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Abstract. In recent years, several methods for streamline-based history matching have been
developed. These methods have proved to be efficient for three reasons: First, streamlines
delineate flow patterns and can therefore be used to define reduced inverse models. Second,
streamline methods provide fast forward simulation. Third, streamline-based sensitivities
can be evaluated directly based on one flow simulation for different reservoir responses. We
here give a literature review of streamline-based sensitivities and streamline methods used
for history matching.

Man skal ej læse for at sluge,
men for at se, hvad man kan bruge.1

Henrik Ibsen, Peer Gynt (1876)

1. Introduction

A reservoir model typically consists of a differential equation of the type

(1) F
(
y,x, t,p,

∂ny
∂xn

,
∂y
∂t

)
= 0,

equipped with appropriate initial and boundary conditions. Here y denotes responses of the
system, x the spatial coordinates, t time, and p the set of rock and fluid parameters. The
forward problem consists of solving (1) to compute y(x, t) for a given set of parameters p.
The inverse problem consists of finding a set of reservoir parameters m ⊆ p(x) such that the
calculated responses dcal ⊆ y(x, t) match a set of observations dobs from the actual system.
For the purpose of the inverse problem we will denote the forward model, based on the actual
numerical grid-implementation of (1), by d = g(m).

In a realization of a reservoir model, the two main rock parameters, rock porosity φ and
the absolute permeability K, are defined as piecewise constants over a grid. These param-
eters describe the void volume fraction of the rock and the ability of the rock to transmit
a single fluid and are therefore the parameter that often have the largest influence on the
fluid flow in a reservoir. Permeability and porosity have considerable spatial variability (es-
pecially permeability) and are typically strongly correlated. Unfortunately, they are difficult
to measure: direct measurements are only available at a few spatial locations (e.g., from core
samples) and one therefore generally has to rely on geostatistical algorithms for generating
plausible realizations that can be adjusted using indirect measurements and inverse estima-
tion methods. There are also a large number of other parameters that are not necessarily
directly related to the spatial grid. Examples include fluid parameters (e.g., viscosities and
densities), rock-fluid parameters (end-point relative permeabilities, residual saturations), well
indices, water aquifer size, fault multipliers, and permeability multipliers (Kv/Kh). In this
paper we will mainly present methods for adjusting permeability (or porosity) based on fluid
production data observed in wells.

The data available about a reservoir are often classified as two types depending on their
association with fluid movement. Static data or a priori (prior) data, come from core analysis,
well logs, seismics, outcrops, and so on. Dynamic data or a posteriori (posterior) data,
primarily come from production history, e.g., rate, fractional flow (water-cut), well pressure,
well testing, tracer testing, and so on. Common for all dynamic data is that they originate
from dynamic processes in the reservoir. Therefore time-lapse seismics can also indirectly be

1One should not read for the sake of reading, but rather, to seek what may be useful.
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considered as dynamic data. In this review, the term ‘history matching’ will be used for the
process of integrating data to match dynamic observations of the reservoir in the past.

History matching has traditionally been a manual and time-consuming task for the reser-
voir engineer, consisting of iteratively modifying the reservoir description and running flow
simulations for evaluating the resulting reservoir responses. The most common approaches
for automated estimation of reservoir parameters, e.g., permeability and porosity, are based
on minimization of an objective function (sometimes called a misfit function), which typically
has the following form

(2) O =
Nd∑
j=1

wj
(
dobs
j − dcal

j

)2
.

Here the scalars wj have been introduced to weight the influence of the individual observations.
Algorithms used for minimizing the objective function can be classified as two types: gradient
and nongradient methods. Gradient methods use the gradient of the objective function, where
the gradient is defined as ∇O = ∂O/∂m. This gradient is in turn given by the sensitivity
matrix, which is the gradient of the calculated responses dcal = g(m) with respect to the
parameters m,

G =
∂dcal

∂m
, Gji =

∂dcal
j

∂mi
.

The sensitivity coefficients Gji measure how a perturbation in the parameter vector effects
the responses of the system. Efficient computation of these quantities is a crucial point when
developing an efficient parameter-estimation method. Commonly used gradient algorithms
include Gauss–Newton, quasi-Newton, steepest descent, conjugate gradients, and Levenberg–
Marquardt, see e.g., [10, 125]. Gradient methods converge relatively fast, but may easily fail if
the objective function is nonsmooth, in which case the solution may get stuck in a local mini-
mum. Nongradient methods, as the name says, do not use gradients to minimize the objective
function. Common algorithms of this group include simulated annealing, genetic algorithms,
neighborhood algorithms, etc. [118, 125]. These methods are fairly simple to implement, are
always able to reach a global minimum, but may have relatively slow convergence and thus
require a large number of forward simulations, which are usually the most computationally
expensive part of a history-matching algorithm.

History-matching is usually an ill-posed problem, for which a unique solution seldom exists.
Indeed, the number of data points d to be matched is typically much lower than the number
of parameters m to be modified. Further, there may be redundancy in the information
represented in the data. The inverse problem is therefore usually strongly under-determined,
so a lot of possible reservoir parameters m can potentially match the data d. Moreover, there
are strong nonlinearities, model errors, and numerical errors involved in the forward model.
In addition, there are uncertainties associated with the measured data. Thus, constraints
are required to guide the descent towards the inverse solution and make it more stable. In
practice this is often done by adding regularization terms to the objective function, e.g., by
constraining to prior geological information. Moreover, the non-uniqueness and all the errors
involved make uncertainty assessments important.

History-matching methods can be divided into deterministic and stochastic methods. A
deterministic method can be described as a function m = f(mp,d, . . .) that takes a single prior
reservoir model mp to a single updated reservoir model m that accounts for the production
data. In other words, deterministic methods intend to obtain an inverse/backward solution
m = g−1(d) for the deterministic forward model d = g(m). As discussed above, this is a very
hard problem that requires some kind of constraining.

Stochastic methods are often referred to as geostatistical methods, and are sometimes (as
we will see) coupled in some sense with deterministic methods. Geostatistical methods de-
scribe the reservoir model, more or less formally, by a probability distribution f(m), for which
a realization is denoted by [m] ∼ f(m). Rather than having an analytic representation, prob-
ability distributions are often represented by an ensemble of realizations said to be sampled
from or span the probability distribution. The initial probability distribution is often referred
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to as the prior distribution, and should incorporate the static data in a geostatistical manner.
The spatial covariance structure of the reservoir properties can be incorporated via a vari-
ogram or covariance function. This is referred to as two-point statistics (variogram based),
but multi-point statistics are needed to describe complex structures like fractures and chan-
nels [25, 129]. Conditioning on the dynamic data can be done by specifying a likelihood model
f(d|m) that relates the reservoir parameters m of interest to the dynamic data d through
the forward model plus observation error. The prior model and forward model fully specify
the posterior model f(m|d) via Bayes’ rule

(3) f(m|d) =
f(d|m)f(m)

f(d)
∝ f(d|m)f(m).

Although the posterior distribution is generally only known up to a constant, it is possible
to sample from the distribution to obtain realizations denoted by [m|d] ∼ f(m|d). Meth-
ods intended to sample from the posterior distribution, by some kind of simulation-based
interference, are referred to as Monte Carlo methods. Commonly used Monte Carlo methods
are Markov-chain Monte Carlo (McMC) [44, 119], ensemble Kalman filter (EnKF) [50, 51],
particle filter [47], randomized maximum likelihood [87, 107], SIR-algorithm [70], pilot-point
(PP) methods [93, 115], and sequential self-calibration (SSC) [28, 62]. The main advantages
of geostatistical methods are that small-scale geological variability is incorporated and that
uncertainty can be assessed from the realizations. However, history matching of multiple
realizations is often very computationally expensive. Therefore, the number of realizations
are often kept low or reduced, which may cause poor uncertainty estimates. The selection
of a subset of realizations to be pursued for further uncertainty assessments is referred to as
ranking, and is usually based on some criteria intended to preserve the information sought to
the maximum extent [108]. Comparative studies of geostatistical history-matching methods
are reported in the literature [see e.g. 14, 56, 96, 151].

This paper is meant as a review of history-matching methods that are based on a streamline
formulation. Streamline simulation has experienced a revival in recent years and has proved
to be an effective tools for fast reservoir simulation. Streamline simulators are most efficiently
applied to injection-dominated cases and cases where the fluid flow is governed by hetero-
geneities in the rock properties, well positions and rates, fluid mobilities, etc. Streamlines are
well suited for history-matching of reservoir properties to fit dynamic data due to three main
reasons: (i) streamline methods are relatively fast compared with traditional finite-difference
methods for forward simulation, and (ii) by nature streamline methods give precise informa-
tion about the geometries of the flow pattern and can be used to define reduced models, for
instance injector-producer pairs. (iii) streamline-based sensitivities can be evaluated directly
from analytic expressions after a single flow simulation. In this paper we will focus on the
latter two points. To this end, we start out by giving a review of streamline-based sensitivities
in Section 4, after having introduced the model equations most commonly used in streamline-
based history matching in Section 2 and given a quick introduction to streamline simulation
in Section 3.

Streamline sensitivities are defined as analytical integrals along streamlines and can be
computed very efficiently based on a single flow simulation. First, time-of-flight sensitivities
[67, 135, 143] with respect to common reservoir parameters are presented. The time-of-
flight sensitivities are the basic building blocks for obtaining streamline-based sensitivities for
different dynamic data. Further, we describe streamline-based sensitivities for arrival-time,
time-shift, saturation, tracer concentration, fractional flow, and gas-oil ratio. Moreover, we
briefly discuss streamline-derived sensitivities for time-lapse amplitudes [136] and sensitivities
for pressure interference tests [69, 92]. Finally, we briefly describe sensitivities with respect
to the parameters of the gradual deformation method [117].

Section 5 constitutes the main part of this paper and in this section we give a survey of
history-matching methods based on streamlines. Rather than discussing methods (or papers)
where streamline simulation has been applied merely to provide fast forward simulation, we
focus on different uses of streamline methods to modify the geological/reservoir simulation
models throughout the history-matching process. However, we will neither go into great
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details about different formulations of the history-matching problem as an inverse problem
nor will we discuss methods for solving the corresponding inverse problems in great detail. The
reference list of this review is quite extensive and will hopefully guide the reader to sources
for further reading. In picking references we have tried to cite papers where a complete
and/or mature presentation is given, which means that we are not always referring to the
first occurrence of an idea. Further, we have prioritized, whenever possible, referring to
peer-reviewed papers. Short reviews of streamline-based history matching are also given in
[40, 126, 127]. A preliminary version of this paper has also been published as a technical
report [95].

The surveyed methods for history matching based upon streamlines can roughly be divided
into four different categories:

• The Assisted History Matching (AHM) approach was introduced by Emanuel and
Milliken [49] and is outlined in Section 5.1. This method defines sub-regions associated
with wells in which subsequent targeted changes of grid parameters can be performed
manually (or semi-automatic) by a reservoir engineer.

• Travel-Time Inversion (TTI) methods were introduced by Vasco, Datta-Gupta and
coworkers [135] based upon an analogy with seismic ray inversion. Streamlines are
used to estimate sensitivity coefficients analytically, thereby speeding up the opti-
mization on the grid-cell level. The first approach is a two-step approach with a
travel-time matching followed by an amplitude matching. Later, so-called Gener-
alized Travel-Time Inversion (GTTI) has been introduced to combine travel-time
matching and amplitude matching while keeping the desirable convergence properties
of travel-time inversion [67]. For the GTTI method time-shifts for the production
curves, minimizing the misfit, are jointly propagated to necessary modifications in the
reservoir parameters. The methods in this category are described in Section 5.2.

• Methods for matching streamline effective properties (SLEP) were first introduced by
Wang and Kovscek [141] and have later been extended by others. The key idea of
these methods is to relate the mismatch between observed and calculated production
data to a mismatch in effective properties along streamlines or streamline bundles, and
adjust the effective properties to obtain a satisfactory match. Then the perturbations
in effective properties are propagated to individual grid cells (by direct mapping or
by a geostatistical algorithm). These methods are described in Section 5.3.

• The final category consists of geostatistical history-matching methods that take ad-
vantage of streamline-defined regions or streamline-derived sensitivities. Methods dis-
cussed herein include Markov chain Monte Carlo [98], ensemble Kalman filter [9, 45],
sequential self-calibration [143], and the gradual deformation method [58, 59]. The
methods in this category are described in Section 5.4.

Moreover, in Section 6 we describe some methods for streamline-based ranking of geostatis-
tical realizations of reservoir models [75, 142]. Finally, Section 7 contains a discussion and
comparison of some of the methods introduced earlier in the paper.

2. Simplified Flow Models

Almost all the history-matching methods to be surveyed later in the paper are based on
simplified flow models. For completeness, we will therefore introduce these models in some
detail and specify the accompanying simplifying assumptions.

The fundamental equation describing flow in a porous media is the continuity equation
which states that the mass is conserved for phase α

∂

∂t

(
φραSα

)
+∇ ·

(
ραuα

)
= qα.

Here φ denotes porosity, ρα is density, Sα is saturation, uα is the phase velocity, and qα
models fluid sources and sinks. The saturations are volume fractions and must therefore add
up to unity, i.e.,

∑
α Sα = 1. For the phase velocity, we use the semi-empirical Darcy’s law,
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which relates the phase velocity to the gradient of the phase pressure pα,

(4) uα = −λαK
(
∇pα − ραg

)
,

where λ is the relative fluid mobility, K is the tensor of absolute permeability, and g is the
gravity vector (pointing downwards). The relative mobility is defined as λα = krα/µα, where
krα is the relative permeability, generally a function of the concentrations/saturations of other
present phases, and µα is the viscosity of phase α.

For two-phase flow of oil and water (α = o, w) this gives three equations and a set of
constitutive relations, for which it is common to choose a pressure and the water saturation as
the primary unknowns. By manipulating continuity equations and Darcy’s law, one can derive
the so-called fractional formulation consisting of an equation for the pressure and an equation
describing fluid transport, which is referred to as the saturation equation. The pressure
equation has more or less elliptic characteristics depending on the compressibility of the rock
and fluids, and the saturation equation is more or less hyperbolic, depending on capillary
pressures. Most of the methods discussed later assume incompressible and immiscible flow.
Using these assumptions and introducing the total velocity u = uo+uw and a so-called global
pressure p (see e.g., [2]) as primary unknowns, the coupled system can be written as,

∇ · u = q, u = −K
[
λt∇p− (λwρw + λoρo)g

]
,(5)

φ
∂Sw
∂t

+∇ ·
[
fw

(
u + Kλo∇pcow + Kλog∆ρ

)]
=
qw
ρw
.(6)

Here we have introduced the total mobility λt = λw+λo, the fractional-flow function of water
fw = λw/λt, the capillary pressure pcow = po − pw, the density difference ∆ρ = ρw − ρo, and
the total contribution from the wells q = qw/ρw + qo/ρo. The two equations are coupled since
the mobilities λα depend on the water saturation. We will refer to (5) and (6) as the pressure-
and the transport equation, respectively.

The majority of the history-matching methods also assume negligible gravity and capillary
forces, i.e., that the terms involving g and pcow vanish, and we can define p = pw = po.
Further, for incompressible flow ∇ · u = 0 away from the wells, so ∇ · (fwu) = u · ∇fw.
Moreover, when discussing oil-water systems, we drop the subscript ‘w’. Hence, the system
is considerably simplified

∇ · u = q, u = −Kλt∇p,(7)

φ
∂S

∂t
+ u · ∇f = q̃.(8)

Unless stated otherwise, this will therefore be our flow model in the following sections and
the dynamic data observed will typically be the fractional flow (or water cut) in wells.

For streamline methods, the coupled system (7)–(8) is solved using a sequential splitting:
First, the current saturation field is used to evaluate the mobilities λt(S) in (7), and the
equation is solved for the pressure and velocity. Then the velocity field u is held fixed for a
given time step while the saturation is advanced forward in time according to (8). How this is
done, will be explained in the next section. After the saturation has been advanced forward
in time, the new values are used to update the mobilities in (7), an so on.

In the above model, the permeability has been assumed to be a tensor. Within streamline-
based history matching, permeability usually is considered as isotropic and can therefore
be described by a scalar function. Using anisotropic permeability will make the inversion
problem much more under-determined. Moreover, the dynamic well data to be matched are
often noisy and spatially convoluted, and therefore contain limited spatial and small-scale
information. To adjust the permeabilities in other directions, multipliers or correlations are
usually applied, for which the involved parameters may also be history-matched. However,
some of the derivations presented later in this paper may in principle apply directly to a
diagonal or full permeability tensors as well.
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3. Streamline methods

For the sake of completeness we give a very brief introduction to streamline simulation.
For a given velocity field u, a streamline is a line that is everywhere tangential to u, that is,

dx
dr

=
u
|u|

, x(0) = x0.

