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Abstract. We review and perform comparison studies for three recent multiscale
methods for solving elliptic problems in porous media flow; the multiscale mixed
finite-element method, the numerical subgrid upscaling method, and the multiscale
finite-volume method. These methods are based on a hierarchical strategy, where
the global flow equations are solved on a coarsened mesh only. However, for each
method, the discrete formulation of the partial differential equations on the coarse
mesh is designed in a particular fashion to account for the impact of heterogeneous
subgrid structures of the porous medium.

The three multiscale methods produce solutions that are mass conservative on
the underlying fine mesh. The methods may therefore be viewed as efficient, ap-
proximate fine-scale solvers, i.e., as an inexpensive alternative to solving the elliptic
problem on the fine mesh. In addition, the methods may be utilized as an alternative
to upscaling, since they generate mass-conservative solutions on the coarse mesh.
We therefore choose to also compare the multiscale methods with a state-of-the-
art upscaling method—the adaptive local-global upscaling method, which may be
viewed as a multiscale method when coupled with a mass-conservative downscaling
procedure.

We investigate the properties of all four methods through a series of numerical
experiments designed to reveal differences with regard to accuracy and robustness.
The numerical experiments reveal particular problems with some of the methods,
and these will be discussed in detail along with possible solutions. Next, we comment
on implementational aspects and perform a simple analysis and comparison of the
computational costs associated with each of the methods. Finally, we apply the
three multiscale methods to a dynamic two-phase flow case and demonstrate that
high efficiency and accurate results can be obtained when the subgrid computations
are made part of a preprocessing step and not updated, or updated infrequently,
throughout the simulation.

Keywords: porous media flow, multiscale methods, upscaling, numerical compar-
isons, two-phase simulation
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1. Introduction

In recent years, there has been a growing interest in numerical methods
specially designed to model multiscale phenomena; that is, phenomena
that are governed by physical processes occurring on a wide range
of time and/or length scales. These methods are usually referred to
as multiscale methods and have the common characteristic that they
incorporate fine-scale information into a set of coarse-scale equations in
a way that is consistent with the local properties of the mathematical
model on the unresolved subscale(s).

In this paper, we consider multiscale methods for the simulation of
pressure and (phase) velocities in porous media flow. The primary cause
of multiscale behaviour in porous media flow is heterogeneities in rock
and sand formations, occurring at all scales from the pore scale to the
scale of the entire model. These heterogeneous structures are reflected
in the coefficients of the governing partial differential equations. To
accurately resolve the pressure distribution, which is modelled by an
elliptic (or parabolic) equation, it is generally acknowledged that it is
necessary to account for the influence of fine-scale variations in the
coefficients to generate reliable solutions. For incompressible flow, the
pressure equation reduces to the variable-coefficient Poisson equation,

−∇(a(x)∇p) = q. (1)

Here the coefficient a(x) is a symmetric and positive definite tensor that
typically has a multiscale structure due to the strongly heterogeneous
nature of natural porous media. By multiscale structure we mean that
the values of a span several orders of magnitude, or alternatively that
the length scale of variation depends strongly on the position. If a

is drawn from a stochastic distribution, a multiscale structure means
that the correlation lengths in the stochastic model vary significantly
in space.

The literature on numerical methods for elliptic problems contains
a number of multiscale methods that are geared toward solving prob-
lems with highly oscillatory coefficients. Examples include the multi-
scale finite-element method [21], the variational multiscale method [22],
residual free bubbles [9, 31], the two-scale finite-element method [28],
the two-scale conservative subgrid approach [5, 6], the mixed multiscale
finite-element method [13, 1], and the multiscale finite-volume method
[25, 24]. All of these methods are based on a hierarchical two-scale
approach, where the general idea is to derive a set of equations on a
coarse scale that embody the impact of subgrid variations in the elliptic
coefficients. To this end, subgrid computations are performed as part
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Multiscale Methods for Elliptic Problems in Porous Media Flow 3

of the multiscale method to estimate how these fine-scale variations
influence the coarse-grid solution.

