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Abstract
Advances in reservoir characterization and modeling have given the industry improved ability to build detailed geological models
of petroleum reservoirs. These models are characterized by complex shapes and structures with discontinuous material properties
that span many orders of magnitude. Models that represent fractures explicitly as volumetric objects pose a particular challenge
to standard simulation technology with regard to accuracy and computational efficiency.

We present a new simulation approach based on streamlines in combination with a new multiscale mimetic pressure solver
with improved capabilities for complex fractured reservoirs. The multiscale solver approximates the flux as a linear combination
of numerically computed basis functions defined over a coarsened simulation grid consisting of collections of cells from the
geological model. Here, we use a mimetic multipoint flux approximation to compute the multiscale basis functions. This method
has limited sensitivity to grid distortions. The multiscale technology is very robust with respect to fine-scale models containing
geological objects such as fractures and fracture corridors. The methodology is very flexible in the choice of the coarse grids
introduced to reduce the computational cost of each pressure solve. This can have a large impact on iterative modeling workflows.

Introduction
Modern reservoir characterization methods and 3D geological modeling are leading the industry to routinely build very large
and detailed geological models. These models currently may range in size from 10 to 100 million grid cells and are growing.
This has resulted in a steadily increasing gap between flow simulation capability and the desire to build geologic-scale reservoir
simulation models. In addition to sheer size, strong heterogeneity in the geological models may create computational problems.
Geological models may use very small cells, have highly contrasting reservoir properties, and often have a lower proportion
of active cells, which are widely distributed, thereby producing extremely complex hydraulic connectivity. Traditional finite-
difference simulators were not designed to handle such models efficiently.

This is particularly true for fractured reservoirs, which are very difficult to manage and to optimize recovery for; see Bockel-
Rebelle et al. (2005). About 60% of the world’s conventional oil reserves and almost half of its gas reserves are contained
in carbonate reservoirs, which tend to be more naturally fractured than sandstone reservoirs. To improve recovery factors, it
is essential to have a thorough understanding of the depletion and displacement processes. Fractured reservoirs are complex
geological structures in which fluids are stored in matrix blocks and flow occurs in the fractures. It is recognized that state-of-the-
art simulation methods based upon dual-porosity descriptions may not be able to deliver sufficient resolution of the complex flow
patterns that may develop when a fractured reservoir is produced. Several approaches (e.g., Matthäi et al. 2007) have therefore
been taken to accurately describe fracture-fault systems on a grid-block scale, e.g., based upon complex gridding schemes in
which fractures are represented explicitly either as volumetric grid cells or as lower-dimensional objects at the cell faces. The
performance of current finite-difference simulators can drop significantly when detailed descriptions and complex matrix-fracture
transport processes are introduced.

Traditional reservoir-modeling workflows have been deterministic, with a single ”best effort” description of the reservoir and
little or no quantitative evaluation of uncertainty in the data and its impact on predictions. More recently, geoscientists have taken
advantage of increased computing power to generate many realizations to capture uncertainty in the static geological model.
Discriminating between these multiple realizations requires dynamic simulation.

In the case of reservoirs where there is a substantial production history, each of the realizations must be simulated and the
predicted reservoir response statistically compared with history; the realizations giving the closest match may then be selected
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for further study. In some cases, many realizations may give equally good matches to history. In this case, it may be necessary
to acquire additional data to discriminate between them. Alternatively, several such ”equally good” realizations may be used and
the management decisions tested against each of them, giving a measure of uncertainty in the decision outcome. For example,
if the decision is an infill drilling location, and every realization matching the history gives similar results for the infill location,
then there is a high degree of confidence in that location.

The above issues result in a severe limitation on practical implementation of iterative modeling workflows because run times
or cost of dynamic simulation on geological-scale models is still prohibitive using finite-difference simulators. Today, multiple
realizations on the geological scale often have to be upscaled for evaluation using finite-difference simulators. Upscaling requires
another, often overlooked, step of validation to ensure that the coarse model correctly represents the major geologic features that
affect flow. There is no objective way yet to conduct or validate upscaling and hence it not only introduces an extra element of
uncertainty but also complicates iterative workflows. Ideally, we would like to conduct high-resolution modeling and simulation
at a uniform scale and on a desktop computer.