Rather than using the arc length r to parameterize streamlines, it is common to introduce
the so-called time-of-flight τ , which takes into account the reduced volume available for flow,
i.e., the porosity φ. Time-of-flight is defined by the following integral

(9) τ(R) =
∫ R

0

φ(x(r))
|u(x(r))|

dr =
∫ R

0
s(x(r)) dr,

where τ expresses the time it takes a passive particle to travel a distance R along a streamline
(in the interstitial velocity field v = u/φ). The function s(x) is often referred to as the
slowness function. Alternatively, by the fundamental theorem of calculus and the directional
derivative, τ can be expressed by the following differential equation [41]

(10)
φ

|u|
=
dτ

dr
=

u
|u|

· ∇τ ⇒ u · ∇τ = φ,

which we, in lack of a better name, will refer to as the time-of-flight equation. We will denote
the time-of-flight increment over grid cell i by ∆τi. Hence, the time-of-flight at the well can be
written as the sum of the traversal times for all the Nc grid cells intersected by the streamline;
τ =

∑Nc
i=1 ∆τi. (Regarding subscripts, we will henceforth use indices i, j, k and ` to denote

grid cells, times, wells and streamlines, respectively. Moreover, we use the expression ‘grid
cell’, rather than ‘grid block’, when a method in theory can be applicable to more general
grid cells than non-degenerated quadrilateral or hexahedral grid blocks.)

Streamlines and time-of-flight can be used to define an alternative curvilinear and flow-
based coordinate system in three dimensions. To this end, we introduce the bi-streamfunctions
ψ and χ [18], for which u = ∇ψ ×∇χ. In the streamline coordinates (τ, ψ, χ), the gradient
operator is expressed as

(11) ∇(τ,ψ,χ) = (∇τ) ∂
∂τ

+ (∇ψ)
∂

∂ψ
+ (∇χ)

∂

∂χ
.

Moreover, a streamline Ψ is defined by the intersection of a constant value for ψ and a constant
value for χ. Because u is orthogonal to ∇ψ and ∇χ, it follows that

(12) u · ∇(τ,ψ,χ) = (u · ∇τ) ∂
∂τ

= φ
∂

∂τ
.

Therefore the coordinate transformation (x, y, z) → (τ, ψ, χ) will reduce the three-dimensional
transport equation

φ
∂S

∂t
+ u · ∇f(S) = 0.

to a family of one-dimensional transport equations along each streamline [41, 85],

(13)
∂S

∂t
+
∂f(S)
∂τ

= 0.

In other words, there is no exchange of the quantity S between streamlines and each streamline
can be viewed as an isolated flow system.

For each streamline a constant volumetric flux q` is associated. Quantities like the total
water rate, tracer concentration, fractional flow and gas-oil ratio (GOR) at a well can be ob-
tained by in some sense summing the quantities of the contributing streamlines. For instance
the fractional flow and total rate at a producer at time t are given by [17]

(14) f(t) =
1
q

Nsl∑
`=1

q`f`(t), q =
Nsl∑
`=1

q`,

where Nsl is the number of streamlines connected to the well, q` is the total flux assigned to
streamline `, and f`(t) is the fractional flow associated with streamline ` at time t.
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In modern streamline methods one does not need to represent the path of a streamline ex-
plicitly in three-dimensional space to perform the mapping back and forth between physical
space and streamlines. Instead, the parameterization, i.e., the integral in (9), can be com-
puted numerically on a cell-by-cell basis. The one-dimensional time-of-flight grid is obtained
by tracing a streamline forward and/or backward towards a sink/source (wells) [17]. Most
commonly used is a semi-analytical tracing algorithm introduced by Pollock [112], which uses
analytical expressions of the streamline paths inside each cell based on the assumption that
the velocity field is piecewise linear locally. Although Pollock’s method is only valid for regular
grids, it is often used also for highly skewed and irregular grids. Other approaches for tracing
on unstructured grids and the associated accuracy are discussed in [38, 66, 79, 102, 103, 113].

As mentioned above, (13) is solved numerically forward in time on a sequence of steady-
state approximations for the velocity field, just as done for an IMPES formulation in a finite-
difference simulator. In general, the streamline trajectories will change for unsteady flow
cases, for instance for non-unit mobility ratios (especially favorable) or because of changes
in the well configuration (e.g., infill drilling or temporal rates/pressure constraints). For
unsteady flow the changes in streamline trajectories are accounted for by regenerating the
streamlines periodically through pressure/velocity updates. The saturations/concentrations
are then mapped back and forth between the pressure grid and the streamlines for each update
(described below). The efficiency of streamline simulation compared to conventional finite-
difference simulators is traditionally primarily caused by the ability of taking longer pressure
steps within the sequential splitting formulation [86].

The streamline formulation can also be applied to describe flow including more physical
effects than those described in the simple two-phase model (7)–(8). A similar decomposition
of the 3D transport equation can also be performed for compressible flow [36], in which
case the one-dimensional transport equation will have a source term on the right-hand side.
Further, the decomposition has been extended to compositional flow with compressibility
effects [109]. Moreover, it is possible to include gravity and capillary forces by operator
splitting, as discussed in [22, 60, 61, 86]. However, gravity and capillary forces may enforce
fluxes traverse to the direction defined by the total velocities, and therefore separate sets
of streamlines have to be used for the gravity and capillary steps. Extensions to fractured
reservoir flow have also been reported [6, 46, 88], also resulting in source terms in the 1D
transport equations.

3.1. Linear Transport. For the special case of piston-like displacement, which will be a key
assumption in several of the history-matching methods discussed below, the flux function is
linear. Similarly, for the neutral advection of a passive tracer, (13) reads

(15)
∂C

∂t
+
∂C

∂τ
= 0.

The injector has a concentration history C0(t), which gives a time-dependent boundary-value
problem for (15). The response at the producer reads [41],

(16) C(t) = C0(t− τ) = C0

(
t−

∫
Ψ
s(x) dr

)
,

which is easily verified by inserting the expression into (15) and the fact that the solution is
unique [73]. For the special case of continuous and constant injection (which is equivalent to
piston-like displacement), the solution is particularly simple

C(t) =

{
0, t < τ,

C0, t > τ.

Dispersion is not accounted for in (15) or (16), but this can also be accounted for [see e.g. 76].
Further, for instance for a partitioning tracer being partially absorbed into the oil phase the
travel time along a streamline will be increased in the presence of oil saturation. This can be
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accounted for by increasing the slowness s(x) by the partitioning properties of the tracer [76]

(17) s(x) =
φ(x)
|u(x)|

(Sw + PoSo).

Here, So and Sw are the oil and water saturations, respectively, and Po is the partitioning
coefficient of the tracer defined as the ratio of tracer concentration in the oil phase to that in
the water phase. Hence, P0 will take on unity for a neutral tracer.

3.2. Buckley–Leverett Displacement. A common assumption in many history-matching
methods is to assume a so-called Buckley–Leverett profile along each streamline. That is,
one considers the one-dimensional transport equation in (13) and assumes constant initial
saturation S0 along each streamline and a constant injection state Si. Mathematically, this
corresponds to a so-called Riemann problem with initial data

S(0, τ) =

{
Si for τ < 0,
S0 for τ ≥ 0.

Since both the one-dimensional transport equation and the initial data are scale-invariant
or self-similar—that is, invariant under the map τ → kτ and t → kt—the solution should
also have that property, i.e., S(t, τ) = S(τ/t). More specifically, for Riemann initial data the
solution of the one-dimensional transport equation is given by the analytic Buckley–Leverett
solution (Riemann solution) [73]

(18) S(t, τ) =


Si for τ ≤ tf̃ ′(Si),
(f̃ ′)−1( τt ) for tf̃ ′(Si) ≤ τ ≤ tf̃ ′(S0),
S0 for τ ≥ tf̃ ′(S0).

Here f̃ denotes the upper concave envelope of f if Si > S0, and the lower convex envelope of
f if Si < S0. The front saturation S̃ can be determined by solving the equation [73]

f ′(S̃) =
f(S̃)− f(S0)

S̃ − S0

,

and the injection front will arrive at the well at time τ/f ′(S̃).

3.3. General Displacement. For cases where the injection problem is not a simple Riemann
problem, the one-dimensional transport equation (13) must generally be solved numerically.
The standard approach for solving the scalar problems numerically along streamlines is to
use a finite-difference or finite volume method. The simplest such scheme is the first-order
upwind scheme,

Sj+1
i = Sji −

∆t
∆τ

[
f(Sji )− f(Sji−1)

]
.

For explicit schemes a so-called CFL condition has to be fulfilled with respect to time step size
to keep the numerical solution stable. The CFL condition usually puts a severe restriction on
the time-step size compared to what is required with respect to accuracy. To make the critical
time-step size less restrictive, the time-of-flight grid is often mapped to a more regular grid
for these schemes. For multi-phase and compositional flow with strong nonlinear couplings
in the system of flow equations, the sharpness and the accuracy of the propagation speeds
need to be accurately represented, which may require more accurate schemes for solving along
streamlines. We here confine ourself with just listing a few recent related works [90, 99, 111,
128, 131].

Alternatively, one may use an implicit scheme of the form

Sj+1
i = Sji −

∆t
∆τ

[
f(Sj+1

i )− f(Sj+1
i−1 )

]
.

to escape the stability restrictions. For each time step, a system of Nc equations, where
Nc is the number of unknowns along the streamline, has to be solved. The implicit scheme
has larger numerical diffusion than its explict counterpart, and the amount of diffusion (or
smearing of sharp fronts) increases with the time step. It is therefore customary to use implicit
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time steps that are smaller than the pressure steps. In other words, there are two different
time steps involved in streamline simulation: the pressure step of the sequential splitting, and
the local time step used in the transport solve.

For two-phase (and other scalar problems), a much better approach is to use front tracking
[73] as discussed in [19–21]. This grid-independent method is based on an entirely different
approach than finite-difference schemes and is unconditionally stable and devoid of numerical
diffusion. Instead of discretizing the problem spatially, the initial data S0 and the flux function
f are approximated by piecewise constant and piecewise linear functions, respectively. The
resulting approximated problem consists of a set of Riemann problems that can be solved exact
analytically forward in time given an exact Riemann-solution for the given equation. During
the forward solves the different Riemann solutions will interact and create new Riemann
problems, and so on. The solution of each Riemann problem is given by the Buckley–Leverett
construction discussed in the previous section, which for a linear flux function simplifies to a
step-function with discontinuities propagating along space-time rays, see [73] for more details.
Extensions to miscible and 3-phase flow for front tracking are addressed in [83, 84].

3.4. Mapping Between Pressure Grid and Streamlines. A crucial step in streamline
methods is the mapping of saturations from the pressure grid to streamlines, and vice versa.
Mapping from pressure grid to streamlines is usually performed by simply picking up the
piecewise-constant saturation values from the grid cells that are intersected by the streamline.
Alternatively, higher accuracy is obtained if one first makes a piecewise linear reconstruction
on the pressure grid before mapping to streamlines, as suggested by Mallison et al. [100].
Contrary, mapping the saturations from streamlines to grid cells is done by

(19) Si =
∑

` S`,iV`,i∑
` V`,i

,

where V`,i = q`∆τ`,i is the pore volume associated with streamline ` over grid cell i [17].
Unfortunately, this mapping may potentially introduce large errors in the mass balance of the
reservoir. Commercial streamline solvers therefore use some kind of correction to counteract
the lack of mass balance. One such simple approach is discussed by Stenerud et al. [122],
who suggest to adjust the time-of-flight locally to preserve the local pore volume for both
the mappings. Doing so reduces significantly the number of streamlines required to obtain
accurate production curves, which is more important within history matching than obtaining
high local accuracy in space. Mallison et al. [100] suggest another, and entirely different,
approach based on a geostatistical kriging mapping in which streamlines are no longer seen
as fluid carriers but rather as an unstructured, flow-based grid for computing fluid transport.

Finally, we mention that spatial errors and convergence in streamline simulation have been
studied by Jimenez et al. [79]. For further details on streamline simulation, we refer to the
upcoming textbook by Datta-Gupta and King [40].

4. Streamline-Based Computation of Sensitivities

One of the benefits of applying streamlines for history-matching is the possibility of fast
evaluation of reservoir-response sensitivities. These sensitivities can be evaluated analytically
after a single forward simulation. Using streamlines to compute sensitivities is thus an optimal
approach. We will here review the current literature on streamline-based sensitivity compu-
tations, starting by discussing the computational cost and applicability of streamline-based
relative to traditional methods for computing sensitivities.

4.1. Efficiency and Applicability. Traditional methods for computing sensitivities of multi-
phase production data with respect to reservoir parameters can be divided into three cate-
gories: perturbation methods, gradient-simulator methods [8, 62], and adjoint or optimal
control methods [30, 32, 94, 148, 149]. We will not go into much details about these methods,
but we will briefly discuss the computational costs and compare them with the streamline-
based approaches.
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The perturbation method is the brute force approach for obtaining sensitivities. Each
parameter is perturbed followed by a flow simulation to evaluate the resulting perturbations in
the production responses. ForN parameters this approach therefore requiresN+1 simulations
and is thus very expensive. Both the gradient-simulator method and the adjoint method
require one forward simulation and one or more solutions of a system of linear equations of
the same size as the discretized system for the flow equations (different right-hand sides).
The gradient-simulator method requires the solution of a linear system to obtain sensitivities
for the state variables with respect to a parameter of interest. The linear system is obtained
by differentiating a discretized version of the flow equations with respect to the parameter of
interest. For instance, consider a pressure system Ap = b. By differentiating this equation
with respect to a parameter m we obtain

∂A
∂m

p + A
∂p
∂m

=
∂b
∂m

,

which can be solved to obtain ∂p/∂m. Hence, a linear system has to be solved one time for
each reservoir parameter of interest for each simulator step. The gradient-simulator method
is usually not as expensive as the perturbation method because the sensitivities are not
necessarily needed for all steps. For the adjoint method, one needs to solve an adjoint linear
system for every gradient needed. Therefore, one solution is needed to obtain the gradient of
an objective function, while the number of solutions to obtain the sensitivity matrix is equal
to the number of data points to be integrated. The adjoint systems are solved backward
in time from the end of the last pressure step, and this requires storage of the intermediate
saturation and pressure information for the pressure steps. For a more thorough presentation
of the adjoint method see for instance [148], where it is described in the appendix how the
adjoint method can be used to obtain time-shift sensitivities, cf. Section 4.4. An alternative
to the adjoint method for obtaining the gradient of an objective function is the stochastic
gradient approach used in the SPSA algorithm [57, 120], which requires two evaluations of
the objective function (two flow simulations) to obtain a realization of the gradient. This
approach thus has similar computational complexity as the adjoint method, but can easily be
implemented on top of any flow simulator because mainly evaluations of the objective function
are required. The theoretical foundation for this approach is that at least for a quadratic
objective function the expectation value of the stochastic gradient is the true gradient [57].
However, the stochastic nature of the gradient may slow down the convergence of the history
matching as demonstrated in [57].

The streamline-based approaches described below are superior with respect to efficiency
for obtaining the sensitivity matrix for large systems because they only require one forward
simulation and a post-processing step which basically boils down to bookkeeping of analytic
arithmetic computations.

Sensitivities describe how calculated reservoir responses will react to a small perturbation
in the reservoir description. The sensitivities depend, in principle, on the way the reservoir
responses are calculated, e.g., by a flow simulator, by an inverse seismics-to-saturation model,
etc., and should account for errors made in the calculation. However, highly accurate sensi-
tivities are seldom needed for applications in inverse modeling of petroleum reservoirs, since
sensitivities are mostly used within an iterative inversion algorithm to determine in which
direction one should perturb the solution in the next iteration. Moreover, large uncertainties
in the reservoir description will in general mask errors made in the calculation of sensitivities.
In practice, sensitivities obtained by one reservoir response simulator may perform well for
another simulator too. For instance, streamline sensitivities may be obtained by using the
velocity fields of a finite-difference simulator, even though streamlines are not used for the
actual flow simulation, see e.g., [35]. This extends the applicability of fast streamline-based
sensitivity calculations considerably.

4.2. Time-of-Flight Sensitivities. The sensitivity of the time-of-flight with respect to
reservoir parameters is the basic building block used to obtain streamline-based sensitivi-
ties for reservoir responses. We will therefore start out by presenting two different approaches
for deriving time-of-flight sensitivities.
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The first approach is used in particular by Datta-Gupta and coworkers. By Darcy’s law
(7) for the total velocity u and the time-of-flight definition in (9), the time-of-flight is related
to reservoir properties by

(20) τ =
∫

Ψ

φ(x)
λtK(x)|∇p|

dr =
∫

Ψ

φ(x)A(x)
q

dr =
∫

Ψ
s(x) dr.

Here φ is the porosity, K is the absolute permeability, p is the pressure, λt is the total mobility,
A is the streamtube cross sectional area, and q is the total volumetric streamline rate.

The sensitivity of τ with respect to a reservoir parameter m can then be defined by [135]

(21)
∂τ

∂m
=

∫
Ψ

∂s(x)
∂m(x)

dr,

where ∂s(x)/∂m(x) typically is given by, for instance

∂s

∂K
= − φ

λtK2|∇p|
= − s

K
,(22)

∂s

∂φ
=

1
λtK|∇p|

=
s

φ
,(23)

∂s

∂|∇p|
= − φ

λtK|∇p|2
= − s

|∇p|
,(24)

∂s

∂λt
= − φ

λ2
tK|∇p|

= − s

λt
,(25)

∂s

∂q
= −φA

q2
= −s

q
.(26)

Similar expressions for various relative permeability parameters are described in Appendix A.
We now assume that each reservoir parameter mi is constant inside grid cell i. Then a time-
of-flight sensitivity can be associated with each grid cell: The sensitivity with respect to
permeability, for instance, is given by

(27)
∂τ

∂Ki
=
∂∆τi
∂Ki

=
∫

Ψi

∂s(x)
∂Ki

dr =
∫

Ψi

−s(x)
Ki

dr = −∆τi
Ki

.