Multiscale methods for elliptic problems offer large computational
savings when applied as direct solvers for problems with scale separa-
tion. For problems without scale separation—like pressure equations
encountered in porous media flows, which generally do not have scale
separation—the computational complexity of a full solution by a mul-
tiscale method is about the same as the complexity of solving the same
problem discretized on the subgrid scale with a very efficient linear
solver. However, multiscale methods still offer a potential for large
computational savings. First of all, in most models of porous media
flow, the pressure equation is time-dependent—either by itself or as
part of a larger model, as in multiphase flow—and therefore has to be
solved repeatedly. Because the temporal changes in a(x) are typically
moderate compared to the spatial variability, it is seldom necessary to
perform the subgrid computations every time the pressure equation is
solved. Hence, it is possible to obtain an approximate solution on a
fine scale at the cost of solving the same problem on a coarsened mesh,
leading to significant savings in computational time. Secondly, the sub-
grid computations in multiscale methods are usually defined in such a
way that they can be easily parallelized or used as a kind of domain-
decomposition method to solve problems that would otherwise not fit
in memory. In other words, it can be beneficial to utilize multiscale
methods, also for problems without scale separation.

The purpose of this paper is to compare and validate three selected
multiscale methods in terms of accuracy, robustness, and computa-
tional complexity; a mixed multiscale finite-element method [13, 1], a
two-scale conservative subgrid approach [5, 6], and a multiscale finite-
volume method [25, 24]. In addition, we consider a state-of-the-art
upscaling method, the adaptive local-global method [14]. This method
has similarities with multiscale methods, and can be viewed as an
upscaling–downscaling analogue to the multiscale methods when sup-
plied with a procedure for reconstructing a global subgrid solution
from the coarse-scale solution. Each method will be applied to solve
the pressure equation in immiscible and incompressible two-phase flow
models. The numerical examples range from test cases with realistic
heterogeneous structures to synthetic cases that are specially designed
to reveal limitations in the methods.

The paper is organized as follows: The governing equations for im-
miscible and incompressible two-phase flow are described in Section 2.
The multiscale mixed finite-element method and the two-scale conser-
vative subgrid approach are described in Section 3. In Section 4, we
describe the multiscale finite-volume method and the adaptive local-
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global method. The numerical experiments, which form the main part
of the paper, are performed and discussed in Section 5. In Section 6 we
discuss computational aspects of the methods and give a simple analysis
of their computational efficiency. Finally, the multiscale methods are
applied to a dynamic two-phase flow problem in Section 7, before the
paper is summarized and some conclusions are given in Section 8.

2. Governing equations

Immiscible and incompressible two-phase flow in porous media can be
described by a coupled system of partial differential equations consist-
ing of an elliptic equation for fluid pressure and a transport equation
for the movement of fluid phases. For simplicity of presentation, we will
henceforth neglect effects from gravity and capillary forces, and assume
that the porosity is constant. If we denote the two phases by o and w
(for oil and water), we obtain the following variable-coefficient Poisson
equation for pressure p and total Darcy velocity u,

∇ · u = q, u = −Kλt∇p in Ω, (2)

and a hyperbolic equation for the water saturation S,

∂S(x, t)

∂t
+ ∇ · (fw(S)u) = max{q, 0} + fw(S)min{q, 0}. (3)

The total velocity u = uo + uw is a sum of the phase velocities, q is
a volumetric source term representing wells, and the rock permeability
tensor K is assumed to be symmetric and uniformly positive definite.
The total mobility is given by λt = λw + λo, where λi models the
reduced mobility of phase i due to the presence of the other phase.
Finally, fw = λw/λt denotes the fractional flow of water.

Throughout the paper we assume homogeneous initial conditions
and impose homogeneous Neumann boundary conditions:

S(·, 0) = 0 in Ω u · n = 0 on ∂Ω.

Here n is the outward-pointing unit normal on ∂Ω. Furthermore, for
simplicity we assume that λw = S and λo = 1 − S, hence λt ≡ 1,
and the pressure and saturation equations are effectively decoupled. In
Section 7 we change this assumption and consider a dynamic two-phase
flow, where there is a coupling between the pressure and saturation. In
all the following numerical simulations, the saturation equation (3) is
solved using an explicit single-point upwind finite-volume method.

