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Modelling of flow processes in the subsurface is important for many applica-
tions. In fact, subsurface flow phenomena cover some of the most important
technological challenges of our time. To illustrate, we quote the UN’s Human
Development Report 2006:

“There is a growing recognition that the world faces a water crisis
that, left unchecked, will derail the progress towards the Millennium
Development Goals and hold back human development. Some 1.4 bil-
lion people live in river basins in which water use exceeds recharge
rates. The symptoms of overuse are disturbingly clear: rivers are dry-
ing up, groundwater tables are falling and water-based ecosystems are
being rapidly degraded. Put bluntly, the world is running down one of
its most precious natural resources and running up an unsustainable
ecological debt that will be inherited by future generations.”

The road toward sustainable use and management of the earth’s groundwater
reserves necessarily involves modelling of groundwater hydrological systems.
In particular, modelling is used to acquire general knowledge of groundwa-
ter basins, quantify limits of sustainable use, and to monitor transport of
pollutants in the subsurface.

A perhaps equally important problem is how to reduce emission of green-
house gases, such as CO2, into the atmosphere. Indeed, the recent report from
the UN Intergovernmental Panel on Climate Change (see e.g., www.ipcc.ch)
draws a frightening scenario of possible implications of human-induced emis-
sions of greenhouse gases. Carbon sequestration in porous media has been
suggested as a possible means. Schrag [46] claims that

“Carbon sequestration (...) is an essential component of any serious
plan to avoid catastrophic impacts of human-induced climate change.
Scientific and economical challenges still exist, but none are serious
enough to suggest that carbon capture and storage (in underground
repositories) will not work at the scale required to offset trillions of
tons of CO2 emissions over the next century.”
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The primary concern related to storage of CO2 in subsurface repositories is
related to how fast the CO2 will escape. Repositories do not need to store
CO2 forever, just long enough to allow the natural carbon cycle to reduce the
atmospheric CO2 to near pre-industrial level. Nevertheless, making a qualified
estimate of the leakage rates from potential CO2 storage facilities is a non-
trivial task, and demands interdisciplinary research and software based on
state-of-the art numerical methods for modelling subsurface flow.

These examples illustrate that the demand for software modelling subsur-
face flow will not diminish with the decline of the oil and gas era. In fact,
the need for tools that help us understand flow processes in the subsurface is
probably greater than ever, and increasing. Nevertheless, more than 50 years
of prior research in this area has led to some degree of agreement in terms
of how subsurface flow processes can be modelled adequately with numerical
simulation technology. Because most of the prior research in this area targets
reservoir simulation, i.e., modelling flow in oil and gas reservoirs, we will fo-
cus on this application in the remainder of this paper. However, the general
modelling framework, and the numerical methods that are discussed, apply
also to modelling flow in groundwater reservoirs and CO2 storage facilities.

To describe the subsurface flow processes mathematically, two types of
models are needed. First, one needs a mathematical model that describes how
fluids flow in a porous medium. These models are typically given as a set of
partial differential equations describing the mass-conservation of fluid phases.
In addition, one needs a geological model that describes the given porous rock
formation (the reservoir). The geological model is used as input to the flow
model, and together they make up the reservoir simulation model.

Unfortunately, geological models are generally too large for flow simula-
tion, meaning that the number of grid cells exceed the capabilities of current
flow simulators (usually by orders of magnitude) due to limitations in memory
and processing power. The traditional, and still default, way to build a reser-
voir simulation model therefore starts by converting the initial geomodel (a
conceptual model of the reservoir rock with a plausible distribution of geolog-
ical parameters) to a model with a resolution that is suitable for simulation.
This process is called upscaling. Upscaling methods aim to preserve the small-
scale effects in the large-scale computations (as well as possible), but because
small-scale features often have a profound impact on flow occurring on much
larger scales, devising robust upscaling techniques is a non-trivial task.

Multiscale methods are a new and promising alternative to traditional
upscaling. Whereas upscaling techniques are used to derive coarse-scale equa-
tions with a reduced set of parameters, multiscale methods attempt to in-
corporate fine-scale information directly into the coarse-scale equations. Mul-
tiscale methods are rapidly growing in popularity, and have started to gain
recognition as a viable alternative to upscaling, also by industry. The primary
purpose of this paper is to provide an easily accessible introduction to multi-
scale methods for subsurface flow, and to clarify how these methods relate to
some standard, but widely used, upscaling methods.
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We start by giving a crash course in reservoir simulation. Next, we describe
briefly some basic discretisation techniques for computing reservoir pressure
and velocity fields. We then provide a brief introduction to upscaling, and
present some of the most commonly used methods for upscaling the pressure
equation. The final part of the paper is devoted to multiscale methods for
computing pressure and velocity fields for subsurface flow applications.

1 Introduction to Reservoir Simulation

Reservoir simulation is the means by which we use a numerical model of
the petrophysical characteristics of a hydrocarbon reservoir to analyse and
predict fluid behaviour in the reservoir over time. For nearly half a century,
reservoir simulation has been an integrated part of oil-reservoir management.
Today, simulations are used to estimate production characteristics, calibrate
reservoir parameters, visualise reservoir flow patterns, etc. The main purpose
is to provide an information database that can help the oil companies to
position and manage wells and well trajectories in order to maximize the oil
and gas recovery. Unfortunately, obtaining an accurate prediction of reservoir
flow scenarios is a difficult task. One of the reasons is that we can never get a
complete and accurate characterisation of the rock parameters that influence
the flow pattern. And even if we did, we would not be able to run simulations
that exploit all available information, since this would require a tremendous
amount of computer resources that exceed by far the capabilities of modern
multi-processor computers. On the other hand, we do not need, nor do we
seek a simultaneous description of the flow scenario on all scales down to the
pore scale. For reservoir management it is usually sufficient to describe the
general trends in the reservoir flow pattern.

In this section we attempt only to briefly summarise some aspects of the art
of modelling porous media flow and motivate a more detailed study of some of
the related topics. More details can be found in one of the general textbooks
describing modelling of flow in porous media, e.g., [10, 21, 26, 30, 41, 43, 23].

1.1 The Reservoir Description

Natural petroleum reservoirs typically consist of a subsurface body of sedi-
mentary rock having sufficient porosity and permeability to store and trans-
mit fluids. Sedimentary rocks are formed through deposition of sediments
and typically have a layered structure with different mixtures of rock types.
In its simplest form, a sedimentary rock consists of a stack of sedimentary
beds that extend in the lateral direction. Due to differences in deposition
and compaction, the thickness and inclination of each bed will vary in the lat-
eral directions. In fact, during the deposition, parts of the beds may have been
weathered down or completely eroded away. In addition, the layered structure
of the beds may have been disrupted due to geological activity, introducing
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fractures and faults. Fractures are cracks or breakage in the rock, across which
there has been no movement. Faults are fractures across which the layers in
the rock have been displaced.

Oil and gas in the subsurface stem from layers of compressed organic ma-
terial that was deposited millions of years ago, and, with time, eventually
turned into water and different hydrocarbon components. Normally the light-
est hydrocarbons (methane, ethane, etc.) escaped quickly, whilst the heavier
oils moved slowly towards the surface, but at certain sites geological activ-
ity had created and bent layers of low-permeable (or non-permeable) rock,
so that the migrating hydrocarbons were trapped. It is these quantities of
trapped hydrocarbons that form today’s oil and gas reservoirs.

Rock formations found in natural petroleum reservoirs are typically het-
erogeneous at all length scales, from the micrometre scale of pore channels
between sand grains to the kilometre scale of the full reservoir. To obtain a
geological description of these reservoirs, one builds models that attempt to
reproduce the true geological heterogeneity in the reservoir rock. However, it
is generally not possible to account for all pertinent scales that impact the
flow. Instead one has to create models for studying phenomena occurring at
a reduced span of scales. In reservoir engineering, the reservoir is modelled
in terms of a three-dimensional grid, in which the layered structure of sedi-
mentary beds (a small unit of rock distinguishable from adjacent rock units)
in the reservoir is reflected in the geometry of the grid cells. The physical
properties of the rock (porosity and permeability) are represented as constant
values inside each grid cell. The size of a grid block in a typical geological
grid-model is in the range 10–50 m in the horizontal direction and 0.1–1 m in
the vertical direction. Thus, a geological model is clearly too coarse to resolve
small-scale features such as the micro-structure of the pores.

Rock Parameters

The rock porosity, usually denoted by φ, is the void volume fraction of the
medium; i.e., 0 ≤ φ < 1. The porosity usually depends on the pressure; the
rock is compressible, and the rock compressibility is defined by:

cr =
1
φ

dφ

dp
,

where p is the reservoir pressure. For simplified models it is customary to
neglect the rock compressibility. If compressibility cannot be neglected, it is
common to use a linearisation so that:

φ = φ0

(
1 + cr(p− p0)

)
,

where p0 is a specified reference pressure and φ0 = φ(p0).
The (absolute) permeability, denoted by K, is a measure of the rock’s

ability to transmit a single fluid at certain conditions. Since the orientation
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Fig. 1. Examples of two permeability fields: a shallow-marine Tarbert formation
(left) and a fluvial Upper Ness formation (right).

and interconnection of the pores are essential for flow, the permeability is
not necessarily proportional to the porosity, but K is normally strongly cor-
related to φ. Rock formations like sandstones tend to have many large or
well-connected pores and therefore transmit fluids readily. They are there-
fore described as permeable. Other formations, like shales, may have smaller,
fewer or less interconnected pores, e.g., due to a high content of clay. Such
formations are described as impermeable. Although the SI-unit for perme-
ability is m2, it is commonly represented in Darcy (D), or milli-Darcy (mD).
The precise definition of 1D (≈ 0.987 · 10−12 m2) involves transmission of a
1cp fluid (see below) through a homogeneous rock at a speed of 1cm/s due
to a pressure gradient of 1atm/cm. Translated to reservoir conditions, 1D is
a relatively high permeability.

In general, K is a tensor, which means that the permeability in the dif-
ferent directions depends on the permeability in the other directions. We say
that the medium is isotropic (as opposed to anisotropic) if K can be rep-
resented as a scalar function, e.g., if the horizontal permeability is equal to
the vertical permeability. Moreover, due to transitions between different rock
types, the permeability may vary rapidly over several orders of magnitude,
local variations in the range 1 mD to 10 D are not unusual in a typical field.

The heterogeneous structure of a porous rock formation is a result of the
deposition history and will therefore vary strongly from one formation to an-
other. In Figure 1 we show two permeability realisations sampled from two
different formations in the Brent sequence from the North Sea. Both forma-
tions are characterised by large permeability variations, 8–12 orders of magni-
tude, but are qualitatively different. The Tarbert formation is the result of a
shallow-marine deposition and has relatively smooth permeability variations.
The Upper Ness formation is fluvial and has been deposited by rivers or run-
ning water, leading to a spaghetti of well-sorted high-permeable channels of
long correlation length imposed on low-permeable background.

Grids

As described above, the rock parameters φ and K are usually given on a grid
that also gives the geometrical description of the underlying rock formations.
The most widespread way to model the geometry of rock layers is by so-called
corner-point grids. A corner-point grid consists of a set of hexahedral cells that
are aligned in a logical Cartesian fashion. One horizontal layer in the grid is
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Fig. 2. Side view in the xz-plane of corner-point grid with vertical pillars modelling
a stack of sedimentary beds (each layer indicated by a different colour).