The sensitivities are calculated under the assumption that the streamlines do not shift as a
result of a small perturbation in the reservoir properties. Further, it is assumed that the
different reservoir properties are independent in the sense that a small perturbation in one
property does not perturb any of the other properties. However, especially the pressure will
generally depend on the permeability distribution, but this dependence is usually neglected.

Tracer partitioning can be accounted for by defining the slowness function s(x) as in (17)
[43, 76]. Illiassov and Datta-Gupta [76] also use this formulation to compute time-of-flight
sensitivities with respect to saturations. Further, we remark that it may be possible to account
for gravity and capillary pressure in the time-of-flight sensitivities by using the total Darcy
velocity (5) accounting for these effects in the slowness function s(x).

Wen et al. [143] present a more general approach to account for the pressure impact on the
time-of-flight and the spatial correlation for permeability. These sensitivities were derived
for application to the sequential self-calibration (SSC) method, which will be discussed in
Section 5.4.3. For the SSC method, the sensitivities are associated with master points rather
than grid cells, and therefore the spatial correlations between grid cells and the master points
are important. We will here index master points by subscript d. The time-of-flight in each cell
i is a function of the transmissibilities {Ti,n} associated with the cell faces and the pressures
{pi,n} in the cell and its surrounding neighbors. A straightforward differentiation, applying
the chain rule along a streamline intersecting Nc grid cells gives

(28)
∂τ

∂Kd
=

Nc∑
i=1

[∑
n

∂∆τi
∂Ti,n

∂Ti,n
∂Kd

+
∑
n

∂∆τi
∂pi,n

∂pi,n
∂Kd

]
.



12 VEGARD RØINE STENERUD AND KNUT–ANDREAS LIE

To obtain ∂∆τi/∂Ti,n and ∂∆τi/∂pi,n analytically, Wen et al. [143] differentiate the expres-
sions for ∆τi used in the Pollock’s tracing algorithm. Further, the pressure sensitivities
∂pi,n/∂Kd are obtained by the gradient-simulator method described above [62, 143] and are
not streamline based, and thus more expensive. Finally, using the harmonic average to cal-
culate the transmissibility between two cells gives [62]

(29) ∂Ti,n/∂Kd =
T 2
i,n

2

(ωd,i
Ki

+
ωd,n
Kn

)
,

where ωd,i and ωd,n are the kriging weights associated with master point d, cell i, and face n
(adjacent cell). Hence, the spatial correlations of permeability perturbations are accounted
for through the kriging weights in (29).

If one assumes that the pressure (the gradient) is independent of a small perturbation in
the permeability, like assumed in (27), the sensitivities are reduced to

(30)
∂τ

∂Kd
=

Nc∑
i=1

∂∆τi
∂Kd

=
Nc∑
i=1

∂∆τi
∂Ki

∂Ki

∂Kd
= −

Nc∑
i=1

∆τi
Ki

∂Ki

∂Kd
= −

Nc∑
i=1

∆τi
Ki

ωd,i,

where ωd,i is the kriging weight of master point d and cell i. For given kriging weights, this
is a fully analytic approximation to the sensitivity coefficients that should apply directly to
the same reservoir parameters as (21) does, given that appropriate covariance structures can
be defined for the parameters.

The kriging weights involved in (29) and (30) can be obtained by solving an ordinary
kriging system [62]. Further, the kriging weights only depend on the spatial locations of the
master points and the locations being interpolated, so the kriging system only need to be
solved once for a fixed set of master points, interpolation points, and covariance structure.
The same weights may also be used to propagate the updated permeabilities of the master
locations in the inverse problem, see Section 5.4.3.

If a master point coincides with a cell j and we assume that a perturbation of the perme-
ability Kj only contribute to a perturbation of ∆τj , i.e.,

(31) ωj,i =
{

0, for i 6= j,
1, for i = j,

then (30) reduces to (27).

In choosing between the two approach introduced above, we note that calculating the time-
of-flight sensitivities by (21) is the fastest approach because the approach mainly boils down
to bookkeeping of time-of-flights over each grid cell. Moreover, we remark that for the purpose
of history matching, it often turns out in practice (see [67, 146]) to be sufficient to apply the
cell-based approximations (27) and (30), which are the less computationally expensive (but
also more approximate).

4.3. Arrival-Time Sensitivities. An arrival time measures the time it takes a quantity to
propagate from one point in the reservoir to another, e.g., the time it takes from one starts
injecting water in at an injector to the water front break through in a producer. In this
subsection we will present an approach for computing the sensitivity ∂tj/∂mi of an arrival
time tj with respect to reservoir parameter mi of grid cell i. This sensitivity is also sometimes
referred to as a travel-time sensitivity [67] (analogy to ray-tracing in seismics). Consider a
system of two-phase flow given in the time-of-flight coordinate along each streamline by the
one-dimensional transport equation (13). If the streamlines are assumed to be invariant under
the perturbation in reservoir parameters, the shift in the saturation at the outlet nodes is
given by

δS =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm.

Let us consider the propagation of a fixed saturation, i.e., δS ≡ 0, or in other words

0 =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm.
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If we now perturb m only in the ith component and solve for δt/δmi, we obtain

(32)
∂t

∂mi
= −∂S

∂τ

∂τ

∂mi
·
(∂S
∂t

)−1
=

1
f ′(S)

∂τ

∂mi
.

Here time-of-flight derivative ∂τ/∂mi is computed analytically as described in Section 4.2. In
deriving (32) we have tacitly assumed that the fixed saturation propagates with a constant
wave-speed f ′(S) from its ‘release’ (at an injector) to its ‘arrival’ at a well. Whereas this is
true for a piston-like displacement or for a neutral tracer flow, for which f(S) = S and we
obtain ∂t/∂mi = ∂τ/∂mi as expected, it will generally not be true for a general nonlinear
displacement. For a pure Buckley–Leverett displacement, f ′(S) should be replaced by the
derivative of the convex envelope of the flux f̃ ′(S), see Section 3.2. (Alternatively, this can
be derived directly by direct differentiation of the self-similar Buckley–Leverett solution, for
which f̃ ′(S) = τ/t.) In other words, df/dS is evaluated at the saturation of outlet node of
the streamline for streamlines with breakthrough (i.e., having outlet saturation larger than
the front saturation), and for the front saturation for streamlines without breakthrough. For
other flow cases where the initial boundary-value problem along each streamline does not
consist of a single Riemann problem, the accuracy of (32) depends on how well f ′(S) (or
f̃ ′(S)) approximates the true wave-speed of the fixed saturation during the time interval
from release to arrival.

He et al. [67] also extend the arrival-time sensitivity to account for changing saturation
distribution along streamlines due to changes in the streamline geometry, pressure updates,
and mapping of saturations between streamlines as part of an operator splitting algorithm to
account for gravity and/or capillary forces. The change in the saturation in the outlet cell
will now also be a function of the initial saturation distribution S0 along the streamline (i.e.,
the saturation after the previous pressure update)

δS =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm +

[ ∂S
∂S0

]T
δS0.

If we now assume that the change in the water saturation in the outlet cell is primarily a
function of the initial saturation S0,j in the same cell (which is true for a small time due to
finite speed of propagation in hyperbolic equations), the last term becomes[ ∂S

∂S0

]T
δS0 =

∂S

∂S0,j
δS0,j =

∂S

∂S0,j

[∂S0,j

∂m

]T
δm.

Hence, the overall sensitivity reads [67]

∂t

∂mi
= −

(∂S
∂τ

∂τ

∂mi
+

∂S

∂S0,j

∂S0,j

∂mi

)
·
(∂S
∂t

)−1
=

1
f ′(S)

∂τ

∂mi
+

∂t0j
∂mi

.

where ∂t0j/∂mi denotes the travel-time sensitivity at the beginning of the update (i.e., the
sensitivity at the end of the previous time step). If operator splitting is applied in the
transport solve, e.g., to account for matrix-fracture exchange for fractured systems and/or
gravity, f ′(S) is evaluated after the corrector steps of the operator splitting [5].

Using the compressible conservation equation for water saturation [36], we can generalize
the sensitivity calculations presented above to compressible flow. The sensitivity of arrival
time of a water saturation with respect to a reservoir parameter mi is given by [37]

(33)
∂t

∂mi
=

∂τ

∂mi

∂

∂τ

(Sw
Bw

)
∂

∂τ

( fw
Bw

)
+
fw
Bw

c

φ

,

where Bw is the volume formation factor of water, and c represents the divergence of flux
(c = ∇ · ~u) along the streamline, which can be estimated from the velocity field. Again, the
time-of-flight derivative ∂τ/∂mi is computed analytically as described above. The rest of
the derivatives can be computed by (backward) finite-differences along the streamlines. For
incompressible flow, c ≡ 0 and Bw is constant, so (33) reduces to (32). Similarly, for gas-oil



14 VEGARD RØINE STENERUD AND KNUT–ANDREAS LIE

ratio (GOR), using the compressible conservation equation for gas [36], we can obtain the
arrival time sensitivities [37].

As the primary example of an arrival time, we use the arrival of a fixed fractional-flow (fixed
saturation) in both the well and along the streamlines. A common arrival-time sensitivity for
each producer is then obtained by a flux-weighted average

(34)
∂tj
∂mi

=
1
q

Nsl∑
`=1

q`
∂tj,`
∂mi

, q =
Nsl∑
`=1

q`.

Here, q` is the total flux of each streamline, and Nsl is the number of streamlines connected
to the well.

Finally, we mention that Al-Huthali et al. [7] use (14), (21), (26), and (32) to derive arrival-
time sensitivities with respect to injection and production rate. These sensitivities are not
used for history matching, but rather for optimal waterflood management by rate control. To
compute the arrival-time sensitivities for the producers, the authors only consider a fraction
of the streamlines (fastest). Moreover, they also consider sensitivities for a group of producers
with a common contributing injector.

4.4. Time-Shift Sensitivities. A time-shift is a measure for how much a simulated pro-
duction response curve should be shifted in time to maximize the cross correlation with an
observed production-response curve. The time-shift is described and used with the generalized
travel-time inversion method described in Section 5.2.

Consider a small perturbation δm in the reservoir parameters with an accompanying shift
δt in the computed production response. In each data point tj there will be a corresponding
shift δtj , where

δt = δtj =
[ ∂tj
∂m

]T
δm, j = 1, . . . , Nd.

Since a perturbation δmi will lead to the same time-shift in all data points, we sum over all
data points and define the sensitivity of the travel time-shift with respect to parameter mi as
the average of the above equations

(35)
∂t

∂mi
=

1
Nd

Nd∑
j=1

∂tj
∂mi

.

By convention, one defines ∂∆t̃/∂mi = −∂t/∂mi. Now, the arrival-time sensitivities given
above can be used to obtain travel-time shift sensitivities, e.g., for fractional flow, gas-oil
ratio, or tracer concentration [37].

Practical experience indicates that more robust history matching is achieved by making
the sensitivities dimensionless by applying log-sensitivities [67]:

∂ log(|∆t̃|)
∂ logmi

=
mi

∆t̃
∂∆t̃
∂mi

.

For the generalized travel-time inversion described in Section 5.2, it is therefore common to
use logarithmic modifications for the reservoir parameters.

4.5. Saturation Sensitivities. By differentiating the expression used for the streamline-to-
grid mapping of saturation (see (19)), the sensitivities of saturation with respect to a reservoir
parameter mi at a given time can be calculated by [130]

(36)
∂Si
∂mi

=
Nsl,i∑
`=1

∂S`
∂mi

β` =
Nsl,i∑
`=1

∂S`
∂τ`

· ∂τ`
∂mi

β`,

where β` is the weight assigned to streamline ` in the mapping, ∂τ`/∂mi is the time-of-flight
sensitivity specified above, and ∂S/∂τ` is the derivative of the 1D saturation solution along
the streamline. Here we have assumed that β` is independent of a perturbation in mi.
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For Riemann initial data the solution is self-similar S(t, τ) = S(τ/t) and analytically known,
as described in Section 3.2. The sensitivity of the saturation in streamline ` at a particular
(t, τ) with respect to the reservoir parameter mi in grid cell i is then given analytically by

(37)
∂S`
∂mi

=
∂S`
∂ξ

∂ξ

∂τ

∂τ

∂mi
=

1
t

∂S`
∂ξ

∂τ

∂mi
, ξ =

τ

t
.

Hence, if the reservoir parameter mi is not located upstream, the sensitivity will be zero.
Further, this expression may be used as an approximation in (36).

4.6. Production Data Sensitivities (Amplitude Sensitivities). Differentiating (14),
the sensitivity of fractional flow at a producer with respect to a perturbation in reservoir
parameter mi is obtained by [143, 147]

∂f(t)
∂mi

=
1
q

Nsl∑
`=1

q`
∂f`(t)
∂mi

.

This expression also applies to tracer concentration for which f(C) = C, and a similar result
applies to gas-oil ratios.

We now need to evaluate ∂f`(t)/∂mi for the connected streamlines. This can be done by
the chain rule, using an expansion involving either time-of-flight sensitivities [135, 143, 147]

(38)
∂f`
∂mi

=
∂f`
∂τ`

∂τ`
∂mi

,

arrival-time sensitivities [45]

(39)
∂f`
∂mi

=
∂f`
∂t

∂t

∂mi
,

or the saturation sensitivities

(40)
∂f`
∂mi

=
df`
dS

∂S

∂mi
.

Expressions for the the time-of-flight, the arrival-time, and the saturation sensitivities for
each streamline have been introduced in the previous subsections. The derivatives of the
fractional flow (∂f`/∂τ , ∂f`/∂t, or df`/dS) can be obtained either analytically or by using
finite-differences.

Another possibility for obtaining fractional-flow sensitivities directly is to apply the chain
rule to the production response (at the well), which yields

∂f

∂mi
=
∂f

∂tj

∂tj
∂mi

.

Here ∂tj/∂mi is given by (34), and ∂f/∂tj can be evaluated numerically from the production
response curve at the given time. A smoothed approximation to the generally noisy production
curve might then be needed.

Below we will present two approaches for determining the fractional-flow derivative along
streamlines, starting out by tracer concentration (or piston-like displacement). Following
Vasco and Datta-Gupta [132, 133], we start by observing that the transport of tracer con-
centration along a streamline can be described by (16). Assume an initial distribution of
reservoir properties along a streamline Ψ0. To compute sensitivities, we give the underlying
parameters a small perturbation, reflected as a single perturbation in the slowness function

(41) s(x) = s0(x) + δs(x)

and seek to find the corresponding change in tracer production δC. According to Vasco and
Datta-Gupta [134]2, the perturbation in the streamline is of second order in δs. One can

2Vasco and Datta-Gupta [134] refer to King and Datta-Gupta [85]. Unfortunately, we have so far not been
able to locate the proof in [85] of the fact that the change in streamlines is second order in δs.
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therefore assume that the change in the streamlines is so small that the integral over the new
streamline Ψ equals that over the old streamline Ψ0, that is

τ =
∫

Ψ
s(x) dr ≈

∫
Ψ0

s0(x) dr +
∫

Ψ0

δ(x) dr = τ0 + δτ0.

Using the notation from Section 3.1, we may hence write

δC`(x) = C`,0
(
t− τ

)
− C`,0

(
t− τ0

)
≈ C`,0

(
t− τ0 − δτ0

)
− C`,0

(
t− τ0

) Taylor
≈ −C ′

`,0

(
t− τ0

)
δτ0

as a first-order approximation. It now remains to determine δτ0, i.e., the integral of δs over
Ψ0. The variation in s(x) due to variation in all properties is given as

(42) δs(x) =
∂s(x)
∂K

δK +
∂s(x)
∂φ

δφ+
∂s(x)
∂|∇p|

δ|∇p|+ . . . ,

where the expressions for the partial derivatives were given in Section 4.2. For instance, the
sensitivity of the concentration due to changes in the reservoir parameter mi at time t is given
by

∂C`
∂mi

= −C ′
`,0

(
t− τ0

) ∫
Ψ0i

∂s(x)
∂mi

dr = −C ′
`,0

(
t− τ0

)︸ ︷︷ ︸
≈ ∂C`

∂τ`

∂τ`
∂mi

.

Notice that the same expression could have been obtained directly by differentiating (16) un-
der the assumption of no shift in streamlines due to the perturbation in reservoir parameters.

Wen et al. [143] present another approach to analytic calculation of ∂C`(t)/∂mi for tracer
flow. We start by assuming a tracer flow with a monotone flow profile, where the analytical
solution is given by (see Section 3.1)

C`(t) =

{
1, if τ` ≤ t,

0, otherwise.

Here τ` denotes the time-of-flight of streamline ` at the well. To be able to differentiate this
discontinuous profile, the authors use an approximation in terms of an error function Eσ for
some small parameter σ,

C`(t) ≈ 1− Eσ

(τ`
t
− 1

)
, t ≤ τ`,

and hence
∂C`(t)
∂mi

=
∂C`(t)
∂τ`

∂τ`
∂mi

= −1
t
Gσ

(τ`
t

) ∂τ`
∂mi

, Gσ(r) =
1√
2πσ

e−
(r−1)2

2σ2 .

The same approach can be extended to two-phase incompressible flow [135, 147] described
by transport equation (13). The analytic Buckley–Leverett solution for Riemann initial data
(see Section 3.2), consisting of a shock followed by a rarefaction wave, can be used to calculate
analytic fractional-flow sensitivities by

∂f`
∂mi

=
df`
dS

∂S

∂τ

∂τ

∂mi
=
τ

t

∂S

∂τ

∂τ

∂mi

since f ′`(S) = τ/t for a self-similar profile.
As mentioned above, ∂f`/∂t and ∂f`/∂τ can be evaluated by finite-differences along the

streamlines, which is the most general approach. However, the fully analytic approximations
may often be sufficiently accurate.