To discretise (2) using one of the multiscale methods described in
this paper, one must first introduce a fine and a coarse mesh. The fine
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mesh is usually a nested subgrid of the coarse mesh, and is therefore
often referred to as the subgrid. In this paper we limit our attention
to Cartesian meshes only. Hence, we assume that Ω has been parti-
tioned into a conforming fine Cartesian mesh Th, and that a coarse
Cartesian mesh TH is formed as a collection of elements in Th. In addi-
tion, for implementational simplicity we assume that K is a constant
diagonal tensor in each cell E ∈ Th. This implies that Th is so-called K-
orthogonal, i.e., that ni ·K(E)nj = 0 where ni and nj are unit vectors
normal to faces perpendicular to coordinate directions i and j (i 6= j),
respectively.

There are several reasons for restricting our attention to Cartesian
meshes. First, not all the multiscale methods described below are ap-
plicable to general meshes. All methods may in principle be extended
to more complex meshes, but implementing extensions is a non-trivial
task for some of the methods, as will be briefly discussed in Section 6. In
fact, to our knowledge, only the multiscale mixed finite-element method
has been applied to non-Cartesian meshes [3, 2]. Hence, performing
comparisons of the multiscale methods on non-Cartesian meshes would
favour the multiscale mixed finite-element method, which is more flex-
ible with respect to meshes, and therefore make it hard to make fair
conclusions concerning the main objective in this paper—to assess the
ability of the respective multiscale methods to correctly capture the
influence of subgrid heterogeneous structures.

3. Description of the Finite-Element Based Methods

Both the multiscale mixed finite-element method and the two-scale
conservative subgrid approach, henceforth called the numerical subgrid
upscaling method, are based on a mixed formulation. For our model
problem (2), with the aforementioned assumption λt ≡ 1, the mixed
formulation reads: Find (u, p) ∈ Hdiv

0 (Ω) × L2(Ω) such that,

(K−1u, v) − (p, ∇ · v) = 0, ∀v ∈ Hdiv
0 (Ω),

(∇ · u, l) = (q, l), ∀l ∈ L2(Ω).
(4)

Here Hdiv
0 (Ω) = {v ∈ L2(Ω)n : ∇ · v ∈ L2(Ω), v · n = 0 on ∂Ω}, and

L2(Ω) is the space of square integrable functions over Ω.

3.1. Standard Mixed Finite-Element Methods

In mixed finite-element methods for (2) (with λt ≡ 1) one seeks an
approximate solution (uh, ph) of (4) that is confined to lie in finite-
dimensional subspaces V ⊂ Hdiv

0 (Ω) and W ⊂ L2(Ω). The discrete

paper.tex; 11/12/2006; 15:34; p.5



6 Kippe, Aarnes and Lie

formulation reads: find (uh, ph) ∈ V ×W such that,

(K−1uh, vh) − (ph, ∇ · vh) = 0, ∀vh ∈ V,

(∇ · uh, lh) = (q, lh), ∀lh ∈W.
(5)

Below we make use of two standard mixed finite-element methods,
the lowest-order Raviart-Thomas method (RT0) [29] and the lowest-
order Brezzi–Douglas–Marini method (BDM1) [11]. In both methods,
W equals the space P0(T ) of piecewise constants over the given mesh
T and the methods only differ in how V is defined. For RT0,

V ⊂ {v ⊂ Hdiv
0 (Ω) : ∇ · v ∈W, v · n ∈ P0(Γ)},

where Γ = {∂Ti ∩ ∂Tj : Ti, Tj ∈ T } and n is a uniquely oriented unit
normal. For BDM1,

V ⊂ {v ⊂ Hdiv
0 (Ω) : ∇ · v ∈W, v · n ∈ P1(Γ)}.

Thus, whereas the RT0 space restricts the normal component of the
velocity on each interface to be constant, the normal component of the
velocity on each interface in BDM1 is allowed to be linear.