Streamline simulation has obvious speed advantages on large models and is steadily gaining acceptance as a key technology
for processing large geological models as well as the more standard water flooding and history-matching applications (Lolomari
et al. 2000; Grinestaff and Caffrey 2000; Kretz et al. 2004; Moreno et al. 2004; Cheng et al. 2004). To be able to simulate flow
efficiently on increasingly detailed geological models, it is vital that the performance of the flux field computation required by
the streamline algorithm be improved. With a multiscale mimetic pressure solver, modern streamline technology is able to meet
this need from the industry, as suggested by Aarnes et al. (2006a). In this paper, we show how this novel simulation technology
can be used on geological models with explicit fractures with limited or no upscaling.

Multiscale-Streamline Simulation
Multiscale methods are based upon a hierarchical grid structure consisting of a coarse simulation grid and an underlying fine-
scale grid containing the reservoir heterogeneities. The global flow problem is solved on the coarse simulation grid using special
basis functions that have sub-grid resolution. The basis functions are constructed by solving local flow problems on the fine-
scale grid and can be used to reconstruct a conservative approximation of the fine-scale fluxes (and pressures). Several multiscale
methods have been developed for the simulation of highly heterogeneous geological models, but they have so far been based upon
either simplifying assumptions with respect to flow physics (two-phase, incompressible flow, etc.), e.g., Aarnes et al. (2008), or
simplified geometry (Cartesian grids or the absence of fractures and faults), e.g., Hajibeygi et al. (2008). In a companion paper
(Krogstad et al. 2009), we present a new multiscale method for three-phase black-oil flow on geological models with industry-
standard complexity. For completeness, we will outline this method briefly below before we explain two potential usages within
streamline simulation. To simplify the presentation, we will henceforth disregard gravity and assume noflow boundary conditions
and that there are no wells in the interior of the domain. A more detailed description of how to incorporate wells and general
boundary conditions is given by Skaflestad and Krogstad (2008).

Mathematical Model and Subgrid Discretization. We start by introducing the mathematical model and the mimetic discretiza-
tion (Brezzi et al. 2005) to be used on the fine-scale grid. Streamline methods are based on a sequential solution of the equations
written using a fractional flow formulation in which the pressure equation reads

ct
∂p

∂t
+∇ · ~u− ζ~u ·K−1~u = q, ~u = −Kλ∇p. (1)

Here the total mobility λ =
∑
λ` and all other saturation-dependent parameters are evaluated using saturations from the previous

time step n− 1; K is the absolute permeability; ζ is shorthand for
∑
c`f`, where f` = λ`/λ is the fractional flow; q =

∑
q`/b` is

the total source; and c` and ct are the phase and total compressibilities. Introducing a backward discretization in time, linearizing
Eq. 1, and introducing an iteration parameter ν, the pressure equation Eq. 1 can be written in the semi-discrete form

ct
pn

ν − pn−1

∆t
+∇ · ~un

ν − ζnν − 1~un
ν−1 ·K

−1~un
ν = q, ~un

ν = −Kλ∇pn
ν . (2)

The computational domain Ω is assumed to be discretized by a set of polyhedral cells. For a given cell E, let uE be the vector
of outward fluxes over the nE faces of E, pE the pressure at the cell center, and πE the pressures at the cell faces. Similarly, let
NE be the matrix containing the normal vector of the cell faces multiplied by the corresponding face area andXE be the matrix
containing the vectors from the face centroids to the cell centroid. Introducing a transmissibility matrix TE , the fluxes and the
two pressures can be related as follows:

uE = λTE(pE − πE). (3)

For the mimetic method, TE is generally a full matrix that can be constructed by imposing exactness for linear pressures. Hence,
TE can be written in the form TE = |E|−1NEKEN