Finally, we remark that gravity and capillary forces can be accounted for in the fractional
flow derivative by defining the fractional flow function from Darcy’s law incorporating gravity
and capillary forces; i.e., [39]

(43) fw(S) =
qw · n
qt · n

=
λw + λwλo

u·n K(∇pcow + (ρw − ρo)g) · n
λw + λo

.
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Here n is the unit vector in the flow direction that easily can be estimated from the streamline
geometry; i.e. by n = u/|u|. Hence, gravity and capillary forces will only be fully accounted
for if both (43) is applied and the forward simulator accounts for these effects.

In [150] an argument is given for the spatial additivity of production response sensi-
tivities. We will here outline this argument by a small example. Let g(m) be the pro-
duction response at a well, and let there be N grid cells {1, 2, . . . , N}, with correspond-
ing grid parameters {m1,m2, . . . ,mN}. The set of production-response sensitivities is then
{∂g/∂m1, ∂g/∂m2, . . . , ∂g/∂mN}. By perturbing a subset of the reservoir parameters, e.g.,
{m4,m5,m6,m7}, we obtain the following differential for the resulting perturbation in the
production response

δg =
∂g

∂m4
δm4 +

∂g

∂m5
δm5 +

∂g

∂m6
δm6 +

∂g

∂m7
δm7.

By assuming the same modification or perturbation δmc = δm4 = δm5 = δm6 = δm7 in all
cells, the differential is

δg =
( ∂g

∂m4
+

∂g

∂m5
+

∂g

∂m6
+

∂g

∂m7

)
︸ ︷︷ ︸

∂g
∂mc

δmc.

Hence, it is reasonable to approximate the sensitivities of the production response with respect
to a coarse-cell reservoir parameter mc by the sum of the sub-cell sensitivities. Further, it
should be noted that small cells then in general will have smaller sensitivities than large cells.

4.7. Miscellaneous. In this last subsection we will briefly comment on a few other uses
of streamlines to calculate various sensitivity coefficients that fall in neither of the above
categories.

Vasco et al. [136] derive sensitivities for amplitudes from time-lapse seismic with respect
to changes in reservoir parameters. We will not go into the details, but the key to obtaining
the sensitivities is to relate perturbations in the amplitudes to perturbations in the upstream
saturations along streamline trajectories. Further, the perturbations in the upstream satu-
rations can be related to perturbations in the reservoir parameters via the perturbations in
time-of-flight by (37).

Kulkarni et al. [92] derive streamline-based sensitivities for the arrival time of a ’pressure
front’ for use in pressure interference tests, see Section 5.2.3 for details about streamline-based
integration of transient pressure data. The arrival time is related to the so-called diffusive
time-of-flight by (51) in Section 5.2.3. Similar calculations as used for ordinary time-of-flight
and arrival-time sensitivities can then be applied. In [69], sensitivities for the amplitude of
the ’pressure front’ of a pressure interference test are derived by simply differentiating (49)
in Section 5.2.3 in the time domain (inverse Fourier transformed).

In [58, 59] sensitivities of fractional flow and well pressure with respect to the parameters of
the gradual deformation method (GDM) are derived by direct differentiation of the discrete
equations of a streamline method. Numerical values for the gradients are computed in a
two-step procedure (corresponding to the two steps in the fractional step solution method):

(1) Given boundary conditions, the pressure and its gradient are computed on a 3D grid.
The pressure gradients with respect to a parameter are obtained by the gradient-
simulator method discussed in Section 4.1. This is therefore not a streamline-based
approach, but the saturation derivatives involved in the derivation of the linear equa-
tion system are streamline based. The pressure gradients are calculated based on
information from the previous pressure step.

(2) Then velocities are computed from Darcy’s law and streamlines are traced from in-
jectors to producers. The one-dimensional saturation/transport equation is solved
along each streamline, and saturation gradients with respect to reservoir properties
are computed. Finally, the streamline gradients are mapped back onto the 3D grid to
obtain grid-block saturation gradients.
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Part of the intermediate derivations are similar or identical to derivations presented above.
The entire derivations are too technical to give a condensed presentation here. One should
therefore instead read the paper in full [59].

We will just remark that the derivations presented involve a specific streamline simulator
implementation involving expressions used in the Pollock’s tracing algorithm, the Peaceman
well model, and the standard first-order upwind finite-difference scheme. The calculations
may therefore need to be adapted for other implementations. Currently, there are two com-
peting streamline technologies: (i) the 3DSL technology of StreamSim, which uses finite
differences along each streamline; and (ii) the FrontSim technology by Schlumberger, which
also uses front-tracking along each streamline. The results from [59] are based upon the
3DSL-type streamline simulator, and may therefore not be applied directly to FrontSim-type
streamline simulators. By using the front-tracking method, one avoids the mapping back
and forth between an irregular and a regular discretization along streamlines. This simplifies
the calculations of the sensitivities, since the terms arising from equations (22) and (25) in
[59] are not needed. On the other hand, an equation for the saturation gradients cannot be
obtained by simply differentiating the discretized saturation equation. Instead, one could try
to use the approach of Vignes [139], in which saturation gradients are computed ‘recursively’
as part of the front-tracking algorithm.

As the authors point out in [59], including gravity in the computations should be straight-
forward. It may also be possible to generalize the computations to obtain sensitivities of
other parameters than the gradual deformation parameters. However, for the gradual defor-
mation method, only a few tens of parameters are usually employed [59], which keeps the
number of linear solves for the gradient-simulator method down. The streamline-assisted
gradual-deformation approach of Gautier et al. [59] is discusses in Section 5.4.4.

Caers [25] and Ravalec-Dupin and Fenwick [116] present analytic sensitivities for the partic-
ular gradual deformation approach presented in Section 5.3.4 in the case of Gaussian perme-
ability field. i.e. sensitivities for streamline-effective permeability with respect to the gradual
deformation parameters.

5. History-Matching Methods

In this section, which forms the core of the paper, we will review methods for streamline-
based history matching. The methods will be sorted into four categories as outlined in the in-
troduction: assisted history matching, (generalized) travel-time inversion, streamline-effective
properties, and miscellaneous. The main emphasize will be put on travel-time inversion meth-
ods and methods using streamline-effective properties.

5.1. The Assisted History Matching Approach. Emanuel and Milliken [49] describe
what they call an assisted history matching (AHM) approach, where streamline methods are
used to assist in the matching of conventional finite-difference reservoir simulation models.
The key idea in the AHM approach is to alter “geologic properties along the flow paths
connecting a producing well and its flow source” [49]. A 3D streamline method is used to
define these flow paths. Once the streamlines are computed, all streamlines are traversed
and the grid cells are assigned to the producer at which the particular streamline terminates.
This way, the AHM approach identifies bundles of streamlines where the reservoir engineer
later must change the reservoir properties, either manually or by some algorithm, in the grid-
cells containing the identified streamlines. Rock properties (permeabilities and porosities)
are changed on a well-by-well basis through traditional multipliers, or the heterogeneity is
changed through a renormalization based upon the Dykstra–Parsons coefficient for controlling
the spatial heterogeneity. The manual work typically amounts to targeted adjustments of a
few parameter for each well. Emanuel and Milliken [49] illustrate that by using AHM one is
often able to reveal nonintuitive connections between grid cells and wells. In [104], the AHM
approach is extended to placement of shale bodies between well pairs and the utility of the
method is demonstrated for three field cases.

The streamline distribution is generated based on average well conditions over the produc-
tion period. However, several streamline distributions may be used if there are significant
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changes in the well configuration [49]. The AHM method changes properties along flow paths
derived from the initial geological model and thus relies upon a well-constructed initial model.
The history match is obtained through relatively minor local changes of the initial model un-
der the assumption of invariant streamlines. Thus, the AHM approach is different from
automated approaches that come in the form of a computer algorithm for minimizing a mis-
match functional. In particular, since the AHM approach uses no gradient-based minimizing
technique, the method does not provide any means for sensitivity computations.

The AHM method has been applied with success to a number of real fields [13, 29, 97, 101].
In particular, Cheng et al. [33] present two field cases for which both AHM and the generalized
travel-time inversion to be introduced in Section 5.2 are applied.

5.2. (Generalized) Travel-Time Inversion. In a series of papers Datta-Gupta, Vasco,
and coworkers have developed methods for integrating dynamic data, using a combination of
streamline methods and streamline-based sensitivities. The travel-time approach for match-
ing production data is basically motivated by an analogy between seismic ray inversion and
streamlines, which will be outlined briefly below. This initial approach consists of travel-time
matching at each well of breakthrough time, a distinct peak in tracer concentration, etc.,
followed by an amplitude matching [135]. An approach built on the same principles is pro-
posed for incorporating transient pressure data [92]. Later a so-called generalized travel-time
inversion (GTTI) approach was introduced [67], which can be considered as a combination
of travel-time matching and amplitude matching into one step. In contrast to traditional
amplitude matching, both the travel-time matching and GTTI have quasilinear properties
[34]. Therefore, (generalized) travel-time history matching proceeds rapidly even if the initial
model is not close to the global minimum. The original travel time matching and the gen-
eralized approach are both deterministic algorithms, but a geostatistical version of GTTI is
introduced in [138, 148].

5.2.1. The Analogy with Seismic Ray Inversion. For a neutral tracer, the transport is de-
scribed by the time-of-flight equation, see (10):

(44) v · ∇τ(x) = 1 ⇔ u · ∇τ(x) = φ.

Here v = u/φ is the interstitial velocity. A key point in [135] is the observation that the time-
of-flight equation has certain properties in common with the Eikonal equation describing
(seismic) travel time tomography,

(45) ∇T (x) · ∇T (x) = 1/c(x)2.

Here T is the travel time and c is the propagation speed. (A common form of the Eikonal
equation is to write |∇T | = 1/c). The Eikonal equation allows for wave propagation in both
directions along ∇T , whereas the time-of-flight equation only allows for particles traversing in
the positive direction of ∇τ , i.e., toward increasing values of τ along the streamline. Equation
(44) can be thought of as the square root of (45) with the positive sign.

5.2.2. A Two-Step Travel-Time/Amplitude Matching Method. Motivated by inversion meth-
ods for seismic travel times, a two-step inversion method for tracer and fractional-flow data
is developed in [135]. In the first step, one chooses a certain characteristic feature of the
production curves, e.g., time to breakthrough or a distinct peak. Then the observed and
calculated responses are lined up in all wells such that the characteristic features coincide
in time. during this stage the dominant features of the permeability field will be matched
and the majority of the misfit reduced. In the second step, the ‘amplitude’ of the production
responses are matched.

Cheng et al. [34] give a systematic investigation and comparison of the nonlinearity of
travel-time matching, amplitude matching, and generalized travel-time inversion (described
below). Their investigations demonstrate quasilinear properties for travel-time matching,
while amplitude matching can be order of magnitudes more nonlinear. Travel-time matching
generally has fewer local minima and is therefore more robust and has better convergence
characteristics. Further, Cheng et al. [34] report that travel-time sensitivities are more uni-
formly distributed between the wells, in contrast to amplitude sensitivities that tend to be
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localized near the wells. This contributes to the good robustness and convergence properties
of the travel-time matching.

Apart from the two-step methodology, a central ingredient in the method is the use of an
efficient method for computing analytic streamline-based sensitivities. The arrival time and
fractional-flow sensitivities described in Sections 4.2, 4.3, and 4.6 are used for the travel-time
and the amplitude matching, respectively.

The inverse problem is formulated as a minimization of the misfit function defined over a
set of Nd observations dj ,

Nd∑
j=1

(
dj − gj(m)

)2
,

where m denotes the reservoir parameters (permeability, porosity, etc) and gj(m) the forward
model (streamline simulator). If we now use a Taylor series expansion of gj(m) about some
initial model mp, we can linearize the residuals as follows

dj − gj(mp) = δdj =
∑
i

Gji δmi, Gji =
∂gj
∂mi

.

Here {Gji} are sensitivity coefficients. Since the number of parameters usually is very large
compared to the amount of data, the corresponding minimization problem is numerically
unstable. The authors therefore add two regularizing terms and seek the modification δm
that minimizes the following function [135]

(46) ‖δd−Gδm‖22 + β1‖δm‖22 + β2‖Lδm‖22.

The first regularization term tends to keep the modifications made to the reservoir parameters
small, while the second term tends to make the modifications smooth; see the discussion of
ill-posedness and regularization in Section 1. The minimum of the regularized function in
(46) is obtained as a least-squares solution to the following augmented linear system

(47)

 G
β1I
β1L

 δm =

δd0
0

 ,

and may for instance be computed by an iterative sparse least-squares solver, for instance,
LSQR [110].

The travel-time step is faster than the amplitude matching step [34]. In the travel-time
inversion a single parameter is matched in each well, giving a total number of Nw parameters
to be matched using (47). In the amplitude step, all Nk

d observations per well are matched,
giving a total of Nw ×Nk

d parameters to be matched in (47).
Finally, we mention that an overview of the framework under which the two-step approach,

and some related approaches, have been developed is given by Vasco and Datta-Gupta [132].

5.2.3. Inversion of Pressure Interference Tests. Extensions to compressible flow and integra-
tion of dynamic pressure data from pressure interference tests are considered in [42, 92]. A
pressure interference test is an important source of dynamic data. The pressure responses
from injecting or producing wells are observed in surrounding distant wells. An advantage
of pressure interference tests is that the transient pressure responses can be obtained more
quickly than tracer and fractional-flow responses, so that the data integration can take place
at an earlier stage.

As in the previous papers, the central idea is to draw upon the analogy between propagating
waves and propagating fronts and apply the inversion algorithm to a propagating pressure
front. The pressure front is obtained by studying high-frequency asymptotic solutions of the
diffusivity equation

(48) µctφ(x)
∂p

∂t
= ∇

(
K(x)∇p

)
.
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Applying a Fourier transformation to (48) one obtains an equation in the frequency domain

(−iω)
φ(x)µct
K(x)

p̃(x, ω) = ∇2p̃(x, ω) +
∇K(x)
K(x)

· ∇p̃(x, ω).

One can now define a phase function τ(x) and seek approximations in terms of a series of
inverse powers in

√
−iω, where the ’pressure front’ would correspond to the zeroth order term

(49) p̃(x, ω) = A0(x)e−
√
−iωτ(x).

By inserting this term and equating the coefficients with highest order in
√
−iω, i.e., (

√
−iω)2,

the following phase function for a propagating pressure front is obtained√
α(x)|∇τ(x)| = 1, α(x) =

K(x)
φ(x)µct

.

Based on the similarity with the time-of-flight equation (see (44)), the authors define what
they call the ‘diffusive time-of-flight’ by

(50) τ(x) =
∫

Ψ

√
φ(x)µct
K(x)

dr =
∫

Ψ

dr√
α(x)

.

The values of
√
α(x) at the cell faces are used to generate streamlines along which the

pressure front will propagate. Hence, these streamlines will not coincide with the velocity-
based streamlines, but will be similar. It is also showed that the arrival time of the ’pressure
front’ in a 3D medium is related to the diffusive time-of-flight by

(51) tmax =
τ2(x)

6
.

Using this association, the authors derive a travel-time inversion method for the transient
pressure data by applying the sensitivities discussed in Section 4.7. Moreover, Kulkarni et al.
[92] present a relation between the drainage radius of a well and the diffusive time-of-flight.

The derivation above is performed for a sharp pressure impulse (a propagating peak). In
practice, the source function is more like the Heaviside function. Observing that the time
derivative of the Heaviside function is an impulse function, the travel-time analysis should
instead be carried out with respect to the time derivative of the pressure response at the well
[92]. In [23] the relation between a Heaviside source and an impulse source is discussed in
more detail, and a conversion factor is derived.

Datta-Gupta et al. [42] compares history matches obtained by travel-time matching of
transient pressure, tracer, and fractional-flow data. Further, in [69] both travel-time and
amplitude matching of transient pressure responses from pressure interference tests were per-
formed in a similar manner as for the two-step method presented in Section 5.2.2.

5.2.4. Generalized Travel-Time Inversion. He et al. [67] introduce an alternative single-step
version of the above two-step travel-time inversion method. Assume for simplicity that there
are Nk

d observations y(tk1), . . . , y(t
k
Nk

d

) that are to be matched for well k. A traditional ampli-
tude matching would try to minimize a misfit function of the type

J =
Nk

d∑
j=1

(
yobs(tkj )− ycal(tkj )

)2
,

for each well k. The GTTI method, on the other hand, proceeds by selecting an optimal time
shift ∆t̃k in the observed data that minimizes the misfit function

J(∆t̃k) =
Nk

d∑
j=1

(
yobs(tkj + ∆t̃k)− ycal(tkj )

)2
,
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or alternatively maximizes the coefficient of determination

R2(∆t̃k) = 1−
∑Nk

d
j=1

[
yobs(tkj + ∆t̃k)− ycal(tkj )

]2∑Nk
d

j=1

[
yobs(tkj )− yobs(tkj )

]2
.

In other words, we seek a time-shift ∆t̃k in each well that maximizes the correlation between
the observed and calculated production curves. These time-shifts are then used to match the
reservoir properties for all wells jointly; i.e., by setting δd = ∆t = {∆t̃k} in the minimization
system in (47). As for the two-step inversion method, a central part of the algorithm is the
calculation of analytic sensitivities as discussed in Section 4.4.