The velocity approximation spaces in mixed methods are usually
spanned by basis functions associated with interfaces in the mesh. For
RT0 there is only one degree of freedom per interface. Hence, only
one basis function per interface is needed. The RT0 basis functions
may therefore be thought of as representing flow units across element
interfaces. In BDM1, the velocity space contains, in addition to the
RT0 basis functions, a set of “divergence-free” basis functions. These
basis functions are divergence free in the sense that their divergence
is orthogonal to W with respect to the L2-norm. An explicit listing of
these basis functions can be found in [6] and details of the mathematical
properties of the RT0 and BDM1 methods can be found in, e.g., [10].

3.2. Multiscale Mixed Finite-Element Method (MsMFEM)

The multiscale method we consider here belongs to a family of multi-
scale finite-element methods, first introduced by Hou and Wu [21]. The
basic idea of the methods is to construct special basis functions that
are adaptive to the local properties of the elliptic differential operator.
To ensure local mass conservation, Chen and Hou [13] introduced a
multiscale method based on a mixed finite-element discretization. This
method gives mass-conservative velocity fields on the coarse mesh and
also on the fine mesh in coarse blocks not containing sources. In the
following, we employ a similar mixed finite-element method due to
Aarnes and Lie [1, 4, 2] that provides mass-conservative velocity fields
on the entire fine mesh.
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Multiscale Methods for Elliptic Problems in Porous Media Flow 7

On the coarse scale, MsMFEM is a generalization of the standard
RT0 method, searching for a solution in the discrete approximation
spaces (Vms,P0(TH)), where the piecewise linear velocity basis func-
tions of the RT0 method on TH are generalized to account for subgrid
variations in the coefficients. This is accomplished by letting the basis
functions be solutions of (2) restricted to a pair of coarse-mesh elements
with source terms specified in such a way that unit flow is forced across
the element interface. Specifically, if Ei and Ej denote two coarse-mesh
elements with a common interface Γij = ∂Ei ∩ ∂Ej , the multiscale
velocity basis functions ψij are defined as follows,

ψij = −K∇φij,

∇ · ψij =

{
wi(x)/

∫
Ei
wi(ξ) dξ, for x ∈ Ei,

−wj(x)/
∫
Ej
wj(ξ) dξ, for x ∈ Ej,

ψij · n = 0, on ∂(Ei ∪ Γij ∪ Ej).

(6)

For certain element types, e.g., triangles and tetrahedrons, or rectan-
gular parallelepipeds with a diagonal permeability tensor, these basis
functions reduce to the standard RT0 basis functions if K and wi are
constants. We note that the definition (6), first introduced in [4], is
slightly different from the definitions in [13] and [1]. The advantage
of solving simultaneously in both Ei and Ej is that we avoid explicit
specification of boundary conditions on Γij.

In [1] it was noted that the MsMFEM solution will be locally mass
conservative if the local source term wi coincides with q in elements
containing sources or sinks. For elements where q = 0, we may choose
wi arbitrarily, but the properties of the basis functions will depend on
the particular choice. This issue was investigated in [2], and here we
follow the recommendation of scaling wi according to the trace of the
permeability tensor; i.e., we use

wi(x) =

{
trace(K(x)), if q(x)|Ei

= 0,
q(x), otherwise.

(7)

This completes the definition of the MsMFEM velocity basis functions
ψij , and the approximation space Vms is given as span{ψij}.

3.3. The Numerical Subgrid Upscaling Method (NSUM)

Instead of generalizing the coarse-scale basis functions, as in MsM-
FEM, the approach in NSUM is to enrich the coarse-scale approx-
imation space with a family of mutually orthogonal approximation
spaces that contain local fine-scale variations. Although NSUM was
originally formulated as an RT0 method on the coarse scale [8], we
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8 Kippe, Aarnes and Lie

here follow [5, 6] and let the coarse-scale approximation space be the
BDM1 space. Subgrid variations in the solution will be modelled using
RT0 approximation spaces.