T
E + T̃E (see Brezzi et al. 2005), where the symmetric positive-definite

matrix T̃E can be chosen arbitrarily as long as it satisfies T̃EXE = 0. This gives us a certain freedom in the discretization, and
the mimetic method can be constructed such that it, e.g., coincides with either the two-point method or the mixed finite-element
method with lowest-order Raviart–Thomas basis functions on a Cartesian grid.
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To finish the discretization of Eq. 2, we let u denote the outward fluxes over the faces ordered cell-wise (in which interior
faces appear twice with opposite signs), s the cell-wise saturations, p the cell pressures, and π the face pressures. We then get a
hybrid system  B C D

CT − V T
ν−1 P 0

DT 0 0

 uν

−pν

πν

 =

 0
Ppn−1 + q

0

 , (4)

which we solve until ‖pν−1 − pν‖ and ‖uν−1 − uν‖ are sufficiently small. The matrix P is diagonal with entry (ct|E|/∆t)
for cell E. The matrix B is block diagonal with one block (λT )−1

E for each cell E, and similarly, C contains blocks of nE × 1
vectors with all entries equal one. If Dζ and Du denote diagonal matrices with ζn−1 and uν−1 on the diagonal, respectively,
then the block matrix V ν−1 = V (uν−1) is given by BDuCDζ . Finally, each column of D corresponds to a unique face and
has one or two unit entries (for boundary and interior faces, respectively) corresponding to the index/indices of the face in the
cell-wise ordering.

The Multiscale Mimetic Pressure Solver. Our multiscale pressure solver is a variant of the multiscale mixed finite-element
method introduced by Chen and Hou (2003), in which we have replaced the inner-products by a mimetic approximation as
discussed above and represent the multiscale basis functions in terms of a vector of fluxes on the fine grid inside each coarse
block. This idea was first introduced by Aarnes et al. (2008) and is here extended to compressible, three-phase, black-oil models.

As explained above, the multiscale solver is based on a hierarchical two-level grid in which the blocks Ωi in the coarse
simulation grid consist of a connected set of cells from the underlying fine grid, on which the full heterogeneity is represented.
In its simplest form, the approximation space consists of a constant approximation of the pressure inside each coarse block and
a set of velocity basis functions associated with each interface between two coarse blocks. Consider two neighboring blocks Ωi

and Ωj , and let Ωij be a neighborhood containing Ωi and Ωj . The basis function ~ψij is constructed by solving

~ψij = −λK∇pij , ∇ · ~ψij =


wi(x), if x ∈ Ωi,

−wj(x), if x ∈ Ωj ,

0, otherwise,
(5)

in Ωij with ~ψij · ~n = 0 on ∂Ωij . If Ωij 6= Ωi ∪ Ωj , we say that the basis function is computed using overlap or oversampling.
The purpose of the weighting function wi(x) is to distribute ∇ · ~u over the block and produce a flow with unit average velocity
over the interface ∂Ωi ∩ ∂Ωj , and the function is therefore normalized such that its integral over Ωi equals one.

Letψij denote the basis function constructed by solving Eq. 5 using the mimetic discretisation introduced above. To construct
the coarse-scale system, we write the basis functions as ψij = ψH

ij − ψ
H
ji , where ψH

ij (E) is equal to ψij(E) if E ∈ Ωij \ Ωj

and zero otherwise, and ψH
ji(E) is equal to −ψij(E) if E ∈ Ωj and zero otherwise. These hybrid basis functions ψH

ij are now
collected as columns in a matrix Ψ. Then we introduce two prolongation operators I and J from from blocks/coarse interfaces to
cells/fine faces such that element ij equals one if block/coarse interface number j contains cell/face number i and zero otherwise.
Then the global coarse-scale system reads, ΨTBfΨ ΨTCfI ΨTDfJ

IT(Cf − V f )TΨ ITP fI 0
J TDT

f Ψ 0 0

 u
−p
π

 =

 0
ITP fp

n
f

0

 , (6)

where the subscript f indicates matrices from the fine-scale discretization. Once Eq. 6 is solved, the fine-scale fluxes can be
obtained immediately as uf = Ψu.

Whereas this formulation is efficient for incompressible and weakly compressible flows, a more complicated construction
may be needed for strongly compressible cases if the coarse grid is not sufficiently fine to resolve compressible effects.