It can be shown that GTTI reduces to the traditional least-square amplitude matching as
the match is getting close to the observed data [67]. Thus, GTTI combines travel-time and
amplitude matching to some extent, while preserving most of the quasilinear properties of
the travel-time matching [34].

Field case studies for GTTI are presented in e.g., [72, 114]. Further, in [33] the performance
of GTTI and AHM (described in Section 5.1) is compared.

5.2.5. Bayesian Generalized Travel-Time Inversion. In [138, 148] a stochastic version of GTTI
is developed, based on Bayesian statistics. Again, let m and d denote the reservoir parameters
and observed data, respectively. By assuming a Gaussian prior distribution

[m] ∼ f(m) = NN (mp,Σm) = constA · exp
[
− 1

2
(m−mp)TΣ−1

m (m−mp)
]
,

and a Gaussian likelihood model for the observations
[d|m] = g(m) + u ∼ f(d|m) = NNd

(g(m),Σd)

= constB · exp
[
− 1

2
(d− g(m))TΣ−1

d (d− g(m))
]
,

(52)

the posterior distribution is, by Bayes’ rule (3), given by

[m|d] ∼ f(m|d) = constC · exp
[
− 1

2
(
(d− g(m))TΣ−1

d (d− g(m))

+ (m−mp)TΣ−1
m (m−mp)

)]
.

(53)

Here mp is the prior mean for the reservoir parameters, g(m) is a forward model, [u] ∼
NNd

(0,Σd) represents the measurement errors, Σd is the covariance matrix for the measure-
ment errors, and Σm is the (prior) covariance matrix for the reservoir parameters. If the
forward model is represented by a linear relation g(m) = A ·m, the posterior distribution is
Gaussian and can be determined analytically, see Appendix B. However, g(m) is generally
nonlinear, so we only know the posterior distribution up to a constant. Still, it is possible to
obtain an estimate for a m that maximizes the a posterior distribution given by

(54) arg min
m

(
d− g(m)

)TΣ−1
d

(
d− g(m)

)
+

(
m−mp

)TΣ−1
m

(
m−mp

)
.

This maximum a posteriori (MAP) estimate gives in general a too smooth reservoir description
(‘regression toward the mean’). However, the large-scale structures of the reservoir may be
discerned from the MAP estimate. The Gauss–Newton algorithm for the minimization of
(54) leads to the following iterative scheme

(55) ml+1 = mp −ΣmGT
l

[
Σd + GlΣmGT

l

]−1[(
g(ml)− d

)
−Gl

(
ml −mp

)]
,

where G is the sensitivity matrix for data misfit with respect to a perturbation in the reser-
voir parameters. Wu and Datta-Gupta [148] apply g(m) − d = ∆t̃ = {∆t̃k} to obtain a
Bayesian version of GTTI, where ∆t̃k is the time-shift described above. If the data misfits
are represented by the time-shifts ∆t̃, then the inverse matrix on the right hand side of (55)
has dimension Nw × Nw, where Nw is the number of wells. In conventional methods the
inverse matrix is usually of dimension Nd×Nd, where Nd is the total number of observations.
Hence, Nd is usually orders of magnitude larger than Nw, so the inversion of the matrix is
therefore a minor issue.
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Finally, we mention that conditional realizations can be obtained by a similar minimization
problem, referred to as randomized maximum likelihood, see e.g., [96]

arg min
m

(duc − g(m))TΣ−1
d (duc − g(m)) + (m−muc)TΣ−1

m (m−muc),

in which the prior mean and the observed data have been replaced by unconditioned (uc)
realizations muc and duc, respectively: that is, random error have been added to the observed
data.

Vega et al. [138] investigate the computational scalability of the deterministic and the
Bayesian version of GTTI. They demonstrate that the deterministic version scales almost lin-
early with problem size and that the Bayesian version scales almost quadraticly (as expected).
However, by reformulating the Bayesian method Vega et al. [138] were able to obtain an al-
most linear scaling for the computational cost and results with the same quality as for the
deterministic approach, while preserving the statistical foundation of the Bayesian approach.
Hence, conditioned realizations can also for this formulation be obtained by the randomized
maximum likelihood approach.

To reformulate the Bayesian approach, Vega et al. [138] start by rewriting the minimization
problem (54) to obtain an alternative minimization formulation. Further, they approximate
the Hessian H by JTJ, where J is the Jacobian. This approximation is the same that is used
in the Gauss–Newton algorithm, and is accurate near the solution or for quasilinear problems.
The reformulated system reads

(56)

[
Σ−1/2
d G
Σ−1/2
m

]
δm =

[
Σ−1/2
d [d− g(m)]

Σ−1/2
m [mp −m]

]
.

This system is analogous to the deterministic formulation in (47). Here Σ−1/2
m [mp−m] plays

an equivalent role as the regularization terms in (47), where the covariance matrix Σm imposes
smoothing and the difference mp−m tends to keep the modifications small. Further, by using
this formulation, we can thus solve iteratively for a least-square solution by, for instance, the
LSQR algorithm. Here, Σm is generally a matrix of dimension N × N , where N is the
number of model parameters. Obtaining Σ−1/2

m is therefore very computationally expensive
if Σ1/2

m is to be computed numerically. Vega et al. [138] therefore rely on a semi-analytical
computation of Σ1/2

m . The key observation to this end is that the inverse of the covariance of
the model parameters can be identified with the differential operator (the smoothing operator)
in the deterministic approach. They therefore apply a computational stencil based on an
approximation of the differential operator associated with Σ1/2

m , for which they assume an
exponential covariance model [138]. The extension to other covariance models is presented in
[137].

5.2.6. Other Extensions. Barman et al. [15] suggest a procedure for applying two-step inver-
sion approach described above for fractured reservoirs. The idea is to use effective permeability
representations for the inversion, obtained based on production based indicators (details not
given), while the forward simulations are performed for fractured reservoir representations.
Similarly, Al-Harbi et al. [5] also apply the Bayesian version of GTTI fractured reservoir
models.

Kulkarni and Datta-Gupta [91] extend the two-step inversion approach to history-matching
relative permeability curves. The sensitivities with respect to the parameters used in the rel-
ative permeability functions are specified in Appendix A. Further, appropriate regularization
terms for (46) are specified in [91].

Illiassov and Datta-Gupta [76] present an extension of the two-step inversion to multiwell,
multitracer partitioning interwell tracer tests, applied to a large oil field in Texas. Partitioning
tracer sensitivities are described in Section 4 (in particular Section 4.2). They use the two-
step inversion approach twice: first for matching permeability and then for matching oil
saturation. This procedure is iterated if necessary. A similar work related to ground water
transport is found in [43].
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Although all the above methods have been based upon streamlines, they all amount more
or less to matching the properties in all the grid cells in the reservoir model. To improve
the convergence properties of the inversion process, a multiscale approach is proposed by
Yoon et al. [150]. The central idea here is to use a hierarchy of coarsened grids to match
the dynamic production data. The matching is first performed on the coarser scales, where
the inversion problem is less under-determined, to reduce the ill-posedness of the problem.
Moreover, the number of local minima is reduced on the coarser scales and this will speed
up the iterative minimizing techniques. The inversion may be aborted before reaching the
fine grid to prevent over-parameterization. Finally, the solution is downscaled to fine-grid
realizations by sequential simulation, conditioning to well data. The multiscale idea was
applied to the two-step inversion method, but the multiscale matching may be applied to
other inversion approaches as well, e.g., as done by Stenerud and Lie [121] for matching
streamline-effective properties using the Wang–Kovseck formulation to be discussed in the
next section.

He et al. [68] propose a manual approach, using the relationship between the diffusive
time-of-flight and the drainage radius outlined by Kulkarni et al. [92] to identify reservoir
compartmentalizations and flow barriers during primary production. First, the drainage
volumes and communications for the different wells are estimated by traditional decline-type-
curve analysis of the primary production data. Second, starting from the geologic model,
the drainage volumes are recalculated by the diffusive time-of-flight from a streamline-based
flow simulation. Finally, reservoir compartmentalization and flow barriers are inferred by
matching of the two estimates for the drainage volumes.

An approach for reconciling time-lapse amplitude changes using (47) with the time-lapse
amplitude sensitivities discussed in Section 4.7 is proposed in [136].

As noticed in Section 4, any simulator can in theory be used to calculate streamline-based
sensitivities, as long as intermediate velocity fields can be outputed during the simulation and
streamlines can be traced on the cell geometry, see discussion in Section 4.1. Cheng et al. [35]
demonstrate the applicability of a finite-difference simulator to the GTTI method.

In [124] and [122] the deterministic version of GTTI is combined with a very efficient
multiscale-streamline simulator. A mixed multiscale finite-element pressure solver [1, 31] is
combined with a transport solver based on streamlines and the unconditionally stable front-
tracking method [73]. High efficiency of the forward simulator is obtained by selectively
reusing the multiscale basis functions based on the spatial sensitivity distribution obtained
from GTTI. In addition, a method for improved mass conservation in streamline simulation
[122] is applied , which allows for a considerable reduction in the number of streamlines used
in the forward simulations. For this combination of forward and backward methodology, a
reservoir model with more than one million grid blocks was history-matched in less than
twenty minutes on an ordinary desktop PC.

In [123], GTTI is applied to two-dimensional fully unstructured grids. A generalized
smoothing operator for L in (47) is proposed for fully unstructured grids. Further, sensi-
tivities on unstructured grids with varying grid-cell sizes are discussed. Because of spatial
additivity (as discussed in Section 4), the sensitivities will scale with cell sizes. Consequently,
larger modifications will be induced in large cells and small modifications in small cells, given
the same conditions. The regularization involved in (47) can only to a small extent counteract
this undesired effect. To remedy grid effects for cases with large variances in grid-cell sizes,
Stenerud et al. [123] propose to rescale the sensitivities with the grid-cell volumes. The paper
focuses on 2D numerical examples to investigate principal effects of performing GTTI on fully
unstructured grids, and contains examples with large cell-size heterogeneities and faults with
non-neighboring connections. The framework established in [123] is general and should there-
fore also apply in 3D, although some care should probably be taken when matching strongly
layered structures.

5.3. Methods Based on Streamline-Effective Properties. For the methods within this
category modifications to effective properties along either streamlines or bundles of streamlines
are obtained to match dynamic production data. The modifications in effective properties
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are then propagated back to the underlying simulation grid by either a deterministic or a
geostatistical method. In the following M refers to a grid-cell property and m refers to a
streamline-effective property. Similarly we use K and k for a grid and a streamline-effective
permeability, respectively.

5.3.1. Streamline-Effective Properties. It is not necessary to actually compute the streamline-
effective properties for all the methods described below, because it is often only the relative
modifications to these properties that are needed. Nevertheless, we will here present and
discuss a few approaches for obtaining streamline effective properties; in particular for per-
meability.

Obtaining effective properties along streamlines or streamline-bundles is simply an upscal-
ing problem. For uni-directional one-phase flow in a medium with constant permeability
values perpendicular to the flow direction (serial flow), it can be shown that the correct av-
erage is a harmonic average, see Appendix C. This makes sense because for the harmonic
average is dominated by the lowest permeability value, which is the bottleneck for the flow.
Further, it can also be shown that for uni-directional one-phase flow in a medium with con-
stant permeability values along the flow direction (parallel flow), the correct average is an
arithmetic average, see Appendix C. At a first glance, upscaling permeability along stream-
lines may seem like a 1D upscaling problem, but streamlines are not truly one-dimensional.
The different cases of serial and parallel flow indicate that the correct streamline upscaling
will depend on the underlying spatial structures in the permeability and thus not be a simple
1D upscaling problem. A one-dimensional streamline represents the flow in a 3D streamtube.
Hence, even though streamlines are supposed to be aligned with the flow directions (total ve-
locity), the actual flow may locally escape bottlenecks caused by low-permeable rock (traverse
fluxes).

Unweighted arithmetic (A), geometric (G), and harmonic (H) averages are the three clas-
sical Pythagorean averages. For x = {x1, x2, . . . , xn} with all elements positive, the following
relation holds

max(x) ≥ A(x) ≥ G(x) ≥ H(x) ≥ min(x),

with equality if and only if x1 = x2 = . . . = xn. The geometric average is therefore also a
reasonable candidate to calculate the effective permeabilities.

Based on this discussion, it seems reasonable to apply a harmonic or a geometric average
to obtain effective permeabilities along streamlines (serial flow), and then an arithmetic or
a geometric average of the streamline-effective permeabilities to obtain effective sensitivities
for streamline bundles (parallel flow).

Wang and Kovscek [141], among others, suggest to represent the effective streamline per-
meability by the following weighted harmonic average

(57) keff
` =

∑N`
c

i=1 ∆τ`,i∑N`
c

i=1

∆τ`,i
Ki

,

where N `
c is the number of grid cells intersected by streamline `, ∆τ`,i is the time-of-flight

increment of streamline ` across grid cell i, and Ki is the permeability in grid cell i. Hence,
(57) can be considered a variant of (A-3).

Further, Ravalec-Dupin and Fenwick [116] suggest to use the following harmonic average
for the effective permeability of a streamline bundle

(58) keff
` =

∑Nsl
`=1

∑N`
c

i=1 q`∆τ`,i∑Nsl
`=1

∑N`
c

i=1

q`∆τ`,i
Ki

.

Here q` is the volumetric flux assigned to streamline `.

5.3.2. The Wang–Kovscek Method. The idea of using effective properties along streamlines
for history matching was first introduced by Wang and Kovscek [141]. Their basic idea was to
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relate the fractional-flow curve at a producer to the water breakthrough of individual stream-
lines. Then by adjusting the effective permeability along streamlines, one can determine the
breakthrough time of each streamline that reproduces the reference producer fractional-flow
curve. This is realized through the following simple algorithm

(1) Start with an initial permeability field
(2) Run a simulation and check match with observed data: fractional-flow, well rate

and/or well pressure (drops).
(3) Obtain modifications in effective streamline permeability along each streamline to

match the data, as discussed below.
(4) Propagate modifications in streamline permeabilities back to the grid.
(5) Iterate steps 2–4 until a satisfactory match is achieved.

The derivation of the original method assumes two-phase incompressible flow, piston-like
displacement along each streamline, no capillary forces, and no gravity. Moreover, we here
present the modifications obtained for the data associated with one single producer, but the
extension to several producers is straightforward

The ordered streamlines are used to discretize the observed fractional flow in the wells.
Since each individual streamline will contribute equal amounts to the total fractional flow
for piston-like displacement, the fractional flow increases a fixed amount each time a stream-
line breaks through. Implicitly, we assume that the fractional-flow curve at the producer is
monotone. When a mismatch between observed and calculated fractional flows arises, the
streamlines responsible for the mismatch are identified by examining the breakthrough times
and the effective permeabilities of the streamlines are adjusted.

The history match along streamlines is obtained as follows. Assuming equal flow rates, the
streamlines are ordered with respect to their dimensionless breakthrough times. Let there be
N streamlines, each having a length L`, an average porosity φ`, and an average cross-sectional
area A`. Then the dimensionless breakthrough time of streamline ` is defined as

(59) T̃` =

∑Nsl
j=1(AφL)j x̃`j∑Nsl
j=1(AφL)j

=
Nsl∑
j=1

Ṽj x̃
`
j ,

where x̃`j is the position in dimensionless units of the displacing phase front in the jth stream-
line as streamline ` breaks through, and Ṽj is the ratio of the pore volume of streamline j
over the total pore volume. Since the streamlines are considered as independent flow systems
with piston-like displacement, the relative positions x̃`j can be approximated using Dykstra–
Parsons method for non-communicating layers, see e.g., [48, 121]. The expression for the
relative position of the front in streamline j as streamline ` breaks through, is a function of
the effective permeabilities in streamline ` and j, that is, x̃`j = f(k`, kj). Now, since the sum
in the numerator of (59) runs over all streamlines, the breakthrough time T̃` is a function of
the permeabilities of all streamlines connected to the producer. In vector notation this can
be written T̃ = B(k). Using a Taylor expansion, the mismatch in breakthrough times can be
written:

(60) ∆T̃ = T̃obs − T̃cal = B(kobs)−B(kcal) ≈ A(kobs − kcal) = A∆k.

Here the derivatives A`,j = ∂T̃`/∂kj are obtained by differentiating (59). The system is
simplified by defining normalized parameters [141], which makes the system (60) strongly
diagonally dominant for unit mobility ratio so that it approximately decouples. By neglecting
off-diagonal entries, the relative modifications can then be obtained by

(61) rt` =
∆kt`
kold
`

≈
T̃ cal
` − T̃ obs

`

T̃ obs
`

.

This approximation is only valid for unit mobility ratios. For non-unit mobility ratios, the
modifications must generally be obtained by solving the full system (60). Moreover, stream-
lines will generally evolve during a dynamic displacement (as discussed in the introduction),
so an accurate inversion would require the use of several different streamline distributions in
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time to match different segments of the fractional-flow curve. Altogether, this is computa-
tionally intensive. Rather than inverting the matrix A, Wang and Kovscek [141] therefore
suggest to use (61) for a representative set of streamlines as an approximation also in the
non-unit mobility case.

Similarly, a match of pressure drop and total well rate is calculated by

(62) rp,q` =
∆kp,q`
kold
`

=
∆pcal qobs −∆pobs qcal

∆pobs qcal
,

which can be derived under the same assumptions as for the Dykstra–Parsons method from
Darcy’s law for an effective streamline permeability [121, 141]. The superscripts p and q
indicate that the corresponding modification is due to mismatch in pressure drop and total
well rate, respectively.