Let Ec be a coarse element in TH and denote by Wh(Ec) the fine-
scale RT0 pressure space restricted to Ec, with the additional constraint
of zero average:

Wh(Ec) = {wh ∈ P0(Th)|Ec : (wh, 1)Ec = 0}.

Furthermore, let Vh(Ec) be the RT0 velocity space with support strictly
inside Ec; i.e.,

Vh(Ec) = {vh ∈ VRT0(Th)|Ec : vh · n = 0 on ∂Ec}.

Finally, let (VH , WH) be the BDM1 approximation spaces over the
coarse mesh TH . The NSUM approximation spaces are then given as
the following direct sums,

WH,h = WH

⊕
Ec∈TH(Ω)

Wh(Ec) = WH ⊕Wh,

VH,h = VH

⊕
Ec∈TH(Ω)

Vh(Ec) = VH ⊕ Vh.
(8)

Each (u, p) ∈ (VH,h, WH,h) may then be uniquely decomposed into
u = uH + uh and p = pH + ph with (uH , pH) ∈ (VH, WH) and
(uh, ph) ∈ (Vh, Wh). Substituting these representations into (4) and
testing with subgrid test-functions yields a set of equations for each
coarse element,

(K−1uh, vh)Ec − (ph, ∇ · vh)Ec = −(K−1uH , vh)Ec ,

(∇ · uh, lh)Ec = (q −∇ · uH , lh)Ec ,
(9)

for all vh ∈ Vh(Ec) and all lh ∈ Wh(Ec). Testing with coarse-scale
test-functions in (4) yields a global set of equations,

(K−1(uH + uh), vH) − (pH , ∇ · vH) = 0,

(∇ · uH , lH) = (q, lH),
(10)

for all vH ∈ VH and all lH ∈WH .
The subgrid equations (9) are mutually decoupled, but they are

all coupled to the coarse-scale solution uH , and hence to the coarse-
scale equation (10). However, a solution uh of (9) may be expressed in
terms of coarse-scale basis coefficients and the computed actions of the
subgrid operator on the coarse-scale basis functions. Let us express the
coarse-scale solution using a local numbering of basis functions,

uH =
∑

Ec∈TH

∑

j>0

βEc,jv
Ec,j
H . (11)
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For each coarse element Ec, it is easy to verify that the solution to the
subgrid equations (9) may be written on the following form:

uh = u0
h +

∑

j>0

βju
j
h, ph = p0

h +
∑

j>0

βjpj
h, (12)

where (u0
h, p

0
h) solves

(K−1u0
h, vh)Ec − (p0

h, ∇ · vh)Ec = 0,

(∇ · u0
h, lh)Ec = (q −PWH

q, lh)Ec ,
(13)

for all vh ∈ Vh(Ec) and all lh ∈Wh(Ec), and (uj
h, p

j
h) for j > 0 solves

(K−1u
j
h, vh)Ec − (pj

h, ∇ · vh)Ec = −(K−1v
j
H , vh)Ec ,

(∇ · uj
h, lh)Ec = 0,

(14)

for all vh ∈ Vh(Ec) and all lh ∈ Wh(Ec). Here PWH
represents a

projection onto WH , and we have PWH
q = ∇ ·uH by (10) and the fact

that the BDM1 approximation spaces (WH , VH) satisfy ∇·VH = WH .
A discrete system is now obtained by inserting (12) into (10), and
possibly adding some subgrid equations to symmetrize the system [6].

Finally, we note that the NSUM formulation allows virtually any
mixed finite-element method on both the coarse and fine scales [7],
but, to our knowledge, only the RT0 and BDM1 methods have so far
been used in practice.