Fig. 3. Example of a geological grid model.

then assigned to each sedimentary bed to be modelled. In its simplest form,
a corner-point grid is specified in terms of a set of vertical or inclined pillars
defined over an areal Cartesian 2D mesh in the lateral direction. Each cell in
the volumetric corner-point grid is restricted by four pillars and is defined by
specifying the eight corner points of the cell, two on each pillar. Figure 2 shows
a side-view of such a corner-point grid. Notice the occurrence of degenerate
cells with less than eight non-identical corners where the beds are partially
eroded away. Some cells also disappear completely and hence introduce new
connections between cells that are not neighbours in the underlying logical
Cartesian grid.

The corner-point format easily allows for degeneracies in the cells and
discontinuities (fractures/faults) across faces. Hence, using the corner-point
format it is possible to construct very complex geological models that match
the geologist’s perception of the underlying rock formations, e.g., as seen in
Figure 3. Due to their many appealing features, corner-point grids are now an
industry standard and the format is supported in most commercial software
for reservoir modelling and simulation.
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1.2 Flow Parameters

The void in the porous medium is assumed to be filled with different phases.
The volume fraction s occupied by each phase is the saturation of that phase.
Thus, ∑

all phases

si = 1. (1)

Here only three phases are considered; aqueous (a), liquid (l), and vapour (v).
Each phase contains one or more components. A hydrocarbon component is
a unique chemical species (methane, ethane, propane, etc). Since the num-
ber of hydrocarbon components can be quite large, it is common to group
components into pseudo-components, e.g., water (w), oil (o), and gas (g).

Due to the varying conditions in a reservoir, the hydrocarbon composition
of the different phases may change throughout a simulation. The mass fraction
of component α in phase j is denoted by mα,j . In each of the phases, the mass
fractions should add up to unity, so that for N different components, we have:

N∑
α=1

mα,j = 1.

The density ρ and viscosity µ of each phase are functions of phase pressure
pi (i = a, l, v) and the component composition. That is, for vapour

ρv = ρv(pv, {mα,v}), µv = µv(pv, {mα,v}),

and similarly for the other phases. These dependencies are most important
for the vapour phase, and are usually ignored for the aqueous phase.

The compressibility of the phase is defined as for rock compressibility:

ci =
1
ρi

dρi

dpi
, i = a, l, v.

Compressibility effects are more important for gas than for fluids. In simplified
models, the compressibility of the aqueous phase is usually neglected.

Due to interfacial tensions, the phase pressures are different, defining the
capillary pressure,

pc
ij = pi − pj ,

for i, j = a, l, v. Although other dependencies are reported, it is usually as-
sumed that the capillary pressure is a function of the saturations only.

Even though phases do not really mix, we assume that all phases may
be present at the same location. The ability of one phase to move will then
depend on the environment at the actual location. That is, the permeability
experienced by one phase depends on the saturation of the other phases at that
specific location, as well as the phases’ interaction with the pore walls. Thus,
we introduce a property called relative permeability, denoted by kri, i = a, l, v,
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which describes how one phase flows in the presence of the two others. Thus,
in general, and by the closure relation (1), we may assume that

kri = kri(sa, sv),

where subscript r stands for relative and i denotes one of the phases a, l, or
v. Thus, the (effective) permeability experienced by phase i is Ki = Kkri. It
is important to note that the relative permeabilities are nonlinear functions
of the saturations, so that the sum of the relative permeabilities at a specific
location (with a specific composition) is not necessarily equal to one. In gen-
eral, relative permeabilities may depend on the pore-size distribution, the fluid
viscosity, and the interfacial forces between the fluids. These features, which
are carefully reviewed by Demond and Roberts [27], are usually ignored. Of
greater importance to oil recovery is probably the temperature dependency
[42], which may be significant, but very case-related.

Other parameters of importance are the bubble-point pressures for the
various components. At given temperature, the bubble-point pressures signify
the pressures where the respective phases start to boil. Below the bubble-point
pressures, gas is released and we get transition of the components between the
phases. For most realistic models, even if we do not distinguish between all
the components, one allows gas to be dissolved in oil. For such models, an
important pressure-dependent parameter is the solution gas-oil ratio rl for
the gas dissolved in oil at reservoir conditions. It is also common to introduce
so-called formation volume factors that model the pressure dependent ratio
of bulk volumes at reservoir and surface conditions. We will introduce these
parameters later when presenting the three-phase black-oil model.

1.3 Production Processes

Initially, a hydrocarbon reservoir is at equilibrium, and contains gas, oil, and
water, separated by gravity. This equilibrium has been established over mil-
lions of years with gravitational separation and geological and geothermal
processes. When a well is drilled through the upper non-permeable layer and
penetrates the upper hydrocarbon cap, this equilibrium is immediately dis-
turbed. The reservoir is usually connected to the well and surface production
facilities by a set of valves. If there were no production valves to stop the
flow, we would have a “blow out” since the reservoir is usually under a high
pressure. As the well is ready to produce, the valves are opened slightly, and
hydrocarbons flow out of the reservoir due to over-pressure. This in turn, sets
up a flow inside the reservoir and hydrocarbons flow towards the well, which
in turn may induce gravitational instabilities. Capillary pressures will also act
as a (minor) driving mechanism, resulting in local perturbations of the situ-
ation. During this stage, perhaps 20 percent of the hydrocarbons present are
produced until a new equilibrium is achieved. We call this primary production
by natural drives. One should note that a sudden drop in pressure also may
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have numerous other intrinsic effects. Particularly in complex, composite sys-
tems this may be the case, as pressure-dependent parameters experience such
drops. This may give non-convective transport and phase transfers, as vapour
and gaseous hydrocarbons may suddenly condensate.

As pressure drops, less oil and gas is flowing, and eventually the produc-
tion is no longer economically sustainable. Then the operating company may
start secondary production, by engineered drives. These are processes based on
injecting water or gas into the reservoir. The reason for doing this is twofold;
some of the pressure is rebuilt or even increased, and secondly one tries to push
out more profitable hydrocarbons with the injected substance. One may per-
haps produce another 20 percent of the oil by such processes, and engineered
drives are standard procedure at most locations in the North Sea today.

In order to produce even more oil, Enhanced Oil Recovery (EOR, or ter-
tiary recovery) techniques may be employed. Among these are heating the
reservoir or injection of sophisticated substances like foam, polymers or sol-
vents. Polymers are supposed to change the flow properties of water, and
thereby to more efficiently push out oil. Similarly, solvents change the flow
properties of the hydrocarbons, for instance by developing miscibility with
an injected gas. In some sense, one tries to wash the pore walls for most of
the remaining hydrocarbons. The other technique is based on injecting steam,
which will heat the rock matrix, and thereby, hopefully, change the flow prop-
erties of the hydrocarbons. At present, such EOR techniques are considered
too expensive for large-scale commercial use, but several studies have been
conducted and the mathematical foundations are being carefully investigated,
and at smaller scales EOR is being performed.

One should note that the terms primary, secondary, and tertiary are am-
biguous. EOR techniques may be applied during primary production, and
secondary production may be performed from the first day of production.

2 Mathematical Models

In this section we will present two mathematical models, first a simple single-
phase model that incorporates much of the complexities that arise due to
heterogeneities in the porous rock formations. Then we present the classical
black-oil model, which incorporates more complex flow physics.

2.1 Incompressible Single-Phase Flow

The simplest possible way to describe the displacement of fluids in a reservoir
is by a single-phase model. This model gives an equation for the pressure dis-
tribution in the reservoir and is used for many early-stage and simplified flow
studies. Single-phase models are used to identify flow directions; identify con-
nections between producers and injectors; in flow-based upscaling; in history
matching; and in preliminary model studies.
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Assume that we want to model the filtration of a fluid through a porous
medium of some kind. The basic equation describing this process is the con-
tinuity equation which states that mass is conserved

∂(φρ)
∂t

+∇ · (ρv) = q. (2)

Here the source term q models sources and sinks, that is, outflow and inflow
per volume at designated well locations.

For low velocities v, filtration through porous media is modelled with an
empirical relation called Darcy’s law after the French engineer Henri Darcy.
Darcy discovered in 1856, through a series of experiments, that the filtration
velocity is proportional to a combination of the gradient of the fluid pressure
and pull-down effects due to gravity. More precisely, the volumetric flow den-
sity v (which we henceforth will refer to as flow velocity) is related to pressure
p and gravity forces through the following gradient law:

v = −K
µ

(∇p+ ρg∇z). (3)

Here g is the magnitude of the gravitational acceleration and z is the spatial
coordinate in the upward vertical direction. For brevity we write G = −g∇z
for the gravitational pull-down force. We note that Darcy’s law is analogous
to Fourier’s law of heat conduction (in which K is replaced with the heat
conductivity tensor) and Ohm’s law of electrical conduction (in which K is
the inverse of the electrical resistance). However, whereas there is only one
driving force in thermal and electrical conduction, there are two driving forces
in porous media flow: gravity and the pressure gradient.

As an illustrative example, we will now present an equation that models
flow of an incompressible fluid, say, water, through a rigid and incompressible
porous medium characterised by a permeability field K and a corresponding
porosity distribution φ. For an incompressible medium, the temporal deriva-
tive term in (2) vanishes and we obtain the following elliptic equation for the
water pressure:

∇ · v = ∇ ·
[
−K
µ

(∇p− ρG)
]

=
q

ρ
. (4)

To close the model, we must specify boundary conditions. Unless stated oth-
erwise we shall follow common practice and use no-flow boundary conditions.
Hence, on the reservoir boundary ∂Ω we impose v · n = 0, where n is the
normal vector pointing out of the boundary ∂Ω. This gives an isolated flow
system where no water can enter or exit the reservoir.

2.2 Three-Phase Black-Oil Model

The most commonly used model in reservoir simulation is the so-called black
oil model. Here we present the three-phase black-oil model, in which there are
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three components; water (w), oil (o), and gas (g), and three phases; aqueous
(a), liquid (l), and vapour (v). The aqueous phase contains only water, but
oil and gas may exist in both the liquid phase and the vapour phase. The
three-phase black-oil model is governed by mass-balance equations for each
component∑

j=a,l,v

{
∂

dt
(φmα,jρjsj) +∇ · (mα,jρjvj)

}
= qα, α = w, o, g, (5)

where the Darcy velocities vj are given by

vj = −Kkrj

µj
(∇pj − ρjG) , j = a, l, v. (6)

Here qα is a source term and pj denotes the phase pressure.
We now introduce the volume formation factors bα = Vαs/Vα, where Vαs

and Vα are volumes occupied by a bulk of component α at surface and reservoir
conditions, respectively; the phase densities at surface conditions ρjs; rl =
Vgs/Vos, the ratio of the volumes of gas and oil in the liquid phase at surface
conditions; and rv = Vos/Vgs, the ratio of the volumes of oil and gas in the
vapour phase at surface conditions. Recalling that water does not mix into
the liquid and vapour phases, we derive

mw,aρa = bwρws, mo,a = 0, mg,a = 0,
mw,l = 0, mo,lρl = boρos, mg,lρl = rlboρgs,
mw,v = 0, mo,vρv = rvbgρos, mg,vρv = bgρgs.