The two modifications (61) and (62) are then combined to define a total correction factor α`
for each streamline, so that knew = α`kold. To this end, one should in general use a weighted
geometric average

α` =
[(

1 + rt`

)w1

·
(
1 + rp,q`

)w2
]1/(w1+w2)

.

In practice it turns out that equal weighting is acceptable [141].
Once the relative modifications to effective permeabilities are obtained for each streamline,

they must be propagated back to the underlying grid. Then a forward simulation is run and
the above process is repeated until the data are satisfactory matched.

To map the modification in effective permeability of a streamline back to grid-cell perme-
abilities, the simplest procedure would be to modify all grid cells along the streamline with
the same amount as the modification in the effective property of the streamline that passes
through it; that is, simply multiplying by α` so that Knew = α`Kold. If more than one stream-
line pass through a grid cell, Wang and Kovscek [141] suggest to use a geometric average of
the correction factors. This may be a crude method if the lengths of different streamlines
passing through the same cell are not equal. Instead, one can use a sensitivity-weighted ap-
proach [26, 140]. The sensitivity of the effective permeability of streamline ` with respect to
the permeability change in grid cell i is defined by direct differentiation of an expression for
the effective permeability

(63) g`,i =
∂k`
∂Ki

.

For instance, if (57) is used for the streamline-effective permeability, the following sensitivity
is obtained

g`,i =
τ`ik

2
`

τ`K
2
i

, τ` =
∑
i

∆τ`,i.

This sensitivity is weighted by the incremental time-of-flight for the streamline through the
cell to obtain a weighted sensitivity

G`,i = g`,i
∆τ`,i∑
` ∆τ`,i

.

The current approach requires no computation of sensitivity coefficients in the traditional
sense.

An advantage of obtaining relative modifications, like in Eqs. 61 and 62, is that it results
in cancellation of potential proportionality errors. Therefore, the real time or the time-of-
flight is commonly used instead of the dimensionless PVI time defined by (59). Moreover,
the proposed approach, using modifications (61) and (62), is independent of how the effective
streamline permeabilities are defined; except if the sensitivities in (63) are used.

The original method of Wang and Kovscek [141] was later modified by Stenerud and Lie
[121] to avoid some of the approximations inherent in the original method and bypass the
need for solving a linear system for non-unit mobility ratios. In the modified method, one
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obtains the following expression for the relative modifications with respect to mismatch in
breakthrough time and effective pressure drop

(64) rt,p` =
∆kt,p`
kcal
`

=
tcal` ∆pcal − tobs

` ∆pobs

tobs
` ∆pobs

.

In addition, the method was extended to match porosity or permeability–porosity ratio, and
to account for gravity along streamlines. Finally, a multiscale strategy was proposed, inspired
by a work of Yoon et al. [150], see Section 5.2.6.

In Appendix D we show that under the same assumptions as used in [121, 141], but by
relaxing the assumption of piston-like displacement to Buckley–Leverett profile, the same
expressions for the relative modifications can be obtained: that is, (61) and (64). However,
relaxing the assumption of piston-like displacement may make it harder to relate the break-
through of individual streamlines to increments in the fractional-flow curve. The relaxation
of the assumption of piston-like displacement is facilitated by the proportionality relation be-
tween the time-of-flight and the breakthrough time for the analytic Buckley–Leverett solution,
see Section 3.2. This observation has also been made by other authors, see e.g., [3].

5.3.3. The Agarwal–Blunt Method. Agarwal and Blunt [3] extend the Wang–Kovseck method
to compressible black-oil systems with gravity by using ‘full physics’ in the forward simulation
that determines the match. As in [141], the key idea is to use a piston-like approach to
sort streamlines with respect to breakthrough times and match permeability values along
individual streamlines. To avoid inverting a matrix system, Agarwal and Blunt [3] use an
alternative method to adjust effective permeability values. Assume that the permeability
along a streamline is modified by a fixed amount α so that knew = αkold. By (20) the time-of-
flight along a streamline is proportional to an effective permeability–porosity ratio; i.e., τ ∝ φ

k .
Therefore, the new time-of-flight is given as τnew = τold/α. For piston-like displacement (or
tracer-like flow), the time-of-flight and the arrival time of a saturation contour will coincide.
For non-piston flow, the time-of-flight may be a good enough approximation to the arrival
time, because a proportionality factor will anyway cancel out in the correction factor specified
above. For instance, for the analytic Buckley–Leverett solution presented in Section 3.2, the
arrival time of a saturation contour is proportional to the time-of-flight

(65) t ∝ τ ∝ φ

k
,

where the proportionality factor depends on the saturation value. To match a calculated
breakthrough time tcali with the observed time tobs

i one may therefore modify the permeability
by a factor α = tcali /tobs

i .
In the first case, there is a fixed pressure drops between wells. Now, if the average perme-

ability of the region is incorrect, the well rate at late times may be erroneous. The calculated
water rate qw is therefore first rescaled. We let tmax denote the latest time for which an
observed rate is available and introduce an overall modification α0 of the permeability field
(i.e., a modification for all streamlines connected to the producer). To match the end-point
we require that

α0 = qobs
w (tmax)/qcalw (α0tmax) ≈ qobs

w (tmax)/qcalw (tmax).

This gives a rescaling of the calculated water-rate curve. Then the water-rate axis is divided
into increments α0q`. To match water rate qw = α0

∑`
j=1 qj at time tcal` /α0, we determine the

corresponding time tobs
` from the data qobs

w (tobs
` ). To align the two times, we must modify the

permeability by a factor α̃` = (tcal` /α0)/tobs
` . Thus the overall modification along streamline

` becomes
α` = α0 α̃` = tcal` /tobs

` .

If the total rate changes, a rescaling of the water rate is done by multiplying the observed and
calculated water rates by q∗/qt(t), where q∗ is the water rate when the streamline pattern
was taken, and qt(t) is the time-varying total rate. The method described for fixed rates is
then applied to the rescaled water rate. This is similar to matching fractional flow.
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A similar modification is proposed for the case where the wells are constrained by total
rate. Based on Darcy’s law for effective permeability for streamline bundles between two
wells, we can define the modification

α0 =
∆pcal

∆pobs
,

where ∆pcal and ∆pobs are the calculated and observed pressure drops between an injector–
producer pair when the streamline pattern was computed (e.g., at water breakthrough). For
compressible flow, streamlines may originate and terminate away from the wells. Such stream-
lines are neglected by defining α0 = 1. The total modification along streamline ` is then

α` = α0 ·
tcal`

tobs
`

.

To map the modified streamline properties back to the underlying grid, Agarwal and Blunt
[3] use the following volume-weighted average in each grid cell

(66) Knew
i =

∑Nsl,i

`=1 q` ∆τ`,i α`∑Nsl,i

`=1 q` ∆τ`,i︸ ︷︷ ︸
ᾱ

Kold
i .

Here Nsl,i is the number of streamlines crossing grid cell i, ∆τ`i is the time-of-flight increment
of streamline ` across grid cell i, and q` is the total flux of streamline `.

Jang and Choe [78] apply the method of Agarwal and Blunt [3] as the second step of a two-
step approach. The first step is a gradient-based minimization incorporating well pressures
and permeability samples, where the necessary sensitivities are calculated by the adjoint
method. The motivation of the first step is to get the order in which the streamlines break
through more correct prior to the second step, which is intended to make the location of the
permeability modifications more accurate. The two steps are iterated if necessary.

In [4] the prior method of Agarwal and Blunt [3] is extended to include modifications to
the permeability histogram and the porosity of each well-pair. The first part of the method
is as in [3]. Then, water rates at a fractional flow of 10% are matched by adjusting the
porosity. Because breakthrough times scale with the effective porosity along the streamlines,
the porosities in each producer-region are modified by

φnew = φold t
obs

tcal
.

Finally, the histogram of the permeability is also modified to match the spread in the water
rate. To preserve the rank order of the permeability values in a well-region, the following
relation is applied

(67) Knew = Kold ·
[
Kold

K̄

]ξ
,

where K̄ is a geometric average of the permeability for the well-region. To determine the
exponents ξ for capturing heterogeneity, Agarwal and Blunt suggest the following approach:
First the time spread ∆t between 10% and 90% water rate or fractional flow is determined for
both the observed and calculated curves, i.e., ∆tobs and ∆tcal, respectively. The ’fast’ and the
’slow’ streamlines are identified. The fast streamlines are the streamlines with breakthrough
at 10% or lower fractional flow, and the slow streamlines have breakthrough at 90% or higher
fractional flow. Streamline-effective permeabilities k̄f and k̄s are calculated by harmonic
averaging for the ’fast’ and the ’slow’ streamlines bundles, respectively. It is then required
that

k̄new
f

k̄new
s

=
k̄old

f

k̄old
s

· ∆tobs

∆tcal
.
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By assuming that K̄ is representative for the ’fast’ and the ’slow’ streamline bundles and
applying (67) one obtains that[

k̄old
f

K̄

]ξ
·
[
K̄

k̄old
s

]ξ
=

∆tobs

∆tcal
⇔ ξ =

ln
(

∆tobs

∆tcal

)
ln

( k̄old
f

k̄old
s

) .
When ξ is determined, a new permeability distribution is calculated for each well region. The
approach to modify the histogram is only applied at the first iteration of the history-matching
procedure. Further, the other modifications for porosity and permeability described above
are performed for the two first iterations. For the subsequent iterations Agarwal and Blunt
instead use the Newton iteration

mn+2 = mn+1 − Jn+1mn+1 −mn

Jn+1 − Jn
,

where J is an objective function and m is the reservoir parameters to be modified.
In [3] the method presented above is applied to a portion of the Ekofisk field in the North

Sea. Further, in [4] the extended methodology presented above is applied to an Arabian Gulf
field.

Kretz et al. [89] matched the time-of-flight from an injector to the fluid front. The location
of the fluid front (saturation front) is intended to be localized by 4D seismics, but only
synthetic examples are presented in this paper. Motivated by the relation between time-of-
flight and effective permeability, the correction factor for the first permeability modification
is obtained by

α1
` =

τ1
4D

τ1
cal

.

By this correction factor the permeability is modified between the injector and the fluid front.
For the consecutive iterations the following modification factor is applied between the previous
front and the current front

αn` =
τn4D − τn−1

4D

τncal − τn−1
cal

.

To propagate the modifications to the underlying grid (66) is applied, i.e., the same approach
as suggested by Agarwal and Blunt [3].

5.3.4. Adding Geostatistics. Caers et al. [26] present an extended version of the method in
[141] in two spatial dimensions consisting of a two-step mapping of the effective streamline per-
meabilities back to grid-cell permeabilities. The first step consists of obtaining modifications
of effective streamline permeabilities, and to propagate the modifications to the underlying
grid by the same deterministic approach as described above [26, 141]. In the second step, the
updated grid permeability is used as an initial seed for a Gauss–Markov iteration (McMC).
This two-step mapping is iterated until the history match is converged. The overall method
thus consists of an outer iteration and an inner geostatistical iteration. Flow simulations are
only needed in the iterations of the outer loop. Through the use of this geostatistical frame-
work, the authors are able to match streamline-effective permeabilities to the production data
and at the same time honor prior geological information.

In [25] a similar method is presented, where gradual deformation [74] (see Section 5.4.4) is
used instead of the Gauss–Markov random function method. Because the gradual-deformation
method can be used with any sequential simulation algorithm [25], the assumption of a Gauss-
ian random permeability field can be relaxed and the approach can be extended to include
multi-point geostatistics to match more complex geological structures like fractures and chan-
nels. A straightforward application of gradual deformation would seek to minimize the misfit
in the production data. A key point in Caers’ method is to instead apply gradual deformation
to minimize an objective function measuring the misfit with respect to the effective streamline
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permeabilities derived by the original Wang–Kovscek method described above:

(68) E(Knew) =
Nsl∑
`=1

(
kold
` − k`(Knew)

)2
.

According to Caers [25], the required number of forward simulations is dramatically reduced
(convergence typically requires only 5-10 flow simulations). However, a number of sequential
simulations from a multivariate probability distribution have to be conducted in the inner
loop that minimizes (68), but for large reservoir models the forward simulation will dominate
the computational cost [25]. To apply this gradual-deformation approach for multi-well pat-
terns, streamline-defined regions and a method for global optimization are required [25]. If
a gradient-based method is used for the optimization, sensitivities for the objective function
in (68) with respect to the gradual-deformation parameters are required. Caers [25] presents
analytic sensitivities for this approach, in the case of Gaussian permeability field, by assuming
that the streamline-effective permeability is given by the harmonic average in (57).

The overall methods in [25, 26] allow for drastic changes in the geological model as opposed
to for instance the AHM method of Emanuel and Milliken [49] and the travel-time methods
of He et al. [67], Vasco et al. [135], which seek minor changes to the model. Moreover, it
should be mentioned that only synthetic two-dimensional cases are presented in [25, 26].

Ravalec-Dupin and Fenwick [116] present an alternative two-step method based upon the
same ideas as Caers [25]. In the first step, the method of Agarwal and Blunt [3] is used
to estimate corrections along bundles of streamlines (as opposed to individual streamlines
in [3]). The effective permeability along a streamline bundle ` is here defined by (58); see
the discussion in Section 5.3.1. The streamline bundles are identified by first sorting the
streamlines according to breakthrough time and then segmenting the fractional flow curves
so that all streamlines responsible for each given fractional flow increment are identified in a
corresponding bundle. In the second step, the desired streamline-effective permeabilities are
propagated back onto the underlying grid. To this end, the gradual-deformation method is
used to minimize the misfit between the desired effective streamline permeabilities and those
calculated for the given permeability field as above.

In [27, 53] Caers, Fenwick and coworkers present another extended version of the Wang–
Kovscek method. Again, by the approximation in (65) a correction factor is defined by

α =
(φk )new

sl

(φk )oldsl

=
τnew

τold
,

where (φ/k)sl represents an effective permeability–porosity ratio for each streamline-bundle.
The correction factor above can be used to modify the porosity, the permeability, or the
permeability–porosity ratio in the effective region (along streamline, streamline-bundle, or
producer zone)

Inspired by [141], the piston-like breakthrough in each streamline is related to the fractional-
flow curve. The relative modification for a time-average producer zone is of amplitude type
and defined by [27]

(69) α = 1− 1
Nd

Nd∑
j=1

(
qcalw (tj)
qcalt (tj)

− qobs
w (tj)
qobs
t (tj)

)
= 1 +

1
Nd

Nd∑
j=1

(
fobs
w (tj)− f cal

w (tj)
)
.

Here, qw(tj) and qt(tj) are the water and total production rate at time tj . This modification
is equivalent to considering the whole flow zone as a single effective streamline bundle. To
propagate the permeability modifications back to the underlying grid, direct sequential sim-
ulation (DSSIM) [81] with locally varying mean is applied. In contrast to common methods
for sequential simulation, like sequential Gaussian simulation, that require transformation
into a standard Gaussian space, DSSIM can be performed directly in data space. Journel [82]
showed that the sequential simulation algorithm, without any prior transformation, succeeded
in reproducing a covariance model, provided that the simulated values are drawn from local
conditional distributions identifying the simple kriging mean and variance derived from that
covariance model. This fundamental result is known as DSSIM; for more details on DSSIM
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see e.g., [24]. However, DSSIM does not honor the prior histogram, which is not necessarily
a disadvantage if the histogram is not known with sufficient accuracy. Further, the fact that
the histogram is allowed to change, while at the same time honoring the covariance structure,
gives flexibility to for instance perturb the local mean [27]. Application of the approach to a
real field case is presented in [65].

In [53] the method of locally varying mean (LVM) presented in [27, 65] is extended, and
combined with the probability perturbation method (PPM) of Hoffman and Caers [71]. While
LVM perturbs large scale structures, PPM perturbs the small-scale variations, and in this
manner the combination of the methodologies is considered a multiscale approach. The
combination of LVM and PPM was first proposed in [27], but without any implementation.
The two methodologies are applied sequentially. However, for the examples presented, PPM
did not give any substantial contribution to the history matching. We will therefore not give
any further description of PPM.

Under the assumption of piston-like displacement along each streamline, the correction
factor for a bundle of streamlines with water breakthrough in the time interval from tj−1 to
tj is given by [53]

(70) α = 1−

∫ tj
tj−1

qcalw dt∫ tj
tj−1

qcalt dt
+

∫ tj
tj−1

qobs
w dt∫ tj

tj−1
qobs
t dt

= 1 +
∫ tj

tj−1

fobs
w − f cal

w dt.

This equation is derived by assuming fixed streamlines for the time interval from tj−1 to tj ,
and can be considered as an extension of (69). To account for non-piston-like displacement
in the streamlines and that streamlines going through a single grid cell can be connected to
multiple producers, the following weighting is applied

(71) ᾱ∆t =
∑N∆t

w,p

k=1

(
αkq

k
w + qkt − qkw

)
∑N∆t

w,p

k=1 qkt

.

Here N∆t
w,p is the number of production wells connected to the streamlines in a grid cell. The

correction factor is calculated for each grid cell exclusively using rate information from the
streamlines intersecting the cell. For piston-like displacement, qkw = qkt , so that the correction
factor simply reduces to simple weighting by the total flow rate. If in addition a streamline
formulation with equal total rate for each streamline is used the correction factor reduces
to an arithmetic average. To average the correction factor over N∆t sets of streamlines, a
time-weighted average is used

(72) ᾱ =

∑N∆t
j=1 ∆tjᾱ∆t

tN∆t
− t1

, ∆tj = tj − tj−1.