4. Description of the Finite-Volume Based Methods

The two remaining methods, the multiscale finite-volume method and
the adaptive local-global upscaling method, are both based on a finite-
volume formulation. In a finite-volume method for (2) (with λt = 1)
one introduces a family of control volumes (typically the given mesh)
and imposes mass conservation locally for each control volume E:

∫

∂E

−K∇p · n ds =

∫

E

q dx, (15)

where n is the outward unit normal on ∂E. The simplest and most
widely used finite-volume method is the two-point flux approxima-
tion (TPFA) scheme. The TPFA scheme is a cell-centred finite-volume
method, which may be expressed as a pressure stencil for each cell Ei,

∑

j

Tij(pi − pj) = qi, (16)
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where j loops over all cells neighbouring cell Ei. The transmissibilities
Tij are associated with cell interfaces, and the expression Tij(pi − pj)
is a discrete form of

−

∫

∂Ei∩∂Ej

K∇p · nij ds, (17)

where nij is the unit normal on Γij = ∂Ei∩∂Ej pointing into Ej . Thus,
Tij(pi − pj) estimates the total flux across ∂Ei ∩ ∂Ej .

4.1. The Multiscale Finite-Volume Method (MsFVM)

This method was introduced by Jenny et al. [25, 24] and is a control-
volume finite-element formulation on the coarse mesh TH . Here the
pressure p is expressed as a linear combination of basis functions φi

that incorporate subscale pressure variations (see below). Thus, for
each control-volume Ei ⊂ TH , we have the following equation:

−

∫

∂Ei

n · K∇

(∑

j

pjφj

)
ds =

−
∑

j

pj

∫

∂Ei

n ·K∇φj ds =

∑

j

pjfij =
∫
Ei
q dx.

(18)

The quantity fij denotes the flux over the boundary of cell Ei due to
the basis function centred in cell Ej , and we refer to these quantities
as the MsFVM transmissibilities. Equations (18) give a linear system
that can be solved for {pj}, and a fine-scale pressure solution is given
as a linear superposition of the basis functions, i.e., p =

∑
j pjφj.

Since the coarse elements are used as control volumes, the fine-scale
pressure solution gives a velocity field that is mass conservative on
the coarse mesh TH . However, this velocity field is generally not mass
conservative on the fine mesh Th. A reconstruction step is therefore
necessary to get a mass-conservative velocity solution on the fine scale.
This can be achieved by solving (2) within each control volume using
Neumann boundary conditions given by the non-conservative velocity
solution. That is, for each E ∈ TH one defines the velocity v inside E
by

v = −K∇u, ∇ · v = q in E, v · n = −K∇p · n on ∂E, (19)

where p =
∑

j pjφj is the MsFVM pressure solution.
An alternative, but equivalent reconstruction procedure was de-

scribed in [25, 24]. Here the idea is to express the reconstructed velocity
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field as a linear superposition of basis functions analogous to the way
the fine-scale velocity field is obtained in MsMFEM. To this end, for
each pressure basis function φj, one associates a reconstruction basis
function with each cell in the coarse mesh TH where φj is supported.
Although the number of reconstruction basis functions may be large—
twenty-seven for each basis function φj on a Cartesian mesh in three
dimensions—the latter reconstruction procedure may be more compu-
tational efficient than (19) for two-phase flow simulation when only
a few basis functions and/or transmissibilities need to be recomputed
[24]. For instance, for Cartesian meshes in three dimensions, compu-
tational savings are obtained if less than four percent of the basis
functions and/or transmissibilities are recomputed. It should be noted,
however, that the reconstruction procedure in (19) allows inclusion of
additional physical effects, such as gravity and compressibility [27], and
that performing the reconstruction everywhere, as is done in (19), in
our experience makes the MsFVM more robust. We will return to this
issue in Section 7.

Pressure Basis Functions

To describe the computation of the MsFVM basis functions, we first
introduce a dual mesh T H by connecting the cell centres of adjacent
cells. The cell centres of the original mesh then become the nodes of the
dual mesh, and vice versa, see Figure 1. Each pressure basis function
for MsFVM is now associated with a coarse element and is supported
in all cells of the dual mesh that have the centre of the associated
coarse cell as a common vertex. The left plot in Figure 1 shows the
support of a basis function along with parts of the coarse and fine
meshes. Also shown is parts of the dual coarse mesh. To construct a
basis function, one solves a homogeneous version of (2) within all cells
of the dual coarse mesh that share a common vertex. For instance, for
the case depicted in Figure 1, we solve one subgrid problem for each
of the shaded cells in the dual coarse mesh. Next we describe how to
construct the part of the basis function φ associated with xi,j inside
the dark-shaded cell in the dual mesh. The other parts of φ are defined
similarly.