Inserting these expressions into (5) gives

∂

dt
(φA[sj ]) +∇ · (A[vj ]) = [qα], (7)

where [ξj ] = (ξa, ξl, ξv)t, [ξα] = (ξw, ξo, ξg)t, and

A =

bwρws 0 0
0 boρos rvbgρos

0 rlboρgs bgρgs

=

ρws 0 0
0 ρos 0
0 0 ρgs

1 0 0
0 1rv
0 rl 1

bw 0 0
0 bo 0
0 0 bg

.
Premultiplying (7) with 1tA−1, expanding ∂/∂ξ = (∂/∂pl)(∂pl/∂ξ), and as-
suming 1t[sj ] = 1, i.e., that the three phases occupy the void space completely,
gives an equation of the following form:

∂φ

∂pl
+ φ

∑
j

cjsj
∂pl

∂t
+∇ ·

∑
j

vj

 +
∑

j

cjvj · ∇pl = q. (8)

Exercise: Derive (8) from (7) and show that q and the phase compressibilities
cj are defined by
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q = 1tA−1[qα] =
qw

bwρws
+

1
1− rvrl

((
1
bo
− rl
bg

)
qo
ρos

+
(

1
bg
− rv
bo

)
qg
ρgs

)
.

and

ca =
∂ ln bw
∂pl

, cl =
∂ ln bo
∂pl

+
1
bg

bo − rvbg
1− rvrl

∂rl
∂pl

,

cv =
∂ ln bg
∂pl

+
1
bo

bg − rlbo
1− rvrl

∂rv
∂pl

.

3 Discretisation of Elliptic Pressure Equations

In this section we present four different numerical methods for solving ellip-
tic pressure equations on the form (4). We only consider mass-conservative
methods, meaning that each method provides velocity fields that satisfy the
following mass-balance equation:∫

Ωi

∇ · v dx =
∫

∂Ωi

v · n ds =
∫

Ωi

q

ρ
dx (9)

for each grid cell Ωi in Ω (the reservoir). Here n denotes the outward-pointing
unit normal on ∂Ωi and ds is the surface area measure. We first present the
two-point flux-approximation (TPFA) scheme, a very simple discretisation
technique that is widely used in the oil-industry.

3.1 The Two-Point Flux-Approximation (TPFA) Scheme

In classical finite-difference methods, partial differential equations (PDEs) are
approximated by replacing the partial derivatives with appropriate divided
differences between point-values on a discrete set of points in the domain.
Finite-volume methods, on the other hand, have a more physical motivation
and are derived from conservation of (physical) quantities over cell volumes.
Thus, in a finite-volume method the unknown functions are represented in
terms of average values over a set of finite volumes, over which the integrated
PDE model is required to hold in an averaged sense.

Although finite-difference and finite-volume methods have fundamentally
different interpretation and derivation, the two labels are used interchangeably
in the scientific literature. We therefore choose to not make a clear distinction
between the two discretisation techniques here. Instead we ask the reader
to think of a finite-volume method as a conservative finite-difference scheme
that treats the grid cells as control volumes. In fact, there exist several finite-
volume and finite-difference schemes of low order, for which the cell-centred
values obtained with a finite-difference scheme coincide with cell averages
obtained with the corresponding finite-volume scheme.
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To derive a set of finite-volume mass-balance equations for (4), consider
Equation (9). Finite-volume methods are obtained by approximating the pres-
sure p with a cell-wise constant function {pw,i} and estimating the normal
velocity v ·n across cell interfaces γij = ∂Ωi ∩ ∂Ωj from a set of neighbouring
cell pressures. To formulate the TPFA scheme it is convenient to reformulate
equation (4) slightly, so that we get an equation of the following form:

−∇ · λ∇u = f, (10)

where λ = K/µ. To this end, we have two options: we can either introduce a
flow potential u = p+ ρgz and express our model as an equation for u

−∇ · λ∇u =
q

ρ
,

or we can move the gravity term ∇ · (λρG) to the right-hand side. Hence, we
might as well assume that we want to solve (10) for u.

As the name suggests, the TPFA scheme uses two points, the cell-averages
ui and uj , to approximate the flux Fij = −

∫
γij

(λ∇u) · n ds. To be more spe-
cific, let us consider a regular hexahedral grid with gridlines aligned with the
principal coordinate axes. Moreover, assume that γij is an interface between
adjacent cells in the x–coordinate direction so that the interface normal nij

equals (1, 0, 0)T . The gradient ∇u on γij in the TPFA method is now replaced
with

(∇u · n)|γij
≈ 2(uj − ui)
∆xi +∆xj

, (11)

where ∆xi and ∆xj denote the respective cell dimensions in the x-coordinate
direction. Thus, we obtain the following expression for Fij :

Fij = − 2(uj − ui)
∆xi +∆xj

∫
γij

λds.

However, in most reservoir simulation models, the permeability K is cell-wise
constant, and hence not well-defined at the interfaces. This means that we
also have to approximate λ on γij . In the TPFA method this is done by
taking a distance-weighted harmonic average of the respective directional cell
permeabilities, λi,ij = nij · λinij and λj,ij = nij · λjnij . To be precise, the
nij–directional permeability λij on γij is computed as follows:

λij = (∆xi +∆xj)
(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

.

Hence, for orthogonal grids with gridlines aligned with the coordinate axes,
one approximates the flux Fij in the TPFA method in the following way:

Fij = −|γij |λij(∇u · n)|γij
= 2|γij |

(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

(ui − uj). (12)
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Finally, summing over all interfaces, we get an approximation to
∫

∂Ωi
v ·n ds,

and the associated TPFA method is obtained by requiring the mass-balance
equation (9) to be fulfilled for each grid cell Ωi ∈ Ω.

In the literature on finite-volume methods it is common to express the
flux Fij in a more compact form than we have done in (12). Terms that
do not involve the cell potentials ui are usually gathered into an interface
transmissibility tij . For the current TPFA method the transmissibilities are
defined by:

tij = 2|γij |
(
∆xi

λi,ij
+
∆xj

λj,ij

)−1

.

Thus by inserting the expression for tij into (12), we see that the TPFA
scheme for equation (10), in compact form, seeks a cell-wise constant function
u = {ui} that satisfies the following system of equations:∑

j

tij(ui − uj) =
∫

Ωi

f dx, ∀Ωi ⊂ Ω. (13)

We have now derived a system of linear equations Au = f , where the matrix
A = [aik] is given by

aik =
{∑

j tij if k = i,

−tik if k 6= i.

This system is symmetric, and a solution is, as for the continuous problem,
defined up to an arbitrary constant. The system is made positive definite, and
symmetry is preserved, by forcing u1 = 0, for instance. That is, by adding a
positive constant to the first diagonal of the matrix. In [2] we present a simple,
but yet efficient, Matlab implementation of the TPFA scheme, which we have
used in the following example:

Example 1. Our first example is the so-called quarter five-spot test case, which
is the most widespread test case within reservoir simulation. The reservoir is
the unit square with an injector at (0, 0), a producer at (1, 1), and no-flow
boundary conditions. Figure 4 shows pressure contours and streamlines for two
different isotropic 32× 32 permeability fields. The first field is homogeneous,
whereas the other is sampled from a log-normal distribution. The pressure
and velocity field are symmetric about both diagonals for the homogeneous
field. For the heterogeneous field, the flow field is no longer symmetric since
the fluids will seek to flow in the most high-permeable regions.

3.2 Multipoint Flux-Approximation (MPFA) Schemes

The TPFA finite-volume scheme presented above is convergent only if each
grid cell is a parallelepiped and

nij ·Knik = 0, ∀Ωi ⊂ Ω, nij 6= ±nik, (14)
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Fig. 4. Pressure contours and streamlines for the classical quarter five-spot test
case with a homogeneous and a log-normal permeability field (top and bottom row,
respectively).

where nij and nik denote normal vectors into two neighbouring grid cells. A
grid consisting of parallelepipeds satisfying (14) is said to be K-orthogonal.
Orthogonal grids are, for example, K-orthogonal with respect to diagonal per-
meability tensors, but not with respect to full tensor permeabilities. Figure 5
shows a schematic of an orthogonal grid and a K-orthogonal grid.

If the TPFA method is used to discretise (10) on grids that are not K-
orthogonal, the scheme will produce different results depending on the orien-
tation of the grid (so-called grid-orientation effects) and will generally con-
verge to a wrong solution. Despite this shortcoming of the TPFA method, it
is still the dominant (and default) method for practical reservoir simulation,
owing to its simplicity and computational speed. We now present a class of
so-called multi-point flux-approximation (MPFA) schemes that aim to amend
the shortcomings of the TPFA scheme.

Consider an orthogonal grid and assume that K = [Kξ,ζ ]ξ,ζ=x,y,z, is a
constant tensor with nonzero off-diagonal terms and let γij be an interface
between two adjacent grid cells in the x–coordinate direction. Then for a
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Fig. 5. The grid in the left plot is orthogonal with gridlines aligned with the principal
coordinate axes. The grid in the right plot is a K-orthogonal grid.

given function u, the corresponding flux across γij is given by:∫
γij

v · nij ds = −
∫

γij

1
µ

(
Kx,x∂xu+Kx,y∂yu+Kx,z∂zu

)
ds.

This expression involves derivatives in three orthogonal coordinate directions.
Evidently, two point values can only be used to estimate a derivative in one
direction. In particular, the two cell averages ui and uj can not be used to
estimate the derivative of u in the y and z-directions. Hence, the TPFA scheme
neglects the flux contribution from Kx,y∂yu and Kx,z∂zu.

To obtain consistent interfacial fluxes for grids that are not K-orthogonal,
one must also estimate partial derivatives in coordinate directions parallel to
the interfaces. For this purpose, more than two point values, or cell averages,
are needed. This leads to schemes that approximate Fij using multiple cell
averages, that is, with a linear expression on the form:

Fij =
∑

k

tkijg
k
ij(u).

Here {tkij}k are the transmissibilities associated with γij and {gk
ij(u)}k are the

corresponding multi-point pressure or flow potential dependencies. Thus, we
see that MPFA schemes for (10) can be written on the form:∑

j,k

tkijg
k
ij(u) =

∫
Ωi

f dx, ∀Ωi ⊂ Ω. (15)

MPFA schemes can, for instance, be designed by simply estimating each of the
partial derivatives ∂ξu from neighbouring cell averages. However, most MPFA
schemes have a more physical motivation and are derived by imposing certain
continuity requirements. We will now outline very briefly one such method,
called the O-method [6, 7], for irregular, quadrilateral, matching grids in two
spatial dimensions.

The O-method is constructed by defining an interaction region around
each corner point in the grid. For a two-dimensional quadrilateral grid, this
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Fig. 6. The shaded region represents the interaction region for the O-method on a
two-dimensional quadrilateral grid associated with cells Ω1, Ω2, Ω3, and Ω4.

interaction region is the area bounded by the lines that connect the cell-centres
with the midpoints on the cell interfaces, see Figure 6. Thus, the interaction
region consists of four sub-quadrilaterals (Ωii

1 , Ω
iv
2 , Ω

iii
3 , and Ωi

4) from four
neighbouring cells (Ω1, Ω2, Ω3, and Ω4) that share a common corner point.
For each interaction region, define

Uir = span{U j
i : i = 1, . . . , 4, j=i,. . . ,iv},

where {U j
i } are linear functions on the respective four sub-quadrilaterals. With

this definition, Uir has twelve degrees of freedom. Indeed, note that each U j
i

can be expressed in the following non-dimensional form

U j
i (x) = ui +∇U j

i · (x− xi),

where xi is the cell centre in Ωi. The cell-centre values ui thus account for four
degrees of freedom and the (constant) gradients ∇UJ

i for additional eight.
Next we require that functions in Uir are: (i) continuous at the midpoints

of the cell interfaces, and (ii) flux-continuous across the interface segments
that lie inside the interaction region. To obtain a globally coupled system,
we first use (i) and (ii) to express the gradients ∇UJ

i , and hence also the
corresponding fluxes across the interface segments of the interaction region,
in terms of the unknown cell-centre potentials ui. This requires solution of a
local system of equations. Finally, the cell-centre potentials are determined
(up to an arbitrary constant for no-flow boundary conditions) by summing
the fluxes across all interface segments of the interaction region and requiring
that the mass-balance equations (9) hold. In this process, transmissibilities
are assembled to obtain a globally coupled system for the unknown pressures
over the whole domain.