Gross [63, 64] presents another version of the LVM method. First, modifications in
streamline-effective permeability are obtained and propagated to the pressure grid by a version
of the methods presented above. Second, the permeability modifications are propagated to
other reservoir properties accounting for prior cross-property correlations. Like in [27, 65] the
modifications to streamline-effective permeability give locally varying means that are prop-
agated to the underlying grid by direct sequential simulation (DSSIM). The permeability
modifications are then propagated to the other properties by a kind of Monte Carlo sam-
pling. The prior probability distribution for the reservoir properties is arranged into discrete
classes. The properties can for instance be permeability (horizontal,vertical), porosity, facies,
net-to-gross, etc. For continuous properties, the ranges of the properties have to be carefully
subdivided into ‘bins’ (classes). The prior model can be computed in two manners: by direct
user specification after pore-network studies, or by scanning a set of training models to estab-
lish frequencies for the different classes in local control volumes [64]. The latter approach is
applied here. The probability distribution needed in the cross-property propagation is simply

P (cnew) = P (cprior|Knew),
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where c is a class configuration. This posterior distribution is simple to obtain from a prior
distribution by extracting the configurations with the correct permeability bin. A renormal-
ization is then necessary by summing over the extracted classes. Further, it is also possible
to keep other properties fixed, which will shrink the total number of classes to be extracted.

To obtain the correction factor αti with respect to the fractional-flow data, an approach
similar to the original Wang–Kovscek approach is used [63, 64]. Relative modifications ∆kti,R
are obtained by a time-streamline-average of relative modifications of type given in (61) for
all streamlines contributing to a producer and intersecting a grid cell i. Correction factors
for fractional flow are then obtained by

αti = 10∆kt
i,R .

To account for mismatch in the total production rate qk at producer k and the pressure drop
∆pk,l between an injector l and producer k, the following correction factor is used

αp,qi =
1
|Ωi|

∑
(k,l)∈Ωj

[ qk
∆pk,l

]obs
·
[∆pk,l
qk

]cal
.

Here Ωi is the set of injector-producer pairs for the streamlines intersecting grid cell i.
Jang [77] adds geostatistics to the method of Agarwal and Blunt [3] described above,

by a simple approach. A two-step approach is proposed, where the first step consists of the
method of Agarwal and Blunt [3]. The second step consists of generating Gaussian realizations
conditioned to randomly selected grid-cell permeabilities of the resulting permeability field
of the first step. If a flow simulation reveals a sufficient decrease in the objective function, a
realization is accepted. The two steps are iterated if necessary.

Finally, we outline an idea for a fully analytic Bayesian approach for propagating/downscaling
the modifications in streamline effective properties to the simulation grid. This approach relies
on two assumptions. The first assumption is that the streamline effective properties can be
obtained by weighted arithmetic averages of the reservoir properties (possibly transformed,
e.g., by the logarithm). Hence, the weighted geometric average for a set of parameters is
equivalent to a weighted arithmetic average for the logarithm of the parameters. The sec-
ond assumption is that the (possibly transformed) reservoir properties can be considered
Gaussian. Then, there is a linear relation between the streamline-effective properties and the
(possibly transformed) reservoir properties, which enables analytic determination of the pos-
terior Gaussian distribution of the reservoir properties, conditioned on the history-matched
streamline-effective properties. Details are given in Appendix E.

5.4. Miscellaneous Methods. In this section we describe how streamline-defined regions
or streamline-derived sensitivities have been used to boost the performance of existing geosta-
tistical methods that were originally introduced without any connection to streamlines. The
methods we here pursue are within the realm of: Markov chain Monte Carlo (McMC), en-
semble Kalman filter (EnKF), sequential self-calibration (SSC), and the gradual deformation
method (GDM).

5.4.1. Markov chain Monte Carlo. In [98] a two-stage Markov chain Monte Carlo (McMC)
approach is proposed. McMC is a sampling approach for sampling rigorously from the poste-
rior distribution. The sampling consists of iterations over a two-step algorithm. In the first
proposal step modifications to the reservoir parameters are drawn from a proposal distribu-
tion. In the second acceptance/rejection step one determines if the proposal should be kept
based on the resulting simulated reservoir responses. The algorithm is shown to converge in
probability distribution in the limit of infinitely many iterations. Thus, an extensive number
of iterations may be required to get close to convergence to the posterior distribution. More-
over, rigorous sampling also requires a full flow simulation to be performed for each proposal
step. Consequently, the accurate sampling has a high computational demand.

The two-stage approach proposed by Ma et al. [98] is intended to speed-up the McMC
approach considerably without reducing the accuracy. The first stage consists of obtaining
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approximate production responses analytically for the proposed modified reservoir configura-
tion by applying streamline-derived sensitivities. The approximate production responses are
obtained by a linear approximation in the vicinity of the current production response:

g∗(m) = g(mp) + Gδm.

Here g(·) denote a forward model (i.e., the reservoir simulator), G is the sensitivity matrix,
and δm = m −mp is the proposed modifications to the reservoir parameters. Only if the
approximate production responses achieve acceptance for the proposed reservoir parameter
field, a full reservoir simulation is performed to really check for actual acceptance/rejection.

5.4.2. Ensemble Kalman Filter. Among the geostatistical methods discussed in this section,
the ensemble Kalman filter (EnKF) [51] has gained the most interest lately. EnKF is very
flexible with respect to the type of data incorporated, can do sequential data integration and
state updates during the production period, assessment of uncertainty is available from the
ensemble representing the posterior, and it has recently been applied to several field cases,
see e.g., [52, 105].

The ensemble Kalman filter is a Monte Carlo approach for sequentially integrating data
into a reservoir model represented by an ensemble of realizations. The method utilizes cross-
covariances between measurements and model parameters estimated from the ensemble to up-
date the ensemble members. It is advantageous to keep the ensemble size low for high compu-
tational efficiency. However, this will increase the error in the estimated cross-covariances and
the updated model parameters. To speed up the estimation of covariances, Arroyo-Negrete
et al. [9] used streamlines and Devegowda et al. [45] used streamline-based sensitivities. Both
the streamline trajectories and the production-response sensitivities include information about
spatial correlations between production responses and model parameters. Therefore, in [9, 45]
it is suggested to rescale the estimated cross-covariances by streamline-based influence weights
using two slightly different approaches. The first approach is a streamline-trajectory assisted
approach where the authors investigate the simple choice of a binary weighting based on
streamline-defined regions [9]. For measurements of fractional-flow type it is possible to fur-
ther condition based on information of water-front movement, which is easy to keep track of
for streamlines. The second approach is sensitivity assisted [45], where the weights consist
of rescaled production-response sensitivities, for which the smallest sensitivity values are ne-
glected. For both approaches the ’regions of influence’ from all the ensemble members are
stacked to obtain a ’common region of influence’ for each well.

5.4.3. Sequential Self-Calibration. In a series of papers [130, 143, 144, 146, 147], Wen and
coworkers extended the so-called sequential self-calibration (SSC) method [62, 145] by apply-
ing and deriving streamline-based sensitivities. Streamlines are used for two purposes: (i)
fast forward flow solution and (ii) fast calculation of sensitivity coefficients.

The SSC method is used for inversion of dynamic data and is an iterative geostatistically-
based method coupled with an optimization procedure. Key points in the SSC method are: (i)
the concept of master points to reduce the degrees of freedom in the optimization problem; (ii)
propagation of perturbations at master points to the permeability field by kriging to account
for spatial correlations; and (iii) computation of sensitivities by a combined streamline-based
and gradient-simulator approach as described in Sections 4.2 and 4.6. The SSC algorithm
starts with a set of initial realizations generated by a geostatistical algorithm and then per-
forms the following steps:

(1) Solve flow equations and calculate sensitivities
(2) Evaluate the objective function and exit if satisfactory match is obtained.
(3) Select master points
(4) Optimization: find optimal perturbation at master points
(5) Propagate the perturbations back to the entire field by kriging.
(6) Iterate Steps 1–5 until a satisfactory match is achieved.

Let us assume that the observations to be used in the history match are the pressures and
fractional flow in production wells. Then the history match is obtained by minimizing the
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following objective function

(73) O =
Np

w∑
k=1

Np
d∑

j=1

W p
k,j

(
pobs
k,j − pcal

k,j

)2
+

Nf
w∑

k=1

Nf
d∑

j=1

W f
k,j

(
fobs
k,j − f cal

k,j

)2
.

Here pk,j and fk,j denote pressure and fractional flow, respectively, at well k at time t, and
Wk,j are weights. A gradient based-method is used to minimize the objective function O.
This requires the sensitivity coefficients of well pressure and fractional flow.

In [130], the SSC method is extended to include inversion of spatially distributed saturation
data, e.g., from 4D-seismics. To include the saturation data, the following term is added to
the objective function:

∑
x

NS
d∑

j=1

WS
j (x)

(
Sobs
j (x)− Scal

j (x)
)2
.

Here S is the saturation field, Wj are weights, and x are the observation points in the reservoir
domain. The calculation of analytic streamline-based saturation sensitivities is described in
Section 4.5. A synthetic 3D example is presented where saturation data is incorporated,
but where most weight is given to the fractional-flow data based on an assumption of less
uncertainty.

In [130, 144] a two-stage multiscale approach is used. The first stage consists of using
the method outlined above on an upscaled initial geostatistical realization. Then the coarse-
scale history-matched model is geostatistically downscaled to obtain fine-scale realizations.
Simulated annealing and sequential Gaussian simulation is used for the downscaling in [144]
and [130], respectively. This approach is less CPU-intensive than simulated annealing, and
should remedy features of the SA approach like the tendency of fuzziness (high nugget effect)
[130]. Part of the motivation for the upscaling in Tran et al. [130] is that the saturation data,
e.g., from 4D-seismics, often have lower resolution.

5.4.4. Gradual Deformation Methods. Gradual deformation [74, 117] is a parameterization
method that reduces the number of unknown parameters considerably by seeking new real-
izations as linear combinations of independent or dependent [106] realizations drawn from
a geostatistical probability distribution. The method is motivated by the fact that linear
combinations of multi-Gaussian random functions remain multi-Gaussian random functions.
The gradual deformation method (GDM) does not necessarily rely on a Gaussian probability
distribution, but a sequential simulation algorithm is required [74]. Further, the gradual de-
formation can also be performed with respect to structural parameters like mean, variance,
and correlation range [74].

Gautier et al. [58, 59] develop a GDM-based history-matching method for two-phase in-
compressible flows, where they use a Gauss–Newton method equipped with partly streamline-
based sensitivity coefficients to minimize the objective function (or misfit functional). Further,
the use of gradual deformation incorporates geostatistics and reduces the number of parame-
ters. The sensitivity calculations are discussed in Section 4.7. Gautier et al. [59] present the
method and preliminary results on synthetic examples. The objective function obtained by
this approach is highly irregular with many local minima, which makes the optimization prob-
lem harder. In [58] the optimization problem is discussed in more detail and some methods
for smoothing the objective function are presented.

Barthelemy et al. [16] investigate a methodology for local gradual deformation with regions
defined by streamlines. Rather than solving a global minimization problem, the authors
investigate the applicability of gradual deformation for the local independent streamline-
defined regions in parallel. Further, the authors propose a definition of an objective function,
inspired by the travel-time matching described in Section 5.2, based on temporal moments of
the production data. The proposed objective function was consistent with the conventional
amplitude based objective function, but did not remove the irregularity considerably.
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Finally, we remark that two gradual-deformation approaches for history-matching effec-
tive permeabilities along streamlines and streamline-bundles [25, 116] were presented in Sec-
tion 5.3.4.

6. Streamline-based ranking of geostatistical realizations

Ranking is the process of reducing the number of realizations of a reservoir model, while
spanning the probability space to a maximum extent. To rank the realizations a criterion
correlated to production/economical outcome is typically used. Ranking is closely related to
history-matching because it can be performed both before, during, and/or after the history
matching itself. It is therefore natural to briefly describe two streamline-based methods for
ranking.

Wang and Kovscek [142] present a method for ranking geostatistical models with respect
to production data. First, a single model is history-matched with respect to production data.
Then, multiple realizations are ranked with regard to streamline properties like time-of-flight,
flow rate etc., by comparing with the history-matched model. According to the authors, this
gives a fast method for generating multiple models that incorporate production data.

Idrobo et al. [75] investigate and discuss the use of an approximation for the swept vol-
ume based on the streamline coordinates (τ, ψ, χ) introduced in Section 3. Calculations of
the swept volume are facilitated by the fact that the Jacobian with respect to the spatial
coordinates (x, y, z) takes a simple form [41, 85]∥∥∥∥∂(τ, ψ, χ)

∂(x, y, z)

∥∥∥∥ = ∇τ · (∇ψ ×∇χ) = ∇τ · u = φ.

Here the time-of-flight equation (10) and the property u = ∇ψ ×∇χ are applied. Thus, the
time-of-flight coordinates preserve the pore volume by φ dx dy dz = dτ dψ dχ. Further, the
volume swept at a time t can be approximated by [41, 85]

(74) Vswept(t) =
∫ ∫ ∫

θ
(
t− τ(x, y, z)

)
φ dx dy dz =

∫ ∫ ∫
θ
(
t− τ(ψ, χ)

)
dτ dψ dχ,

where θ is the Heaviside function. Notice in particular, that this derivation is exact for
piston-like displacement. Now the integral in (74) can be approximated by [75]

Vswept =
∑
`

∫
Ψ`

θ(t− τ)q`dτ,

where q` is the volumetric flux assigned to streamline Ψ`. Considering a 3D grid, an indicator
variable can be defined at each cell based on the time-of-flight. A cell is marked ’unswept’ if
the time-of-flight at the cell is greater than the time of interest, and ’swept’ if the time-of-flight
is less than or equal to the time of interest. Summing the pore volumes of the ’swept’ cells, an
approximation for the total swept volume at the time of interest can be obtained, and thereby
also the sweep efficiency by dividing by the total pore volume. To account for changing well
conditions, the time-of-flight distribution is calculated for the different well-configurations.

An indicator for recovery can be used for ranking stochastic reservoir models, because
realizations in the range from pessimistic to optimistic can be chosen for closer studies and
determination of uncertainty. In [75] it is demonstrated that the proposed swept volume
indicator is strongly correlated with waterflood recovery, and is thus proposed as a ranking
criteria. However, it is not specified for which mobility ratios the numerical experiments are
conducted. In [11] the above swept-volume indicator for ranking and uncertainty is used for
analysis of a Middle Eastern carbonate reservoir.

7. Discussion

In the last section, we discuss and compare the different methods for streamline-based
history-matching and point out similarities and differences, and discuss some potential prob-
lems, restrictions, advantages, etc. The history-matching methods presented in this review
are the assisted history matching (AHM), (generalized) travel-time inversion ((G)TTI) meth-
ods, and methods for matching streamline effective properties (SLEP). In addition, we have
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discussed streamline-based sensitivity calculations and reviewed various geostatistical history-
matching methods where streamlines have been used to boost the performance. The discussion
in this section is mainly focused on the three streamline-based approaches: AHM, (G)TTI,
and SLEP.

Simplicity. The AHM approach [49, 104] is in many aspects the least sophisticated in the
sense that it merely provides useful functionality to reservoir engineers that perform manual
or semi-automated history matches. AHM appears to be fairly simple to implement on top of
any existing streamline simulator, as this would not imply changing the flow solver itself, and
would very likely offer useful functionality to reservoir engineers, see the histories of success
in e.g., [29, 97]. However, the approach is manual, and as such not particularly suited to form
the basis for an automated history-matching approach. An advantage of AHM, compared
with traditional manual history-matching methods, is that the modifications made to the
reservoir parameters seem to be more targeted, and thus results in a better preservation of
prior geologic information.

Modifications to Reservoir Parameters. An obvious similarity for the three methods is that
they more or less explicitly impose targeted modifications to the reservoir parameters along
streamline paths. This is a general feature of all streamline methods, which both can be
considered a strength and a weakness. The strength is that making targeted modifications
along the streamlines is what is sought when the principal physical effects are aligned with the
streamlines, which is the conditions for which streamline simulation is particularly well suited.
In reality, however, traverse physical effects may be important in the forward simulation, but
these effects are strongly convoluted in the production data, and may thus be hard to account
for by any history-matching method.

The GTTI and SLEP methods are similar in the sense that the mismatches ∆t̃ and α`,
respectively, are propagated to modifications in the reservoir parameters. However, the ap-
proaches for propagating the mismatch in data for the SLEP and the GTT methods are quite
different. Even for methods within the SLEP class, there are large variations in how the
modifications are propagated. Still, the two methods can theoretically be defined in terms of
the propagation approach of the other method, see Appendix F.

The GTTI method tends, like the AHM method, to keep the modifications small, smooth,
and targeted to preserve the prior geology description and the geologic realism. As discussed
above, this is motivated by the general low spatial resolution of the production data and the
need for stabilizing the under-determined inversion process. Some of the SLEP methods are
constrained to geostatistical information. On the other hand, the approaches presented in
[25, 26], for instance, are claimed to allow for quite drastic alterations to the reservoir model.
The key to enable small targeted modifications for GTTI is the application of production-
response sensitivities, which are not applied for AHM and SLEP.

