] [
p
v

]
=

[
Ψ−1

B (p + CTΨ−1
S v)

Ψ−1
S v

]

Hence, we compute first r = Ψ−1
S v and then Ψ−1

B (p + CTr).

Thus, for the PGMRES algorithm we have NS = NB = N0.
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2D test-cases sampled from the reservoir: ν = 10−4.

Case 1: Top layer in Tarbert formation.

DD algorithm PGMR Ms-PGMR PCG Ms-PCG

Additive Swz. 199 53 15(161/448) 10(53/56)

Multipt. Swz. 55 20 13(28/206) 10(22/25)

Case 2: Bottom layer in Upper Ness formation.

DD algorithm PGMR Ms-PGMR PCG Ms-PCG

Additive Swz. 183 57 10(98/378) 10(44/88)

Multipt. Swz. 73 21 10(45/204) 10(22/33)
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Full 3D test-cases: Tarbert formation and Upper Ness formation

Geomodel Tarbert Upper Ness

Algorithm Ms-PGMR Ms-PCG Ms-PGMR Ms-PCG

ν = 1 20 9(30/29) 8 5(13/5)

ν = 10−2 40 10(33/72) 45 9(28/98)

ν = 10−4 59 10(33/88) 150 10(33/255)

J back I



Conclusions 33 of 33

Conclusions

J back I



Conclusions 33 of 33

Conclusions

· Multiscale methods can be used to construct MG and DD

preconditioners that accelerate PCG and PGRMRES significantly

compared with traditional MG and DD preconditioners.

J back I



Conclusions 33 of 33

Conclusions

· Multiscale methods can be used to construct MG and DD

preconditioners that accelerate PCG and PGRMRES significantly

compared with traditional MG and DD preconditioners.

· The PGMRES algorithm performed better than the PCG

algorithm for most problems, but it also requires more memory.

J back I



Conclusions 33 of 33

Conclusions

· Multiscale methods can be used to construct MG and DD

preconditioners that accelerate PCG and PGRMRES significantly

compared with traditional MG and DD preconditioners.

· The PGMRES algorithm performed better than the PCG

algorithm for most problems, but it also requires more memory.

· Combined with a mixed multiscale FEM, this methodology can

help bridge the gap between the geoscale and the simulation

scale in reservoir simulation.
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