We note that this construction leads to an MPFA scheme where the flux
across an interface γij depends on the potentials uj in a total of six neighbour-
ing cells (eighteen in three dimensions). Notice also that the transmissibilities
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{tkij} that we obtain when eliminating the gradients of the interaction region
now account for grid-cell geometries in addition to full-tensor permeabilities.

3.3 A Mixed Finite-Element Method (FEM)

Whereas finite-volume methods treat velocities as functions of the unknown
discrete pressures, mixed FEMs [18] obtain the velocity directly. The under-
lying idea is to consider both the pressure and the velocity as unknowns and
express them in terms of basis functions. To this end, we return to the original
formulation and describe how to discretise the following system of differential
equations with mixed FEMs:

v = −λ(∇p− ρG), ∇ · v = q. (16)

As before we impose no-flow boundary conditions on ∂Ω. To derive the mixed
formulation, we first define the following Sobolev space

Hdiv
0 (Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω}.

The mixed formulation of (16) with no-flow boundary conditions now reads:
find (p, v) ∈ L2(Ω)×Hdiv

0 (Ω) such that∫
Ω

v · λ−1u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

ρG · u dx, (17)∫
Ω

l ∇ · v dx =
∫

Ω

ql dx, (18)

for all u ∈ Hdiv
0 (Ω) and l ∈ L2(Ω). We observe again that, since no-flow

boundary conditions are imposed, an extra constraint must be added to make
(17)–(18) well-posed. A common choice is to use

∫
Ω
p dx = 0.

In mixed FEMs, (17)–(18) are discretised by replacing L2(Ω) and Hdiv
0 (Ω)

with finite-dimensional subspaces U and V , respectively. For instance, in the
Raviart–Thomas mixed FEM [44] of lowest order (for triangular, tetrahedral,
or regular parallelepiped grids), L2(Ω) is replaced by

U = {p ∈ L2(Ω) : p|Ωi is constant ∀Ωi ∈ Ω}

and Hdiv
0 (Ω) is replaced by

V = {v ∈ Hdiv
0 (Ω) : v|Ωi has linear components ∀Ωi ∈ Ω,

(v · nij)|γij is constant ∀γij ∈ Ω, and v · nij is continuous across γij}.

Here nij is the unit normal to γij pointing from Ωi to Ωj . The corresponding
Raviart–Thomas mixed FEM thus seeks

(p, v) ∈ U × V such that (17)–(18) hold for all u ∈ V and q ∈ U. (19)
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To express (19) as a linear system, observe first that functions in V are, for
admissible grids, spanned by base functions {ψij} that are defined by

ψij ∈ P1(Ωi)d ∪ P1(Ωj)d and (ψij · nkl)|γkl
=

{
1, if γkl = γij ,

0, else,

where P1(B) is the set of linear functions on B. Similarly,

U = span{χm} where χm =

{
1, if x ∈ Ωm,

0, else.

Thus, writing p =
∑

Ωm
pmχm and v =

∑
γij
vijψij , allows us to write (19) as

a linear system in p = {pm} and v = {vij}. This system takes the form[
B −CT

C 0

] [
v
p

]
=

[
g
f

]
. (20)

Here f = [fm], g = [gkl], B = [bij,kl] and C = [cm,kl], where:

gkl =
[∫

Ω

ρG · ψkl dx
]
, fm =

[∫
Ωm

f dx
]
,

bij,kl =
[∫

Ω

ψij · λ−1ψkl dx
]
, cm,kl =

[∫
Ωm

∇ · ψkl dx
]
.

A drawback with the mixed FEM is that it produces an indefinite linear
system. These systems are in general harder to solve than the positive definite
systems that arise, e.g., from the TPFA and MPFA schemes described in
Sections 3.1 and 3.2. However, for second-order elliptic equations of the form
(4) it is common to use a so-called hybrid formulation. This method leads
to a positive definite system where the unknowns correspond to pressures at
grid-cell interfaces. The solution to the linear system arising from the mixed
FEM can now easily be obtained from the solution to the hybrid system by
performing only local algebraic calculations.

3.4 A Mimetic Finite Difference Method (FDM)

The current mimetic FDM [19, 20] is based on the same principles as the above
mixed FEM, but the approximation space V ⊂ Hdiv(Ω) is replaced with a
space M ⊂ L2(∪i∂Ωi), and the L2 inner product on Hdiv(Ω) is replaced with
an approximative form m(·, ·) that acts on L2(∪i∂Ωi). Moreover, whereas
functions in V represent velocities, functions in M represent fluxes across
grid cell boundaries. Thus, for the current mimetic FDM

M = span{ψij}, ψij =

{
1, on γij ,

0, on γkl, kl 6= ij,
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where one interprets ψij to be a basis function that represents a quantity of
flow with unit velocity across γij in the direction of the unit normal nij , and
zero flow across all other interfaces. Hence, conceptually, the only difference
between these basis functions and the Raviart–Thomas basis functions is that
we here do not associate a corresponding velocity field in Ωi and Ωj .

Next, we present an inner-product m(u, v) on M that mimics or “approxi-
mates” the L2 inner-product (u, λ−1v) on Hdiv(Ω). That is, if u, v ∈ Hdiv(Ω),
then we want to derive an inner-product m(·, ·) so that

(u, λ−1v) ≈ m(u, v) =
∑

k

∑
i,j

ukivkjm(ψki, ψkj) =
∑

k

ut
kMkvk, (21)

where uki and vki are the average velocities across γki corresponding to u and
v, respectively, and uk = [uki]i, vk = [vki]i. Furthermore, Mk is defined by

Mk =
1

|Ωk|
Ckλ

−1Ct
k +

|Ωk|
2trace(λ)

(I−QkQt
k), (22)

where the matrices Ck, and Qk are defined as follows:

Nk: row i is defined by

nk,i =
1

|γki|

∫
γki

(nki)t ds,

Ck: row i is defined by

ck,i =
∫

γki

(x− xk)t ds,

where xk is the mass centre of Ωk,
Qk: columns form an orthonormal basis for the column space of Nk.

The discrete system that arises from this mimetic FDM is of the same form
as (20). The only difference at the discrete level is that the entries in B and g
are computed using the m(·, ·) inner-product instead of the L2 inner-product
(u, λ−1v) on Hdiv(Ω). Thus, for the mimetic FDM we have

gkl =
[
m(ρΞ, ψkl)

]
, bij,kl =

[
m(ψij , ψkl)

]
,

where Ξ =
∑

ij ξijψij and ξij = 1
|γij |

∫
γij
G · nij ds.

3.5 General Remarks

Using geological models as input to flow simulation introduces several nu-
merical difficulties. First of all, typical reservoirs extend several hundred or
thousand metres in the lateral direction, but the zones carrying hydrocarbon
may be just a few tens of metres in the vertical direction and consist of sev-
eral layers with different rock properties. Geological models therefore have
grid-cells with very high aspect ratios and often the majority of the flow in
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Fig. 7. Examples of deformed and degenerate hexahedral cells arising in corner-
point grid models.

and out of a cell occurs across the faces with the smallest area. Similarly, the
possible presence of strong heterogeneities and anisotropies in the permeabil-
ity fields typically introduces large conditions numbers in the discretised flow
equations. These difficulties are observed even for grid models consisting of
regular hexahedral cells.

The flexibility in cell geometry of the industry-standard corner-point for-
mat introduces additional difficulties. First of all, since each face of a grid cell
is specified by four (arbitrary) points, the cell interfaces in the grid will gen-
erally be bilinear surfaces and possibly be strongly curved. Secondly, corner-
point cells may have zero volume, which introduces coupling between non-
neighbouring cells and gives rise to discretisation matrices with complex spar-
sity patterns. Moreover, the presence of degenerate cells, in which the corner-
points collapse in pairs, means that the cells will generally be polyhedral
and possibly contain both triangular and quadrilateral faces (see Figure 7).
Finally, non-conforming grids arise, using the corner-point format, in fault
zones where a displacement along a hyperplane has occurred, see Figure 8.
Altogether, this calls for a very flexible discretisation that is not sensitive to
the geometry of each cell or the number of faces and corner points.

Having said this, it is appropriate with some brief remarks on the appli-
cability of the methods presented above.

TPFA: Most commercial reservoir simulators use traditional finite-difference
methods like the TPFA scheme. These methods were not designed to
cope with the type of grid models that are built today using modern
geomodelling tools. Hence, if one is interested in accurate solutions, two-
point schemes should be avoided.

MPFA methods amend shortcomings of two-point scheme, but are unfortu-
nately hard to implement for general grids, especially if the grid is non-
conforming with non-matching faces.
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Fig. 8. Two examples of fault surface in a three-dimensional model with non-
matching interfaces across the faults. (Left) Three-dimensional view. (Right) Two-
dimensional view, where the shaded patch illustrates a “sub-interface” on the fault
surface.

Mixed FEMs are more accurate than two-point schemes and generally quite
robust. However, the different cells in geological models are generally not
diffeomorphic. One therefore needs to introduce a reference element and a
corresponding Piola transform for each topological case. This complicates
the implementation of a mixed FEM considerably. Moreover, mixed FEMs
gives rise to larger linear systems than TPFA and MPFA.

Mimetic FDMs have similar accuracy to MPFA methods and low-order
mixed FEMs. But unlike MPFA methods and mixed FEMs, mimetic
FDMs are quite easy to formulate and implement for grids with general
polyhedral cells. In particular, it is relatively straightforward to handle
grids with irregular cell geometries and non-matching faces.

4 Upscaling for Reservoir Simulation

The basic motivation behind upscaling is to create simulation models that pro-
duce flow scenarios that are in close correspondence with the flow scenarios
that one would obtain by running simulations directly on the geomodels. The
literature on upscaling techniques is extensive, ranging from simple averag-
ing techniques, e.g., [37], via local simulation techniques [14, 28], to multiscale
methods [1, 8, 9, 22, 33, 34] and homogenisation techniques for periodic struc-
tures [15, 32, 36]. It is not within our scope to give a complete overview over
the many upscaling techniques that have been applied in reservoir simulation.
Instead, we refer the reader to the many review papers that have been devoted
to this topic, e.g., [13, 24, 45, 48]. Here we give only a brief introduction to
upscaling rock permeability for the pressure equation.

The process of upscaling permeability for the pressure equation (4) or
(8) is often termed single-phase upscaling. Most single-phase upscaling tech-
niques seek homogeneous block permeabilities that reproduce the same total
flow through each coarse grid-block as one would get if the pressure equation
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was solved on the underlying fine grid with the correct fine-scale heteroge-
neous structures. However, designing upscaling techniques that preserve av-
eraged fine-scale flow-rates is in general nontrivial because the heterogeneity
at all scales have a significant effect on the large-scale flow pattern. A proper
coarse-scale reservoir model must therefore capture the impact of heteroge-
neous structures at all scales that are not resolved by the coarse grid.

To illustrate the concept behind single-phase upscaling, let p be the solu-
tion that we obtain by solving

−∇ ·K∇p = q, in Ω (23)

on a fine grid with a suitable numerical method, e.g., a TPFA scheme of the
form (13). To reproduce the same total flow through a grid-block V we have
to find a homogenised tensor K∗

V such that∫
V

K∇p dx = K∗
V

∫
V

∇p dx. (24)

This equation states that the net flow-rate v̄ through V is related to the aver-
age pressure gradient ∇p in V through the upscaled Darcy law v̄ = −K∗∇p.