Complexity of Flow Model. The streamline-based sensitivities for the travel-time inversion
methods are derived assuming the analytical Buckley–Leverett profile described in Section 3.2
along each streamline. However, the minimization problem of the travel-time inversion meth-
ods is general without any assumptions on the flow profile. The methods for adjusting effective
streamline properties (SLEP) are mainly derived by assuming piston-like displacement. How-
ever, in Appendix D we show that similar (or sometimes identical) expressions can be derived
by replacing the piston-like displacement front by an analytic Buckley–Leverett profile. Gen-
erally, the application of the analytic Buckley–Leverett solution is only an approximation,
because pressure updates, varying saturation along streamlines, and transverse flow effects
are not explicitly accounted for. However, this approximation often turns out to be sufficiently
accurate in practice to perturb the iteration in the correct direction. (If necessary, some of
the inversion methods can be accompanied by more accurate forward simulations using ‘full
physics’ to evaluate the quality of the match derived in each iteration).

To a certain extent, both GTTI and the SLEP methods account for changing pressure/velocity
distribution during the forward simulation, and thereby changing streamline distribution. For
GTTI, pressure updates are implicitly accounted for because an optimal time-shift for the
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whole production curve is obtained, and because the sensitivities are calculated for the dif-
ferent pressure steps by the respective streamline distributions. For the early SLEP methods
one or a few representative streamline distributions are used. However, for the association of
the breakthrough of individual streamlines to increments in fractional-flow curves, it is im-
plicitly assumed that the streamline trajectories are fixed in time. Exactly how information
from more than one streamline distribution should be used seems to be a subjective imple-
mentation issue in the earlier approaches of SLEP. On the other hand, the more recent SLEP
approach of Fenwick et al. [53] uses different streamline distributions to match different parts
of the production curve (see (72)), which is similar to how sensitivities are obtained in GTTI.
Moreover, multiple streamline distribution can be used in the AHM approach to guide the
manual modifications.

Assessment of uncertainties in history-matching is particularly important for the purpose
of predictions. This often requires a vast number of realizations and forward simulations.
Properly implemented streamline simulators can be much faster than conventional finite-
difference simulators, see e.g., [122], and is therefore well suited for this purpose. However,
streamline simulators are under some conditions considered approximate simulators, even
though the physics to be accounted for and the robustness of streamline simulators have
improved considerably recently [40]. An alternative may then be to run a vast number of
forward runs with a fast “approximate” simulator (i.e., streamline simulator), and a small
number with the slower trusted simulator for calibration [108].

Convergence Properties. Both the original and the generalized travel-time inversion have
shown quasilinear properties, while traditional amplitude matching exhibits orders of mag-
nitude more non-linear behavior [34]. Most of the SLEP approaches are of travel-time type
since the mismatch in arrival time of saturation fronts (breakthrough) are matched. However,
multiple data points are usually incorporated for SLEP. On the other hand, the modifications
in (69) and (70) are of amplitude type. Whether the different SLEP approaches share simi-
lar convergence properties or not, has not yet been addressed systematically. However, fast
convergence is at least observed for the very simple test examples in the early travel-time-like
SLEP approaches [121, 141].

Types of Data to be Matched. What kind of data can be incorporate and what kind of reservoir
parameters can be modified by the different methods? For SLEP methods, water-cut, total
well rate, pressure drops, and saturation-front (from seismics) have been incorporated. The
parameters matched, are so far restricted to permeability, porosity, or permeability-porosity
ratio, mainly because the approximation t ∝ τ ∝ φ/k is heavily exploited in the SLEP
methods. However, other quantities involved in the expressions relating streamline-effective
properties with the data, like the end-point mobility ratio or residual saturations (see e.g.,
Eq. 13 in [121]), may be matched for each producer region.

For GTTI, on the other hand, tracer concentration, fractional-flow, and gas-oil ratio data
have been incorporated. For these quantities, arrival-time sensitivities of some contributing
quantity can be computed and related to the time-of-flight. Thus, it is the time-of-flight
sensitivities that determine which reservoir parameters that can be modified: permeability,
porosity, and relative permeability curves (mobility ratios), see Section 4.2. The matrix
system in (47) is quite general, so as long as sensitivities relating mismatch in data and
perturbations in reservoir parameters can be computed, any data type can potentially be
incorporated. The Bayesian system in (56) is also general, but requires in addition a spec-
ification of a covariance structure for the reservoir parameters. A weakness of the current
GTTI formulation is that well pressure has not yet been incorporated. It may be especially
important to constrain jointly on pressure observations and other dynamic data when free
gas is present. Streamline-based sensitivities can be obtain analytically for several reservoir
responses, based on a single forward simulation, but streamline-based well/grid-pressure sen-
sitivities have not been derived. However, sensitivities for the response of the propagation of
a sharp ’pressure front’ is derived, see Section 4.7. In Appendix G we outline two potential
approaches for obtaining well-pressure sensitivities, which will allow for incorporating well
pressures in GTTI.
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Finally, the literature contains three papers that discuss how time-lapse seismics can be
incorporated. The method in [130] is within the sequential self-calibration scope, the method
described in [89] is inspired by the SLEP methods, while the method described in [136] is
derived within the TTI scope.

Finally, we will just refer to a few papers [12, 54, 55] presenting streamline-based history-
matching work flows applied to real field cases.
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Appendix A. Sensitivities for Relative Permeability

In Section 4.2 we presented time-of-flight sensitivities for various reservoir parameters.
Kulkarni and Datta-Gupta [91] derived similar sensitivities for parameters involved in describ-
ing relative permeability curves. They present sensitivities for two different representations
of the relative permeability curves.

In the first case, the oil and water relative permeability are represented by power functions
(Corey curves)

kro = koroS
αo
no , krw = korwS

αw
nw .

Here Snα is the normalized saturation and korα is the end-point relative permeability.
Alternatively, one may use a B-spline expansion for each curve. This gives more flexibility

to the function representation because the assumption of a particular shape of the function
is relaxed. For oil, the B-spline expansion is given by

kro =
N∑
j=1

co,jB
m
o,j(Sno),

where co,j is the jth B-spline coefficient and Bm
wj

(Sno) is the jth B-spline of polynomial order
m. A similar B-spline representation is used for the relative permeability functions of water.

Considering the relative permeability functions for oil we obtain the following sensitivities
for slowness s(x), given by (20), with respect to koro, αo and co,j

∂s

∂koro
=

∂s

∂λt

∂λt
∂koro

= − s

λt

Sαo
no

µo
,

∂s

∂αo
=

∂s

∂λt

∂λt
∂αo

= − s

λt

koroS
αo
no lnSno
µo

,

∂s

∂co,j
=

∂s

∂λt

∂λt
∂co,j

= − s

λt

Bm
o,j

µo
,
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where µo is the oil viscosity. Similarly, sensitivities are obtained with respect to the parameters
for the water relative permeability. Time-of-flight sensitivities can now be obtained by (21).

Appendix B. Gaussian Linearity and Analytic Conditional Distribution

In this section we will show how a conditional Gaussian distribution can be determined
analytically for a linear model. To this end, we start by considering a stochastic variable
m ∈ Rp from a multivariate Gaussian distribution

(A-1) [m] ∼ Np(µm,Σmm).

Further, we assume a linear relation d = Am+u between m and another stochastic variable
d ∈ Rk, where [u] ∼ Nk(0,Σu) is an error term that is assumed to be independent of m.
Standard Gaussian theory then gives [80]

[d] ∼ Nk(µd,Σdd),(A-2)

where the expectation and covariance are

µd = Aµm, Σdd = AΣmmAT + Σu.

Further, a combination of (A-1) and (A-2) gives the joint probability distribution[
m
d

]
∼ Np+k

([
µm
µd

]
,

[
Σmm Σmd

Σdm Σdd

])
,

where Σdm describes the covariance between d and m,

Σdm = Cov{d,m} = AΣmm,

and Σmd is the transpose of Σdm. Finally, from the joint distribution, the posterior distribu-
tion for m given d can be derived:

[m|d] ∼ Np(µm|d,Σm|d),

where the conditional expectation and covariance are

µm|d = µm + (AΣmm)T [AΣmmAT + Σu]−1(d−Aµm),

Σm|d = Σmm − (AΣmm)T [AΣmmAT + Σu]−1AΣmm.

Computing the inverse of the (k × k) matrix can be very costly for large k.

Appendix C. One-dimensional upscaling

Assume one-phase flow in a uni-directional system partitioned by N+1 nodes into N (sub)
cells, with a total length of ∆x and a pressure drop of ∆p. Further, assume no gravity. For
each node there is associated a pressure pi. The distance between node i and node i + 1 is
denoted ∆xi. The pressure drop over the reservoir is equal to the sum of the pressure drops
between two consecutive nodes, i.e., ∆p = ∆p1 + ∆p2 + . . . + ∆pN , and the total length is
∆x = ∆x1 + ∆x2 + . . .+ ∆xN . An average/effective Darcy velocity over the one-dimensional
system is then given by Darcy’s law:

ū = −K
µ

∆p
∆x

.

Summing the contributions of the subintervals gives

− ū∆x
K

=
1
µ

∆p =
1
µ

(
∆p1 + ∆p2 + . . .+ ∆pN

)
= −

(
u1∆x1

K1
+
u2∆x2

K2
+ . . .+

uN∆xN
KN

)
.

Hence the upscaled/effective permeability is given by the following weighted harmonic average

K =
ū∆x

u1∆x1
K1

+ u2∆x2
K2

+ . . .+ uN∆xN
KN

.

If the sub-cell velocities are available and used in this expression, it can be considered as flow
based upscaling. Further, if the sub-cell velocities are not available, it is possible to argue that
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the effective velocity ū can be considered equal in each interval, i.e., ū = u1 = u2 = . . . = uN ,
which gives

(A-3) K =
∆x

∆x1
K1

+ ∆x2
K2

+ . . .+ ∆xN
KN

.

Assume instead a set of parallel one-dimensional uni-directional flow systems with a single
permeability each (like homogeneous layers or streamlines). The parallel layers are numbered
by i ∈ {1, 2, . . . , N} and have a common pressure drop ∆p and length ∆x. Further, the
velocity u can be described by the volumetric flow rate q divided by the cross-sectional area
A. Similarly as above, Darcy’s law over all layers then reads

−KA
µ

∆p
∆x

= q̄ = q1 + q2 + . . .+ qN = − 1
µ

∆p
∆x

(
K1A1 +K2A2 + . . .+KNAN

)
.

The upscaled/effective permeability is therefor given by the weighted arithmetic average

K =
1
A

(
K1A1 +K2A2 + . . .+KNAN

)
=
ū

q̄

(
K1

q1
u1

+K2
q2
u2

+ . . .+KN
qN
uN

)
.

Hence, a flow-based upscaling is possible also for this scenario.

Appendix D. Modifications for 1D Buckley–Leverett Displacement

In this section we will derive the effective permeability modifications for a 1D Buckley–
Leverett displacement. Assuming Riemann initial data, the arrival time t` of a saturation
front Swf is discussed in Section 3.2, that is,

t` =
τ`

f̃ ′(Swf )
.

Inserting (20) for the time-of-flight and assuming a streamline effective permeability k` gives

(A-4) t` =
1

f̃ ′

∫
Ψ

φ(x)
λtk`|∇p|

dr ⇔ k` =
1

t`f̃ ′

∫
Ψ

φ(x)
λt|∇p|

dr.

By assuming that the streamline paths of the prior permeability field and the quantities
involved in the integral are exact (also assumed in [141]), the relative modifications are then
given by

rt` =
∆kt`
kcal
`

=
kobs
` − kcal

`

kcal
`

=
tcal` − tobs

`

tobs
`

.

Hence, (61) is recovered. If also the effective pressure drop ∆p for an injector–producer pair
is to be matched, we can use an effective pressure gradient of ∆p/L` ≈ |∇p|, where L` is
the length of streamline `. The relative modification of (64) is then obtained by the same
approach.

Appendix E. Analytic Gaussian Upscaling/Downscaling

Assume there are N grid parameters M = {Mi} (possibly transformed) contributing to s
effective/upscaled parameters m = {m`}. Further, assume that the effective parameter m`

can be calculated by the weighted arithmetic average

(A-5) m` =
1∑
iw`i

[
w`1M1 + w`2M2 + . . .+ w`NMN

]
+ u`,

where u` is a random error term that will be described below. Hence, the weights are zero if a
grid parameter does not contribute to the effective parameter. All the s effective parameters
can then be calculated by

(A-6) m = AM + u,

where

A =
{
A`i =

w`i∑
iw`i

}
and u = {u`}.
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Assuming multivariate Gaussian reservoir parameters [M] ∼ NN (µM ,ΣM ) and Gaussian
noise error [u] ∼ Ns(0,Σu), it follows from Gaussian linearity that also the effective param-
eters m are Gaussian, see Appendix B. Following the derivation given in Appendix B the
conditional distribution for M|m is Gaussian and given analytically by

[M|m] ∼ NN (µM |m,ΣM |m),(A-7)

µM |m = µM + (AΣMM )T [AΣMMAT + Σu]−1(m−AµM ),(A-8)

ΣM |m = ΣMM − (AΣMM )T [AΣMMAT + Σu]−1AΣMM .(A-9)

The computation of the inverse (s × s) matrix may be computer intensive. However, some
kind of sequential local downscaling (e.g., for streamline-based regions) may be applied to
reduce the dimension s.

For permeability it is sometimes assumed a log-Gaussian model, which entails that Mi =
logKi is Gaussian. The approach outlined above can then be applied if the effective perme-
ability for streamline/coarse cell ` can be represented by the weighted geometric average (see
discussion in Section 5.3.1)

k` = u` ·
(
ΠiK

w`i
i

)1/
P

i w`i

,

where u` is a log-Gaussian approximation error. Because taking the logarithm on each side
of the geometric average gives

log k` =
1∑
iw`i

log(ΠiK
w`i
i ) + log u`

=
1∑
iw`i

[
w`1 logK1 + w`2 logK2 + . . .+ w`N logKN

]
+ log u`,

which is on a linear form equivalent to (A-5). Further, applying the logarithm of the per-
meability ensures a positive permeability. For porosity it is sometimes assumed a Gaussian
distribution directly, i.e., Mi = φi, but a porosity within the interval [0, 1] is then not guar-
anteed. However, the variability in porosity is usually much smaller than for permeability. In
addition, it is possible to use some transformation that ensures a porosity within range, e.g.,
a logit transformation.

Appendix F. Equivalence Between SLEP and GTTI

First, we consider GTTI propagation of the SLEP modifications. For SLEP modifications
δk are obtained (as described above). Further, sensitivities with respect to grid permeability
G = ∂k/∂K are given by for instance (63). Hence, the streamline-effective permeabilities
can be propagated to obtain grid-permeability modifications δK by the minimization system
in (47) or (56) that were originally used for the deterministic and the Bayesian version of
the GTTI, respectively. We may also normalize the modifications and the sensitivities to
obtain relative modifications instead. Further, it should be noted that the size of the inverse
system generally is larger than for GTTI, unless only one streamline-bundle is used for each
production well.

Second, we consider SLEP propagation of the GTTI modifications. The time-shift ∆t̃ prop-
agated in GTTI can be propagated by the same methodology as used in SLEP by specifying
the modifications along a streamline-bundle ` by α` = f(∆t̃, . . .). Here f is some function of
the time-shift and possibly other variables. Inspired by (61), an example of a modification
factor would be α` = f(∆t̃, t̄obs) = 1 + ∆t̃/t̄obs. To obtain a time-shift for each streamline-
bundle it is possible to partition the fractional-flow curve into several segments vertically, like
done in SLEP, to obtain one time-shift for each segment (streamline-bundle).

Appendix G. Potential Strategies for Incorporating Well Pressures in GTTI

For streamline-effective properties, the effective pressure drop can be explicitly related to
the permeability/porosity as shown in Appendix D above. Therefore, sensitivities are not
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really needed in this case, but can of course be obtained by differentiation of the explicit
expressions; i.e. to obtain ∂∆p/∂k`. By the chain rule we obtain

∂∆p
∂Ki

=
N i

sl∑
`=1

∂∆p
∂k`

· ∂k`
∂Ki

,

which makes it possible to define GTTI also to match effective pressure drops. Here ∂k`/∂Ki

is given by for instance (63). Ideally, however, compressibility should also have been incorpo-
rated in the expressions for the relation between the permeability and the pressure drop, but
it may be better with an approximate pressure constraint than no constraint at all.

Another potential approach for incorporating well pressure (or well rate) in GTTI is to use
∂p

∂mi
=
∂p

∂q
· ∂q
∂t
· ∂t

∂mi
=
∂p

∂q
· ∂q
∂mi

.

Here ∂p/∂q can potentially be obtained by differentiating a well model (e.g., the Peacemann
well model like in [59]). The term (∂q/∂t)−1 is discussed in [7] and Section 4.3 and the
arrival-time sensitivity ∂t/∂mi is discussed in Section 4.3. Again, it may be better with an
approximate pressure constraint than no constraint at all.

Appendix H. Nomenclature

Symbols:
• reservoir property: m
• absolute grid permeability: K
• streamline effective permeability: k
• porosity: φ
• pressure: p
• total mobility: λt
• viscosity: µ
• density: ρ
• time-of-flight: τ
• bi-streamfunctions: ψ, χ
• streamline: Ψ
• fractional flow function: f
• sensitivity matrix: G
• number of grid cells: N
• number of streamlines: Nsl

• number of data: Nd

• number of wells: Nw

• constant: const

Indices:
• streamline: `
• grid cell: i
• time step: j
• well: k
• master point: d
• total: t
• phase: α

Sub/super scripts:
• water: w
• oil: o
• gas: g
• calculated: cal
• observed: obs