Applications to Streamline Simulation. The multiscale mimetic pressure solver has two very important attributes that can be
used to improve the performance of streamline simulation when dealing with geological models for which the fracture systems
or fracture corridors must be explicitly modeled. The first (multiscale) is the ability to efficiently compute the flux field and the
second (mimetic approach) allows handling of distorted or non-orthogonal grids. Distorted grids are more the norm than the
exception when the geological model is being constructed. Correct(ed) flow simulation on distorted grids again reduces the need
to rebuild a grid for simulation purposes, further enhancing the speed of iterative modeling workflows. The mimetic method is a
multipoint flux-approximation technique that is robust but can lead to larger number of unknowns. Hence, a multiscale method is
preferred as a companion to maintain performance.

Considering the multiscale approach presented in this paper, there are two ways this can be applied within a streamline
simulator:

• as a fast, approximate pressure solver that reduces the number of independent unknowns in the pressure equation;
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Fig. 1—A conceptual illustration of a coarse grid with a triangular refinement inside a single cell to accurately capture
three fractures (red lines).

• as a method for taking into account the impact of subcell heterogeneities that are not represented in the input grid.

The first approach is the classical multiscale modeling approach in which the primary input to the reservoir simulator is the
fine-scale geologic grid and properties. All geologic features including fractures are modeled directly on the fine grid. The coarse
grid, on which we seek to solve the pressure, can be constructed either automatically (e.g., by partitioning a logically Cartesian
grid into rectangular blocks in index space), or with varying degrees of user control. The preliminary work done at the solver setup
stage (computing the local solutions), is also used to decrease the number of independent unknowns in the pressure equation, so
that they become associated with the coarse grid. The velocity field realized on the fine grid is a good approximation to the direct
fine-grid solution. The objective is to solve the pressure equation more efficiently on a smaller linear system while allowing for
some deterioration in accuracy.

We note that computing the local solutions has an additional cost and recomputing the local solutions may be needed for
multiphase flow. This, however, is where we can use advances in computing to complement our methodology and maintain
high performance. Every local problem is independent and is therefore a prime candidate for exploiting the capability of parallel
computing inherent in multicore computers (and possibly also the massive parallel capability available in modern graphics cards).
Streamline generation and solving saturation equations along streamlines are naturally parallel tasks and multicore computing has
already been harnessed for these tasks in a commercial streamline simulator. This can be particularly useful in fractured reservoir
simulation, as considerable time can also be taken by the 1D finite-difference saturation solver owing to the high speed of flow
along the streamlines.

The second approach to applying the multiscale technique is to use two separate grid systems. The primary grid consists
of the background geology on which a secondary grid or grid system representing the high-impact features like fractures is
superimposed. The secondary grid is expected to have a resolution commensurate to the characteristics of the geologic features.

The primary grid can be used as a preliminary candidate for the coarse grid for the multiscale approach. The union of the
primary and secondary grid must be constructed afterwards and automatically (if possible). The primary grid serves only as
a preliminary candidate and may require modification to better model the discrete geologic objects. For example, it might be
irrelevant to have higher grid resolution in areas away from fault corridors. Therefore, one can find the cells containing fractures
and only refine them and possibly their neighbors. This way, one may combine the primary grid with locally refined structured
or unstructured grids; see the conceptual illustration in Fig. 1. The mimetic discretization described above is well suited for both
structured and unstructured grids containing polyhedral cells. The local solutions are used in assembling the matrices needed
in solving the pressure equation, for constructing the detailed velocity field and tracing streamline inside the (coarse) cell. It is
not necessary to store the whole fine grid explicitly; one only needs to obtain the relation between the cells in the primary grid,
their refinement, and the composition of the coarse grid (which could be different from the primary grid). The cells having no
refinement need no special care, no local solution, and no additional memory storage. They can be treated in the same way as
they are treated in the mimetic method to minimize the storage and the work needed to assemble the matrices.