Note that for a given pressure field p, the upscaled permeability tensor
K∗

V is not uniquely defined by (24). Conversely, there does not exist a K∗
V

such that (24) holds for any pressure field. This reflects that K∗
V depends on

the flow through V . Of course, one does not know a priori what flow scenario
V will be subject to. However, the aim is not to replicate a particular flow
regime, but to compute coarse-scale permeability tensors that give reasonably
accurate results for a wide range of flow scenarios. We now review some of the
most commonly used single-phase upscaling methods.

Averaging Methods

The simplest method to upscale permeability is to compute the average of
the permeabilities inside the coarse block. To this end, power averaging is a
popular technique

K∗,p
V =

( 1
|V |

∫
V

K(x)p dx
)1/p

, −1 ≤ p ≤ 1.

Special cases include the arithmetic average (p = 1), the harmonic average
(p = −1), and the geometric average (p→ 0).

The use of power averaging can be motivated by the so-called Wiener-
bounds [49], which state that for a statistically homogeneous medium, the
correct upscaled permeability will be bounded above and below by the arith-
metic and harmonic mean, respectively. This result has a more intuitive ex-
planation. To see this, consider the one-dimensional pressure equation:

−∂x(K(x)p′(x)) = 0 in (0, 1), p(0) = p0, p(1) = p1.
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Integrating once, we see that the corresponding Darcy velocity is constant.
This implies that p′(x) must scale proportional to the inverse of K(x). Hence,
we derive

p′(x) =
p1 − p0

K(x)

[∫ 1

0

dx

K(x)

]−1

=
p1 − p0

K(x)
K∗,−1

V .

If we insert this expression into (24) we find that the correct upscaled perme-
ability K∗

V is identical to the harmonic mean K∗,−1
V .

The same argument applies to the special case of a perfectly stratified
isotropic medium; for instance, with layers perpendicular to the x–axis so
that K(x, ·, ·) is constant for each x. Now, consider a uniform flow in the
x–direction:

−∇ ·K∇p = 0 in V = (0, 1)3,
p(0, y, z) = p0, p(1, y, z) = p1,

(−K∇p) · n = 0 for y, z ∈ {0, 1},
(25)

where n is the outward unit normal on ∂V . This means that for each pair
(y, z) ∈ (0, 1)2 the one-dimensional function py,z = p(·, y, z) satisfies

−∂x

(
Kp′y,z(x)

)
= 0 in (0, 1), py,z(0) = p0, py,z(1) = p1,

from which it follows that

−K(x)∇p = −(K(x)p′y,z(x), 0, 0)T = −K∗,−1
V (p1 − p0, 0, 0)T .

Hence, the correct upscaled permeability is equal to the harmonic mean.
Exercise: Show that if K instead models a stratified isotropic medium with
layers perpendicular to the y or z–axis, then the correct upscaled permeability
for uniform flow in the x–direction would be equal to the arithmetic mean.

The discussion above shows that averaging techniques can be appropriate
in special cases. However, if we consider the model problem (25) with a less
idealised heterogeneous structures, or with the same heterogeneous structures
but with other boundary conditions, then both the arithmetic and harmonic
average will generally give wrong net flow-rates. Indeed, these averages give
correct upscaled permeability only for cases with essentially one-dimensional
flow. To try to model flow in more than one direction, one could generate a
diagonal permeability tensor with the following diagonal components:

Kx,x = µz
a(µy

a(µx
h)), Ky,y = µz

a(µx
a(µy

h)), Kz,z = µx
a(µy

a(µz
h)).

Here µξ
a and µξ

h represent the arithmetic and harmonic means, respectively,
in the ξ-coordinate direction. Thus, in this method one starts by taking a
harmonic average along grid cells that are aligned in one coordinate-direction.
One then computes the corresponding diagonal by taking the arithmetic mean
of all “one dimensional” harmonic means. This average is sometimes called
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Fig. 9. Logarithm of permeability: the left cube is a layered medium, whereas the
right cube is extracted from the lower part of the fluvial Upper Ness formation from
Model 2 of the 10th SPE Comparative Solution Project [25].

the harmonic-arithmetic average and may give good results if, for instance,
the reservoir is layered and the primary direction of flow is along the layers.

Despite the fact that averaging techniques can give correct upscaling in
special cases, they tend to perform poorly in practice since the averages do
not reflect the structure or orientation of the heterogeneous structures. It is
also difficult to decide which averaging technique to use since the best average
depends both on the heterogeneity of the media and on the flow process we
want to model (flow direction, boundary conditions, etc). To illustrate the
dependence on the flow process we consider an example.

Example 2 (from [2]). Consider a reservoir in the unit cube [0, 1]3 with two
different geomodels that each consist of a 8 × 8 × 8 uniform grid blocks and
permeability distribution as depicted in Figure 9. We consider three differ-
ent upscaling methods: harmonic average (H), arithmetic average (A), and
harmonic-arithmetic average (HA). The geomodels are upscaled to a single
grid-block, which is then subjected to three different boundary conditions:

BC1: p = 1 at (x, y, 0), p = 0 at (x, y, 1), no-flow elsewhere.
BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.
BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

Table 1 compares the observed coarse-block rates with the flow-rate obtained
by direct simulation on the 8×8×8 grid. For the layered model, harmonic and
harmonic-arithmetic averaging correctly reproduce the vertical flow normal to
the layers for BC1. Arithmetic and harmonic-arithmetic averaging correctly
reproduce the flow along the layers for BC2. Harmonic-arithmetic averaging
also performs well for corner-to-corner flow (BC3). For model two, however,
all methods produce significant errors, and none of the methods are able to
produce an accurate flow-rate for boundary conditions BC1 and BC3.

Flow-Based Upscaling

A popular class of methods are so-called flow-based upscaling methods as first
suggested by Begg et al. [14]. In this approach one solves a set of homogeneous
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Table 1. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QH/QR 1 2.31e−04 5.52e−02 1.10e−02 3.82e−06 9.94e−04
QA/QR 4.33e+03 1 2.39e+02 2.33e+04 8.22 2.13e+03

QHA/QR 1 1 1.14 8.14e−02 1.00 1.55e−01

pressure equations on the form

−∇ ·K∇p = 0 in V,

for each grid block V with prescribed boundary conditions that induce a
desired flow pattern. Each member of this class of methods differ in the way
boundary conditions are prescribed.

A simple and popular choice is to impose a pressure drop in one of the
coordinate directions and no-flow conditions along the other faces, as in (25)
for flow in the x–direction. This gives us a set of three flow-rates for each grid
block that can be used to compute an effective diagonal permeability tensor
with components

Kx,x = −QxLx/∆Px, Ky,y = −QyLy/∆Py, Kz,z = −QzLz/∆Pz.

Here Qξ, Lξ and ∆Pξ are the net flow, the length between opposite sides, and
the pressure drop in the ξ-direction inside V , respectively.

Another popular option is to choose periodic boundary conditions. That
is, one assumes that each grid block is a unit cell in a periodic medium and
imposes full correspondence between the pressures and velocities at opposite
sides of the block; that is, to compute Kx,x, Kx,y, and Kx,z we impose the
following boundary conditions:

p(1, y, z) = p(0, y, z)−∆p, p(x, 1, z) = p(x, 0, z), p(x, y, 1) = p(x, y, 0),
v(1, y, z) = v(0, y, z), v(x, 1, z) = v(x, 0, z), v(x, y, 1) = v(x, y, 0),

and define Kx,ξ = −QξLξ/∆p. This approach yields a symmetric and posi-
tive definite tensor [28], and is usually more robust than the directional flow
boundary conditions.

Example 3 (from [2]). We revisit the test-cases considered in Example 2, but
now we compare harmonic-arithmetic averaging (HA) with the flow-based
techniques using directional (D) and periodic (P) boundary conditions. The
latter method gives rise to full permeability tensors, but for the cases con-
sidered here the off-diagonal terms in the upscaled permeability tensors are
small, and are therefore neglected for simplicity.

Table 2 compares the observed coarse-block rates with the flow-rate ob-
tained by direct simulation on the 8 × 8 × 8 grid. For the layered model, all
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Table 2. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QHA/QR 1 1 1.143 0.081 1.003 0.155
QD/QR 1 1 1.143 1 1.375 1.893
QP /QR 1 1 1.143 0.986 1.321 1.867

methods give the same diagonal permeability tensor, and hence give exactly
the same results. For Model 2 we see that the numerical pressure computation
methods give significantly better results than the harmonic-arithmetic aver-
age. Indeed, the worst results for the pressure computation method, which
were obtained for corner-to-corner flow, is within a factor two, whereas the
harmonic-arithmetic average underestimates the flow rates for BC1 and BC3
by almost an order of magnitude.

It should be noted that in the discrete case, the appropriate upscaling
technique depends on the underlying numerical method. For instance, if the
pressure equation is discretised by a TPFA scheme of the form (13), then
grid-block permeabilities are used only to compute interface transmissibilities
at the coarse scale. Upscaling methods for this method may therefore in-
stead be targeted at computing coarse-scale transmissibilities (that reproduce
a fine-scale flow field in an averaged sense) directly. Procedures for computing
coarse-scale transmissibilities similar to the averaging and numerical pressure
computation techniques have been proposed in [38] and, e.g., [31], respectively.

5 Multiscale Methods the Pressure Equation

Subsurface flow problems represent an important application that calls for
a more mathematically rigorous treatment of the way the large span of per-
meability values and correlation lengths impact the solution. Conventional
methods are inadequate for this problem because the heterogeneity in natural
porous media does not have clearly separated scales of variation, and because
permeability variations occurring at small length scales (e.g., smaller scale
than the grid resolution) may have strong impact on the flow at much larger
scales. This makes subsurface flow problems a natural target for a new class of
methods called multiscale methods – methods that attempt to model physical
phenomena on coarse grids while honouring small-scale features that impact
the coarse grid solution in an appropriate way, e.g., by incorporating subgrid
information into numerical schemes for partial differential equations in a way
that is consistent with the local property of the differential operator.

A large number of multiscale methods have appeared in the literature on
computational science and engineering. Among these, there are a variety of
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methods (e.g., [1, 8, 9, 22, 33, 34]) that target solving elliptic equations of
the same form as the pressure equation for incompressible subsurface flow.
Upscaling methods that derive coarse-grid properties from numerical subgrid
calculations may also in a certain sense be viewed as multiscale methods, but
the way the upscaled properties are incorporated into the coarse-scale systems
is not necessarily consistent with the properties of the differential operator.

In this section we present three selected multiscale methods. The main
idea is to show how multiscale methods are built, and how subgrid informa-
tion is embedded into the coarse-scale system. For presentational brevity and
enhanced readability we consider only elliptic (incompressible flow) equations,
and disregard capillary forces so that ∇pj = ∇p for all phases j.

Let Ω denote our reservoir. Furthermore, let B = {Bi} be a partitioning of
Ω into polyhedral grid-blocks and let {Γij = ∂Bi∩∂Bj} be the corresponding
set of non-degenerate interfaces. Throughout we implicitly assume that all
grid-blocks Bi are divided into smaller grid cells that form a sub-partitioning
of Ω. Without compressibility and capillary forces, the pressure equation for
the three-phase black-oil model now reads:

v = −K(λ∇p− λGG), ∇ · v = q in Ω. (26)

where we have inserted v =
∑

j vj , λ =
∑

j
krj

µj
, and λG =

∑
j ρj

krj

µj
for

brevity. We assume that no-flow boundary conditions v ·n = 0 are imposed on
∂Ω, and that p is uniquely determined by adding the constraint

∫
Ω
p dx = 0.

5.1 The Multiscale Finite-Element Method (MsFEM) in 1D

Before we introduce multiscale methods for solving (26) in three-dimensional
domains, we start with an instrumental example in one spatial dimension. To
this end, we consider the following elliptic problem:

∂x (K(x)p′(x)) = f, in Ω = (0, 1), p(0) = p(1) = 0, (27)

where f,K ∈ L2(Ω) and K is bounded above and below by positive constants.
The MsFEM was first introduced by Hou and Wu [33], but the basic idea

goes back to earlier work by Babus̆ka and Osborn [12] for 1D problems and
Babus̆ka, Caloz, and Osborn [11] for special 2D problems. The method is,
like standard FEMs, based on a variational formulation. In the variational
formulation of (27) we seek p ∈ H1

0 (Ω) such that

a(p, v) = (f, v) for all v ∈ H1
0 (Ω), (28)

where (·, ·) is the L2 inner-product and

a(p, v) =
∫

Ω

K(x)u′(x)v′(x) dx.
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Now, let NB = {0 = x0 < x1 < . . . < xn−1 < xn = 1} be a set of nodal
points and define Bi = (xi−1, xi). For each xi, i = 1, . . . , n− 1 we associate a
corresponding basis function φi ∈ H1

0 (Ω) defined by

a(φi, v) = 0 for all v ∈ H1
0 (Bi ∪Bi+1), φi(xj) = δij , (29)

where δij is the Kronecker delta. The multiscale finite-element method seeks
the unique function p0 in

V ms = span{φi} = {u ∈ H1
0 (Ω) : a(u, v) = 0 for all v ∈ H1

0 (∪iBi)} (30)

satisfying
a(p0, v) = (f, v) for all v ∈ V ms. (31)

We now show that the solution p of (28) can be written as a sum of
p0 and a family of solutions to independent local subgrid problems. To this
end, we first show that p0 = pI , where pI is the unique function in V ms

with pI(x) = p(x), x ∈ NB. Indeed, since p − pI vanishes on NB, we have
p− pI ∈ H1

0 (∪iBi). Hence, it follows from (28) and the mutual orthogonality
of V ms and H1

0 (∪iBi) with respect to a(·, ·) that

a(pI , v) = a(p, v) = (f, v) for all v ∈ V ms.

Thus, in particular, by (31) and choosing v = pI − p0 we obtain

a(pI − p0, pI − p0) = 0,

which implies p0 = pI . Thus, p = p0 +
∑

i>0 pi where pi ∈ H1
0 (Bi) is defined

by
a(pi, v) = (f, v) for all v ∈ H1

0 (Bi) .

Hence, as promised, the solution of (28) is a sum of p0 and solutions to
independent local subgrid problems. This result can also be seen directly by
noting that p0 is, by definition, the orthogonal projection onto V ms with
respect to the inner-product a(·, ·) and noting that H1

0 (Ω) = V ms⊕H1
0 (∪iBi).

Exercise: Show that

a(φi, φj) =


K∗,−1

i /(xi − xi−1) +K∗,−1
i+1 /(xi+1 − xi), if i = j,

−K∗,−1
max(i,j)/|xi − xj |, if |i− j| = 1,

0, if |i− j| > 1,
(32)

where K∗,−1
i is the harmonic mean of K over the interval [xi−1, xi], i.e.,

K∗,−1
i =

xi − xi−1∫ xi

xi−1
K(x)−1 dx

.

Consider next the standard nodal basis functions used in the linear FEM. Here
the basis functions φi are linear on each interval and satisfy φi(xj) = δij . Show
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that the corresponding coefficients for this method is obtained by replacing
the harmonic means in (32) with the associated arithmetic means.

The multiscale finite-element method can also be extended to higher di-
mensions, but does not give locally mass-conservative velocity fields. Next
we present a multiscale finite-volume method that is essentially a control-
volume finite-element version of the MsFEM. Control-volume finite-element
methods seek solutions in designated finite-element approximation spaces (on
a dual-grid), but rather than formulating the global problem in a variational
framework, they employ a finite-volume formulation (on a primal grid) that
gives mass-conservative velocity fields.

5.2 The Multiscale Finite-Volume Method (MsFVM)

The multiscale finite-volume method [34] employs numerical subgrid calcula-
tions (analogous to those in [33]) to derive a multi-point stencil for solving
(26) on a coarse grid. The method then proceeds and reconstructs a mass-
conservative velocity field on a fine grid as a superposition of local subgrid
solutions, where the weights are obtained from the coarse-grid solution.

The derivation of the coarse-scale equations in the MsFVM is essentially
an upscaling procedure for generating coarse-scale transmissibilities. The first
step is to solve a set of homogeneous boundary-value problems of the form

−∇ ·Kλ∇φk
i = 0, in R, φk

i = νk
i , on ∂R, (33)

where R are so-called interaction regions as illustrated in Figure 10 and νk
i

are boundary conditions to be specified below. Subscript i in φk
i denotes a

corner-point in the coarse grid (xi in the figure) and the superscript k runs
over all corner points of the interaction region (xk in the figure). Thus, for each
interaction region associated with e.g., a hexahedral grid in three dimensions
we have to solve a total of eight local boundary-value problems of the form
(33). The idea behind the MsFVM is to express the global pressure as a
superposition of these local pressure solutions φk

i . Thus, inside each interaction
region R one assumes that the pressure is a superposition of the local subgrid
solutions {φk

i }, where k ranges over all corner-points in the interaction region
(i.e., over the cell-centres of the coarse-grid blocks).

First, we define the boundary conditions νk
i in (33). These are defined by

solving a reduced-dimensional flow problem on each face F of the interaction
region

−∇ ·Kλ∇νk
i = 0 in F, (34)

with boundary conditions given by νk
i (xl) = δkl at the corner points of the

interaction region. (In 3D, the corner-point values are first extended to the
edges of F by linear interpolation). Once νk

i are computed, the local pressure
solutions φk

i can be computed from (33).
The next step is to identify basis functions for the multiscale method. To

this end, we observe that the cell centers xk constitute a corner point for
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k

xk

Fig. 10. The shaded region represents the interaction region R for the MsFVM,
where xi denotes corner-points and xk the midpoints of the coarse grid-blocks. The
midpoints xk are the corner-points of the interaction region.

Fig. 11. Pressure basis function φk for the MsFVM in two-dimensional space.

four interaction regions in 2D and for eight interaction regions in 3D (for a
regular hexahedral grid). Moreover, for all corner-points xi of the coarse grid,
the corresponding boundary conditions νk

i for the different pressure equations
coincide on the respective faces of the interaction regions that share the corner
point xk. This implies that the basis function

φk =
∑

i

φk
i (35)

is continuous (in a discrete sense), see Figure 11. In the following construction,
the base functions defined in (35) will serve as building blocks that are used
to construct a global “continuous” pressure solution.

Thus, define now the approximation space Ums = span{φk} and observe
that all basis functions vanish at all but one of the grid block centres xk.
This implies that, given a set of pressure values {pk}, there exists a unique
extension {pk} → p ∈ Ums with p(xk) = pk. This extension is defined by
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p =
∑

k

pkφk =
∑
i,k

pkφk
i . (36)

A multi-point stencil can now be defined by assembling the flux contribution
across the grid-block boundaries from each basis function. Thus, let

fk,l = −
∫

∂Bl

n ·Kλ∇φk ds

be the local flux out of grid-block Bl induced by φk. The MsFVM for solving
(26) then seeks constant grid-block pressures {pk} satisfying∑

k

pkfk,l =
∫

Bl

(
q −∇ ·KλGG

)
dx ∀l.

To reconstruct a mass-conservative velocity field on a fine scale, notice first
that the expansion (36) produces a mass-conservative velocity field on the
coarse grid. Unfortunately, this velocity field will not preserve mass across the
boundaries of the interaction regions. Thus, to obtain a velocity field that is
also mass conservative on the fine grid we will use the subgrid fluxes obtained
from p as boundary conditions for solving a local flow problem inside each
coarse block Bl to reconstruct a fine-scale velocity vl. That is, solve

vl = −K(λ∇pl − λGG), ∇ · vl =
1
|Bl|

∫
Bl

q dx in Bl, (37)

with boundary conditions obtained from (36), i.e.,

vl = −Kλ∇p on ∂Bl, (38)

where p is the expanded pressure defined by (36). If these subgrid problems are
solved with a conservative scheme, then the global velocity field v =

∑
Bl
vl

will be mass conservative. Note, however, that since the subgrid problems
(37)–(38) are solved independently we loose continuity of the global pressure
solution, which is now defined by p =

∑
Bl
pl.

Remark 1. The present form of the MsFVM, which was developed by Jenny
et al. [34], does not model sources at the subgrid scale. Indeed, the source
term in (37) is equally distributed within the grid-block. Thus, to use the
induced velocity field to simulate the phase transport one has to treat the
wells as a uniform source within the entire well block. However, a more detailed
representation of flow around wells can be obtained by replacing (37) by

vl = −K(λ∇pl − λGG), ∇ · vl = q in Bl (39)

in grid blocks containing a well, i.e., for all Bl in which q is nonzero.
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5.3 A Multiscale Mixed Finite-Element Method (MsMFEM)

Recall that mixed finite-element discretisations of elliptic equations on the
form (26) seek a solution (p, v) to the mixed equations∫

Ω

u · (Kλ)−1v dx−
∫

Ω

p ∇ · u dx =
∫

Ω

λGG · u dx, (40)∫
Ω

l ∇ · v dx =
∫

Ω

ql dx, (41)

in a finite-dimensional product space U × V ⊂ L2(Ω) × H1,div
0 (Ω). If the

subspaces U ⊂ L2(Ω) and V ⊂ H1,div
0 (Ω) are properly balanced (see, e.g.,

[16, 17, 18]), then p and v are defined (up to an additive constant for p) by
requiring that (40)–(41) holds for all (l, u) ∈ U × V .

In MsMFEMs one constructs a special approximation space for the veloc-
ity v that reflects the important subgrid information. For instance, instead of
seeking velocities in a simple approximation space spanned by basis functions
with polynomial components, one computes special multiscale basis functions
Ψ in a manner analogous to the MsFVM, and defines a corresponding mul-
tiscale approximation space by V ms = span{Ψ}. The pressure approximation
space consists simply of piecewise constant functions on the coarse grid, i.e.,

U = {p ∈ L2(Ω) : p|B is constant for all B ∈ B}.

Hence, in the MsMFEM we seek

p ∈ U, v ∈ V ms such that (40)–(41) holds for ∀l ∈ U, ∀u ∈ V ms. (42)

The MsMFEM thus resolves subgrid-scales locally through the construction
of special multiscale basis functions, whereas the large scales are resolved by
solving the discretised equations on a coarse-grid level.

An approximation space for the pressure p that reflects subgrid structures
can be defined in a similar manner. However, whereas velocity fields for flow in
porous media may fluctuate rapidly, the pressure is usually relatively smooth.
It is therefore often sufficient to model pressure with low resolution as long as
it does not significantly degrade the accuracy of the velocity solution. Thus,
because the MsMFEM treats the pressure and velocities as separate decoupled
variables, it is natural to use a high-resolution space for velocity and a low-
resolution space for pressure. In other words, the computational effort can be
spent where it is most needed. Moreover, the approximation spaces can not
be chosen arbitrarily. Indeed, the convergence theory for mixed finite element
methods, the so-called Ladyshenskaja–Babuška–Brezzi theory (see [16, 17, 18])
states that the approximation spaces must satisfy a relation called the inf-sup
condition, or the LBB (Ladyshenskaja–Babuška–Brezzi) condition. Using a
multiscale approximation space, also for the pressure variable, can cause the
LBB condition to be violated.