Numerical Results
In this section we will present three examples to highlight the utility of our new multiscale-streamline simulator. The first example
is a classical and simple 2D test case designed to illustrate grid-orientation effects caused by skewed cells. In the second example,
we show how the multiscale method can be used to resolve a detailed 2D model of hydraulic fractures on a much coarser grid.
The third example is a 3D case with fracture corridors constructed from a subset of Model 2 of the Tenth SPE Comparative
Solution Project (SPE 10; Christie and Blunt 2001).

Reduced Grid Effects. In the first example, we consider a rectangular reservoir with homogeneous and isotropic permeability
of 500 mD (the porosity is 0.3). The reservoir is produced from a symmetric well pattern consisting of an injector with a
bottomhole constraint of 600 bar and two producers with a rate constraint of 40 m3/day (Fig. 2). We assume incompressible flow
and use quadratic relative permeability curves. A total of 20, 000 days of production is simulated using 100 time steps, each of
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Fig. 2—Simple test case designed to compare grid-orientation effects in the mimetic and the standard five-point scheme.
The flow pattern should be symmetric because of the symmetric well pattern.

Fig. 3—The left plot shows the 2D system of high-permeability fracture corridors on a fine 800×800 grid.The right plots
show the upscaled permeability field on a 80×80 grid with Kxx (top) and Kyy (bottom).

200 days. As can be seen from the streamlines and water-cut curves in Fig. 2, use of the mimetic method strongly reduces the
grid-orientation effects inherent in the standard five-point scheme.

A Dense System of Random Fracture Corridors. As our first example of a fractured media, we consider the 2D system of
fractures presented in Fig. 3. The system of 200 linear fractures was constructed randomly and then discretized on a 800 × 800
Cartesian grid. The permeability value in the fractures is set to 50 darcies, whereas the permeability of the isotropic, homogeneous
background field is 500 mD. The reservoir is produced using a quarter-five spot pattern with an injector in the top-left corner and
a producer in the bottom-right corner. The grid was coarsened to 80×80 blocks using a flow-based diagonal upscaling procedure;
see the right-hand plots in Fig. 3.

To test the accuracy of our multiscale-streamline method, we compare saturations after 100 and 300 days. Fig. 4 shows the
reference water saturations computed directly on the 800 × 800 grid along with saturations obtained from the upscaled 80 × 80
grid. In the upscaled results, the fine-scale features are smeared away, and the injected fluid propagation is significantly slower
than in the reference case. The fractured system is rather dense in this test, and therefore the uniform 800× 800 grid was chosen
as the fine grid for the multiscale approach. For the coarse grid, we follow the suggestion made by Aarnes et al. (2006b). That is,
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Fig. 4—The color plots show the saturation at t=100 days (top) and t=300 days (bottom). The left column is the reference
solution on the 800×800 grid, the middle column is the upscaled problem (flow-based diagonal upscaling), and the right
column is the multiscale-streamline solution. The graph shows the water cut: reference solution in magenta, multiscale
solution in cyan, geometrical upscaling in blue, and flow-based diagonal upscaling in yellow.

we start with the 80× 80 grid used in the upscaling and add extra coarse blocks to represent the fractures so that the union of all
fine cells in fractures is split into coarse blocks by the boundaries between the blocks of the 80 × 80 upscaling grid. The results
of this multiscale approach are shown in the right column of Fig. 4, from which we see that the multiscale-streamline solver is
able to predict the fine-scale features of the reference solution quite well.

The water-cut curves are compared in the graph in Fig. 4. Although the water cut of the multiscale solution does not coincide
with the reference solution, the correct breakthrough time and the qualitative behavior makes it more attractive than the water
cuts from the two upscaling methods.

SPE 10 with Fracture Corridors. Next we consider a 3D example constructed from 17 layers from Model 2 of the SPE 10
(Christie and Blunt 2001). This model is repeated periodically three times in the x-direction, giving a model with 180× 220× 17
cells. Additionally, there are six fracture corridors added to the reservoir model (Montaron et al. 2007). We place one injector in
the middle and producers at the corners of each periodicity part. Altogether there are three injectors and eight producers and, as
in the original setup, we consider an injection period of 2,000 days.