Exercise: Show that if the velocity solution v of (17)–(18) is contained in
V ms, then the velocity solution of (42) coincides with v.
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K
i

K
j

Fig. 12. Left: Schematic of the coarse and fine grid for the MsMFEM. The shaded
region denotes the support of the velocity basis function associated with the edge
between the two grid-blocks Bi and Bj . Right: x-component of a MsMFEM basis
function associated with an interface between two rectangular (two-dimensional)
grid-blocks.

Approximation Space for the Darcy Velocity

Consider a coarse grid that overlays a fine (sub)grid, for instance as illustrated
in Figure 12. For the velocity we associate one vector of basis functions with
each non-degenerate interface Γij between two neighbouring grid-blocks Bi

and Bj . To be precise, for each interface Γij we define a basis function Ψij by

Ψij = −K∇φij , in Bi ∪Bj , (43)

where φij is determined by

(∇ · Ψij)|Bi = `(x)/
∫

Bi

`(x) dx, (44)

(∇ · Ψij)|Bj = −`(x)/
∫

Bj

`(x) dx. (45)

with no-flow boundary conditions along the edges ∂Bi ∪ ∂Bj\Γij .
The function ` in (44)–(45) is a positive function that can be defined in

various ways. Chen and Hou [22] simply used `(x) = 1, which produces mass-
conservative velocity fields at the coarse-scale level and on the fine scale for all
blocks where the source term q is zero. For blocks with nonzero source term
q, the fine-scale velocity is not conservative unless q is treated as a constant
within each grid block (analogous to the way sources are modelled in the
original MsFVM [34]). In reservoir simulation, however, this way of treating
sources is inadequate. Indeed, here the source term q represents wells that are
point- or line-sources, and modelling flow correctly in the near-well region is
considered to be very important. However, since this issue is linked specifically
to the reservoir simulation application, we will discuss how ` can be defined
to handle wells along with other implementational issues in Section 6.
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To obtain a mass-conservative velocity field on a subgrid scale we need
to solve the subgrid problems (43)–(45) with a mass conservative scheme.
Figure 12 displays the x-component of a velocity basis function for the case
with `(x) = 1 computed using the lowest order Raviart–Thomas mixed FEM.
We clearly see strong fluctuations in the velocity that reflect the fine-scale
heterogeneity. Note also that the basis functions Ψij are defined to be time-
independent. This implies that the computation of the multiscale basis func-
tions may be made part of a preprocessing step, also for flows with large
variations in the total mobility λ. In other words, a single set of basis func-
tions may be used throughout the entire simulation. The reason why it is
not necessary to include the total mobility in (43) is that mobility variations
within a single block are usually small relative to the jumps in the permeabil-
ity. Therefore, by including only K we account for the dominant part of the
fine-grid variability in the coefficients Kλ. The coarse grid variability of the
total mobility is taken into account by reassembling the coarse grid system at
each time step.

Remark 2. For the MsFVM one can also use a single set of basis functions
throughout entire simulations. However, to account for coarse-grid variability
of the total mobility one needs to update the upscaled MsFVM transmissibili-
ties, e.g., by multiplying the initial transmissibilities with a factor that reflects
the change in total mobility. This implies that one can not escape from solv-
ing the local subproblems (37) or (39) in order to obtain a mass conservative
velocity field on the fine grid. This feature generally makes the MsFVM more
computationally expensive for multi-phase flows than the MsMFEM.

5.4 Numerical Examples

Both MsMFEM and MsFVM solve a coarse-scale equation globally while try-
ing to resolve fine-scale variations by using special multiscale basis functions.
Next, we demonstrate that the accuracy of the generated velocity solutions is
not very sensitive to the dimension of the coarse grid.

Example 4 (from [3]). Consider a horizontal, two-dimensional reservoir with
60× 220 grid cells with permeability from the bottom layer of Model 2 in the
10th SPE Comparative Solution Project [25]. We inject water in the centre of
the domain and produce oil and water at each of the four corners. The pressure
equation is solved using the MsFVM and the MsMFEM with various coarse-
grid dimensions. For comparison, we also compute two reference solutions
using the TPFA scheme, one on the original 60 × 220 grid, and one on a
grid that is refined four times in each direction. Employing the corresponding
velocity fields, we solve an equation modelling transport of an incompressible
fluid using an upstream finite-volume method on the underlying fine grid.

Figure 13 shows the resulting saturation fields when the total volume of
the water that has been injected is equal to 30% of the total accessible pore
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Table 3. Relative saturation error δ(S) for a five-spot simulation in Layer 85 of
Model 2 of the 10th SPE Comparative Solution Project for various coarse grids.

30× 110 15× 55 10× 44 5× 11

MsMFEM 1.0916 1.2957 1.6415 1.9177
MsFVM 1.0287 1.6176 2.4224 3.0583

volume. We observe that all saturation plots are quite similar to the saturation
plots obtained using the reference velocity fields. We therefore also quantify
the errors in the respective saturation fields by

δ(S) =
ε(S)
ε(Sref)

, ε(S) =
‖S − I(S4×

ref )‖L1

‖I(S4×
ref )‖L1

,

where I is an operator that maps the saturation solution on the refined 240×
880 grid onto the original 60×220 grid. The results displayed in Table 3 show
that there is some degradation of solution quality when the grid is coarsened,
but the errors are not very sensitive to coarse-grid size.

When the pressure equation (26) needs to be solved once, the multiscale
methods described above can only offer limited speed-up relative to the time
spent on solving the full problem on the fine grid using state-of-the-art linear
solvers, e.g., algebraic multigrid methods [47]. However, for two-phase flow
simulations, where the pressure equation needs to be solved repeatedly, it has
been demonstrated that the basis functions need to be computed only once,
or updated infrequently [1, 35, 39]. This means that the main computational
task is related to solving the global coarse-grid system, which is significantly
less expensive than solving the full fine-grid system. This is illustrated by the
following example.

Example 5 (from [40]). Consider now the full SPE 10 model, which consists
of 60 × 220 × 85 uniform cells. The top 35 layers are from a smooth Tarbert
formation, whereas the bottom 50 layers are from a fluvial Upper Ness for-
mation, see Figure 1. The reservoir is produced using a five-spot pattern of
vertical wells with an injector in the middle; see [25] for more details.

To simulate the production process we use a streamline simulator with two
different pressure solvers: (i) TPFA with an algebraic multigrid linear solver
[47], and (ii) MsMFEM on a 5 × 11 × 17 coarse grid. Streamline solvers are
known to be very efficient compared to conventional (finite-difference) reser-
voir simulators, for which computing the full 3D SPE10 model is out of bounds
using a single processor and takes several hours on a parallel processor. The
key to the high efficiency of streamline solvers is underlying operator splitting
used to separate the solution of pressure/velocity from the solution of the
fluid transport, which here is solved along 1D streamlines (i.e., in Lagrangian
coordinates) and mapped back to the Eulerian grid used to compute pressure
and velocities.
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Fig. 13. Saturation solutions computed using velocity fields obtained with MsM-
FEM and MsFVM on various coarse grids (c–j), TPFA on the original fine grid (a),
and TPFA on the grid that is refined four times in each direction (b).
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Table 4. Runtimes for Model 2 of the 10th SPE Comparative Solution Project
using a streamline simulator with TPFA or MsMFEM pressure solver measured on
a workstation PC with a 2.4 GHz Intel Core 2 Duo processor with 4 Mb cache and
3 Gb memory.

Pressure Streamline Total

TPFA 465 sec 51 sec 516 sec
MsMFEM 91 sec 51 sec 142 sec

Table 4 reports runtimes for two simulations of 2 000 days of production
for the whole model. In both runs the simulator used 5 000 streamlines and 25
times steps. The time spent on the transport step includes tracing of stream-
lines, solving 1D transport equations, and mapping solutions back and forth
between the pressure and the streamline grid. The time spent in the multiscale
pressure solver includes initial computation of basis functions and assembly
and solution of coarse-grid system for each time step. Using the MsMFEM
pressure solver gives a speedup of 5.1 for the pressure solution and 3.6 for
the overall computation. Moreover, with a total runtime of 2 minutes and
22 seconds, simulating a million-cell reservoir model has become an (almost)
interactive task using the the multiscale–streamline solver.

Remark 3. Note that the basis function can be computed independently, which
means that the computation of basis functions is a so-called embarrassingly
parallel task. Even further speedup should therefore be expected for paral-
lel implementations, using e.g., the multi-core processors that are becoming
available in modern PCs.

6 Implementational Issues for MsMFEM

In this section we discuss some of the implementational issues that need to
be addressed when implementing the MsMFEM. We start by discussing what
considerations one should take into account when generating the coarse grid.
Next we explain how the coarse-grid system can be assembled efficiently, and
the implications that this has on the choice of numerical method used for
computing the multiscale velocity basis functions. We then discuss the role of
the function ` in the definition of the basis functions, and how it impacts the
MsMFEM solution. Finally, we describe briefly how to build global informa-
tion into the basis functions to more accurately resolve flow near large-scale
heterogeneous structures that have a strong impact on the flow regime.

6.1 Generation of Coarse Grids

It has been demonstrated in [4, 5] that MsMFEM is very flexible with respect
to the geometry and topology of the coarse grid. A bit simplified, the grid
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Fig. 14. A three-block domain and the corresponding subdomains constituting the
support of the resulting MsMFEM basis functions.

flexibility can be stated as follows: given an appropriate solver for the local flow
problems on a particular type of fine grids, the MsMFEM can be formulated
on any coarse grid where each grid block consists of an arbitrary collection
of connected fine-grid cells. To illustrate, consider a small model where Ω is
defined as the union of the three blocks depicted in Figure 14. In the multiscale
formulation we construct three basis functions for this set of blocks, one for
each pair depicted in Figure 14.

Extensive tests, some of which are reported in [4, 5], show that the accuracy
of the MsMFEM is generally not very sensitive to the shape of the blocks. In
fact, accurate results are obtained for grids containing blocks with rather
’exotic’ shapes, see e.g., [4, 5]. In the next three examples we will show some
examples of coarse grids to substantiate this claim. The reader is referred to
[4, 5] for a more thorough discussion of the numerical accuracy obtained using
this kind of coarse grids.

Example 6 (Near-well grid). Figure 15 shows a vertical well penetrating a
structured corner-point grid with eroded layers. On the coarse grid, the well
is confined to a single cell consisting of all cells in the fine grid penetrated
by the well. Moreover, notice the single neighbouring block shaped like a
’cylinder’ with a hole.

Example 7 (Barriers). Figure 16 shows a subsection of the SPE10 model, in
which we have inserted a few flow barriers with very low permeability. In [4]
it was shown that MsMFEM becomes inaccurate if coarse grid-cells are cut
into two (or more) non-communicating parts by a flow barrier. Fortunately,
this can be automatically detected when generating basis functions, and the
resolution can be improved by using some form of grid refinement. The figure
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Fig. 15. A coarse grid defined on top of a structured corner-point fine grid. The
cells in the coarse grid are given by different colours.

Fig. 16. The upper row shows the permeability field (right), and the interior bar-
riers (left). The lower row shows a hierarchically refined grid (left), the barrier grid
(middle), and a coarse grid-block in the barrier grid (right).

shows two different approaches: (i) structured, hierarchical refinement, and (ii)
direct incorporation of the flow barriers as extra coarse grid-blocks intersecting
a uniform 3×5×2 grid. This results in rather exotic coarse cells, e.g., as shown
in the figure, where the original rectangular cell consisting of 10× 16× 5 fine
cells is almost split in two by the barrier, and the resulting coarse cell is only
connected through a single cell in the fine grid. Although the number of grid
cells in the barrier grid is five times less than for the hierarchically refined grid,
the errors in the production curves are comparable, indicating that MsMFEM
is robust with respect to the shape of the coarse cells.