The fracture corridors have again a permeability equal to 50 D. As in the previous example, we compute a reference solution
by solving the flow directly on the fine-scale model. The initial grid for the multiscale test is 10 times coarser in the two horizontal
directions. In addition, each connected fracture corridor also composes a single coarse block. The saturation fields in different
layers 2,000 days after the start of injection and production are presented in Fig. 5. We see that the plots in the right column
are quite similar to those in the middle, although not all flow paths are identical. To check how critical these differences are, we
can compare some important cumulative characteristics, like oil production rates and water cut. Such comparisons are presented
in Figs. 6 and 7 and show good correspondence between the results; in particular, we see that the multiscale method is able to
capture the correct water breakthrough in all wells.

Conclusions
The multiscale approach has the ability to reconstruct a fine-scale velocity while taking into account the high flowrate in narrow
fracture corridors, so that the streamlines constructed from the fine-grid velocity are denser in the fracture corridors. Conse-
quently, the multiscale-streamline solution reproduces the small-scale features of the fine-grid solution. Although not discussed
herein, our experience indicates that the quality (accuracy) of the multiscale results depends strongly on the geometry of the coarse
blocks. Better results are obtained when some coarse blocks are devoted to the fracture corridors by following their geometry;
see Aarnes et al. (2006b) for a more thorough discussion for the opposite case of impermeable objects.

Regardless of the promising results reported herein, flow simulation in fractured reservoirs remains a challenging task. One
aspect making it difficult is that the fractures exist at a much smaller scale than the typical cell size in reservoir discretizations.
They create effects that require a very fine grid to be taken into account by conventional flow simulators. If our purpose is explicit
fracture treatment, we should be able to construct a local grid around the fractures and solve the equations governing the flow on
such a grid. After achieving the smallest possible size of cells in the refinement, the population of properties in the cells containing
fractures could be done using upscaling techniques. The refinement is limited by the manageable total number of cells. These
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x-y permeability oil/water saturation, reference oil/water saturation, multiscale

Fig. 5—Comparison of saturation fields in Layers 4, 6, 8, 10, 12, and 14 after 2,000 days for the 3D model with fracture
corridors.
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Fig. 6—Comparison of field water cut and field oil-production rate for the 3D model with fracture corridors: reference
solution in blue and multiscale solution in red.

Fig. 7—The top row shows water-cut curves for producers along the upper edge (P1,P2,P5,P7) and the lower row the
producers along the lower edge (P4,P3,P6,P8) for the 3D model with fracture corridors: reference solution in blue and
multiscale solution in red.

limits can be improved by the multiscale approach. Also, the construction of the finest grid with the multiscale approach could
be made much more flexible. Currently only the Cartesian refinement (not very suitable for fractures, leading to stair-similar
approximations) is supported by our simulator. The local base functions in the multiscale approach could be constructed using
this standard grid, but there is also a potential possibility of defining these functions on special grids well adopted and adjusted to
the geometry of the fractures and thus minimizing the total number of cells and minimizing the errors in discretizing the geometry.
This is a topic of future research.
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Nomenclature
Physical quantities:
b` = volume factor for phase `
c` = phase compressibility
ct = total compressibility
f = fractional flow
K = absolute permeability
p = pressure
t = time
~u = total Darcy velocity
q = volumetric rate
λ = relative mobility
π = face pressure

Vectors and matrices:
p = vector of cell/block pressures
π = vector of cell/block face pressures
u = vector of outward fluxes on cell/block faces
B = inner product of velocity basis functions
C = integral of the divergence of velocity b.f.
D = map from local to global face numbering
P = compressibility matrix
TE = transmissibility matrix for cell E
V = integral of quadratic velocity terms
Ψ = matrix of all basis functions



SPE 119132 9

Domain and grid:
Ω = entire physical domain
∂D = boundary of domain D
E = cell in the fine grid
Ωi = coarse block number i
Ωij = support for basis function ~ψij

Basis functions, etc:
~ψij = basis function, interface of block i and j
wi = weight function associated with coarse block Ωi

Numbers:
nE = number of faces in cell E

Subscripts:
i, j = block/cell numbers
` = Phase number (o=oil, w=water, g=gas)
ν = iteration number
f = vector/matrix defined relative to the fine grid

Superscripts:
n = time step
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