Example 8 (Eroded layers). Figure 17 shows a uniform partitioning in index
space of a corner-point grid modelling a wavy depositional bed on a meter-
scale. The corner-point grid is described by vertical pillars that form a uniform
30 × 30 in the horizontal plane and 100 very thin layers, out of which many
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Fig. 17. Uniform partitioning in index space of a corner-point model containing a
large number of eroded layers.

collapse to a hyper-plane in some regions. The figure also shows the shape
in physical space of some of the coarse blocks resulting from the uniform
partitioning in index space. All blocks are used directly in the simulation,
except for the block in the lower-right corner, which has two disconnected
parts and thus can be split in two automatically.

The complex coarse blocks arising from the straightforward partitioning
in index space will in fact give more accurate results than what is obtained
from more sophisticated up-gridding schemes trying e.g., to make each cell be
as close to a regular hexahedral box as possible. The reason is that the flow
will follow the layered structure of the medium and therefore is resolved most
accurately by coarse grids that reflect the layering.

The fact that MsMFEM is rather insensitive to the number and the shape
of the blocks in the coarse grid means that the process of generating a coarse
simulation grid from a complex geological model can be greatly simplified,
especially when the fine grid is fully unstructured or has geometrical compli-
cations due to faults, throws, and eroded cells; e.g., as seen in Figures 3 and
8. However, MsMFEM does have some limitations, as identified in [4]. Here it
was observed that barriers (low-permeable obstacles) may cause inaccurate re-
sults unless the coarse grid adapts to the barrier structures. In addition it was
demonstrated that MsMFEM in its present form has limited ability to model
bidirectional flow across coarse-grid interfaces; fine-grid fluxes at coarse-grid
interfaces in the reconstructed flow field will usually go in the same direction.

As a remedy for the limitations identified in [4], it is possible to exploit
global information (e.g., from an initial fine-scale pressure solve) when con-
structing the basis functions [1], see also Section 6.4. However, our experience
indicates that accurate results are also obtained if the coarse grid obeys certain
guidelines; see the left plot in Figure 18 for illustrations:
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Fig. 18. Illustration of some of the guidelines for choosing a good coarse grid. In
the left plot, all blocks except for Block 1 violate at least one of the guidelines each.
In the right plot, the blocks have been improved at the expense of more couplings
in the coarse-grid system.

1. The coarse grid should preferably minimise the occurrence of bidirectional
flow across coarse-grid interfaces. Examples of grid structures that increase
the likelihood for bidirectional flow are:
• Coarse-grid faces with (highly) irregular shapes, like the ’saw-tooth’

faces between Blocks 6 and 7 and Blocks 3 and 8.
• Blocks that do not contain source terms and have only one neighbour,

like Block 4. (A simple remedy for this is to split the interface into at
least two sub-faces, and define a basis function for each sub-face.)

• Blocks having interfaces only along and not transverse to the major
flow directions, like Block 5. (To represent flow in a certain direction,
there must be at least one non-tangential face that defines a basis
function in the given flow direction.)

2. Blocks and faces in the coarse grid should follow geological layers whenever
possible. This is not fulfilled for Blocks 3 and 8.

3. Blocks in the coarse-grid should adapt to flow obstacles (shale barriers,
etc.) whenever possible; see [4].

4. For parabolic (compressible flow) problems, e.g., three-phase black-oil
models, one should model point-sources (and line-sources) at the subgrid
level. For instance, for reservoir simulation one should assign a separate
grid block to each cell in the original grid with an open well perforation1.

1For reservoir simulation there is also another reason, apart from compressibility,
to why it is preferable to assign separate blocks to each cell with an open well
perforation. Indeed, the source q in reservoir simulation models is generally not
known a priori, but determined by so-called well-models that relate the well-rates to
the pressure in the associated well-block. To compute the rates “correctly” one needs
to get the pressure in the well-block correct. The MsMFEM provides a pressure value
for each coarse grid-block. Thus, by assigning a block to each cell with an open well
perforation, we extract values that represent the actual pressure in these cells. In
other words, the pressure at the wells is modelled with subgrid resolution.
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In addition, to enhance the efficiency of the method, one should try to keep
the number of connections between coarse-grid blocks as low as possible to
minimise the bandwidth of the coarse-scale system, and avoid having too
many small blocks as this increases the dimension of the coarse-scale system,
but does not necessarily improve accuracy significantly.

In the right plot of Figure 18, we have used the guidelines above to improve
the coarse grid from the left plot. In particular, we joined Blocks 2 and 4 and
have have increased the size of Block 5 to homogenise the block volumes and
introduce basis functions in the major flow direction for this block. In doing
so, we increase the number of couplings from nine to twelve (by removing
the coupling between Blocks 2 and 4 and introducing extra coupling among
Blocks 1, 3, 5, 6, and 8). In general it may be difficult to obtain an ’optimal’
coarse grid, since guidelines may be in conflict with each other. On the other
hand, this is seldom necessary, since the MsMFEM is relatively robust with
respect to the choice of coarse grid.

6.2 Computing Basis Functions and Assembling the Linear System

In principle, any conservative numerical method may be used to construct the
basis functions, e.g., any of the four methods discussed in Section 2.1. However,
computing the entries in the coarse-grid linear system requires evaluating the
following inner-products between the multiscale basis functions:∫

Ω

Ψij · (Kλ)−1Ψkl dx. (46)

Alternatively, one can use an approximate inner product like the one used in
the mimetic formulation discussed in Section 3.4.

If a finite-volume method is used, a computational routine for computing
these inner-products, either exactly or approximately, is generally not avail-
able. Thus, to implement the MsMFEM one needs to add an extra feature in
the numerical implementation. When a mixed FEM or mimetic FDM is used,
on the other hand, a routine for calculating the inner-product (46) is part of
the implementation of the subgrid solver. In fact, in this case the integral (46)
can be expressed as a vector-matrix-vector product.

Let R be the matrix formed with columns rij holding the coefficients rij
kl

in the following expansion:

Ψij =
∑
γkl

rij
klψkl.

Furthermore, let B be the B-matrix in a system of the form (20) that stems
from a Raviart–Thomas mixed FEM or a mimetic FDM on a fine grid. Then∫

Ω

Ψij · (Kλ)−1Ψkl dx = rt
ijBrij . (47)
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Thus, the coarse-grid system for the MsMFEM may be expressed as follows:

Bms = RtBR, gms = Rtg .

The right hand side qms in the multiscale system is formed by integrating q
over each grid block, and the matrix Cms = [cm,kl] is given by

cm,kl =
∫

Bm

∇ · Ψkl dx =


1, if k = m,

−1, if l = m,

0, otherwise.

6.3 Role of the Weighting Function

The weighting function ` in (44)–(45) has been defined in different ways

• ` = 1 in [22];
• ` = q if

∫
Bm

q 6= 0 and ` = 1 elsewhere in [1]; and
• ` = q if

∫
Bm

q 6= 0 and ` = trace(K) elsewhere in [4, 5].

To understand how these definitions have come into play, recall first that
the MsMFEM velocity solution is a linear superposition of the velocity basis
functions. Hence,

(∇ · v)|Bi =
∑

j

vij∇ · Ψij =
`∫

Bi
` dx

∑
j

vij

=
`∫

Bi
` dx

∫
∂Bi

v · nds =
`∫

Bi
` dx

∫
Bi

∇ · v dx.

One can therefore say that the primary role of ` is to distribute the divergence
of the velocity field onto the fine grid in an appropriate way.

For incompressible flow problems div(v) is non-zero only in blocks with
a source. For blocks where

∫
Bi
q 6= 0, the choice ` = q stems from the fact

that it gives mass conservative velocity fields on the subgrid. For blocks with-
out a source (where the velocity is divergence free) ` can be chosen nearly
arbitrarily. The idea of letting the weight function scale with the trace of the
mobility was introduced in [4] as a way of avoiding unnaturally large amount
of flow through low-permeable zones and in particular through flow barriers.
In general, however, using ` = 1 gives (almost) equally accurate results.

For compressible flow (e.g., (8)) we may no longer choose ` arbitrarily.
For instance, defining base functions using ` = q would concentrate all com-
pressibility effects where q is nonzero. To avoid this, one has to separate the
contribution to the divergence field stemming from sources and from com-
pressibility. This can be achieved, as we have proposed in Section 6.1, by
assigning one “coarse” grid block to each cell in the fine grid with a source or
sink. By doing so, we may, in principle, choose ` = 1 everywhere. But, for the
three-phase black-oil model (cf. Section 2.2), we have
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∇ · v = q − ct
∂p

dt
−

∑
j

cjvj · ∇pl. (48)

Hence, ` should ideally be proportional to the right hand side of (48). Although
the right hand side of (48) can be estimated from local computations, we do
not propose using this strategy to define `. Indeed, the multiscale concept is
not to try to replicate fine-scale solutions by trying to account for all subgrid
information. The important thing is to account for the subgrid effects that
strongly influence flow on the coarse-grid level, and subgrid variability in the
velocity divergence field is generally not among these effects.

Our own numerical experience so far indicates that good accuracy is ob-
tained by taking ` to be the porosity φ. To motivate this choice, we note that
ct is proportional to φ when the saturations are smooth. Moreover, using ` = φ
is in accordance with the idea behind using ` = trace(λ). Indeed, regions with
very low permeability also tend to have low porosity, so by choosing ` = φ one
should (to some extent) avoid forcing too much flow through low-permeable
barriers, [4]. Using ` = trace(K), on the other hand, will generally give veloc-
ity solutions for which div(v) oscillates too much, i.e., is underestimated in
low-permeable regions and overestimated in high-permeable regions.

6.4 Incorporating Global Information

All multiscale methods essentially attempt to decouple the global problem into
a coarse-grid system and a set of independent local problems. In Section 5.1 it
was shown that in the one-dimensional case there is an exact splitting. That is,
the global solution (of the variational formulation) can be expressed as the sum
of the MsFEM solution and solutions of independent local problems. In higher
dimensions, however, decoupling the system into a low-dimensional coarse-grid
system and independent local subproblems is not possible in general. But it
is possible to invoke global information, e.g., from a single-phase flow solution
computed at initial time, to specify better boundary conditions for the local
flow problems and thereby improve the multiscale solutions, as was shown in
[1] for MsMFEM and in [29] for MsFVM.

For many problems, invoking global information may have little effect, and
will, for multi-phase flow problems, only give an incremental improvement in
accuracy. But for certain problems, such as for models with large scale near-
impermeable shale barriers that force the flow to take a detour around the
barrier, invoking global information can improve accuracy quite significantly,
and should be viewed as an alternative to grid refinement.

Since MsMFEM allows running entire simulations with a single set of basis
functions, solving the pressure equation once on a fine grid in order to improve
the accuracy of the multiscale solution is easily justified. To this end, one needs
to split each of the subgrid problems (43)–(45) into two independent problems
in Bi and Bj , respectively, with a common Neumann boundary condition on
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the interface Γij . In particular, if v is the initial fine-scale velocity solution,
the following boundary condition should be imposed on Γij :

Ψij · nij =
v · nij∫

Γij
v · nij ds

. (49)

The method that stems from defining the multiscale basis functions with this
formulation is usually referred to as the global, as opposed to local, MsMFEM.

Exercise: Assign one grid block to each cell with a source and let ` = 1. Alter-
natively let ` = q if

∫
Bi
q 6= 0 and ` = 1 elsewhere. Show that if the multiscale

basis functions are defined by (43)–(45) and (49), then v ∈ span{Ψij}.
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