The right plot in Figure 1 shows the lower-left (dark-shaded) dual
cell from the left plot. To localize the basis function φ to the shaded
area, the boundary condition along Γ1 and Γ3 must be zero. Next we
require that φ = 1 at the internal node xi,j. Then it only remains to
define boundary conditions on Γ2 and Γ4. These boundary conditions
should ideally reflect the flow behaviour through the dual cell when
embedded in the global system. In [25], the authors follow the idea
from the multiscale finite-element method [21] and propose to solve
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12 Kippe, Aarnes and Lie

Figure 1. Domain of the basis functions associated with node xi,j (shaded) along
with the fine mesh (dotted), the coarse mesh (thick solid), and the dual mesh (thick
dashed). To the right is the highlighted dual cell in more detail.

a reduced problem along the boundary to determine boundary con-
ditions. Denoting the dark-shaded dual cell by E, the equations that
define the pressure basis function φ read,

−∇ · K∇φ = 0 in E, φ = b on ∂E, (20)

with the boundary condition b given by,

−∇ · Ki∇b = 0 on Γi b(xi,j) = 1, b(xi,k) = 0 for k 6= j. (21)

Here Ki = ri · Kri, where ri is the unit vector tangential to Γi.

4.2. Adaptive Local-Global Upscaling Coupled With
Nested Gridding (ALGUNG)

This method was introduced by Chen et al. [15, 14] and is an itera-
tive method for computing upscaled permeabilities or transmissibilities
that account for global flow effects as well as the impact of small-scale
features in an averaged sense. The idea is to use a global coarse-scale
pressure solution pc,n−1 to determine boundary conditions for an ex-
tended local computation of upscaled quantities. Using these quantities,
a new coarse-scale solution pc,n may be computed, and the process
is repeated until the computed quantities are self-consistent. Once a
satisfactory coarse-scale solution has been found, we may reconstruct
a conservative fine-scale velocity field using a suitable reconstruction
procedure. Here we shall employ the reconstruction procedure from the
nested-gridding method [20], and, following [15, 14], we iterate until

‖pc,n − pc,n−1‖2

‖pc,1 − pc,0‖2
< 0.01. (22)

The adaptive method introduced in [14] differs from the original
local-global approach [15] in two respects. The adaptive version per-
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× ×

× ×

× ×

× × × × ×

Ei

Figure 2. Domain Di (r = 1.5) for computing transmissibilities associated with
the interfaces of coarse cell Ei. The crosses mark the locations of the coarse-scale
pressures that are interpolated linearly to give the boundary conditions.

forms the upscaling for a specific flow scenario instead of generic axes-
oriented flows, and also applies a thresholding scheme such that up-
scaled quantities are only recomputed in high-flow regions. The thresh-
olding is motivated both by computational efficiency and by a reduced
number of anomalous upscaled values, which typically appear in low-
flow regions. In our experience, the thresholding has a slight negative
impact on the accuracy of the method, but the loss of accuracy is typi-
cally small compared to the reduction in computational work. However,
to be certain not to underestimate the performance of the method, we
have chosen to disregard the thresholding and recompute all quantities
in every iteration when assessing the accuracy of the method.

Chen et al. [15] demonstrated that transmissibility upscaling typ-
ically gives better results than permeability upscaling. On the coarse
scale, we therefore use upscaled transmissibilities T c

ij rather than up-
scaled permeabilities. To simplify the implementation and improve the
efficiency, we use a slightly modified version of the algorithm from [15],
in which we solve a local fine-scale problem for each coarse block, in-
stead of a fine-scale problem for each interface as in [15]. This generally
reduces the number of fine-scale problems that we have to solve by
a factor equal the number of space dimensions. On the other hand,
we generally obtain two transmissibilities for each interface Γij. We
therefore need a procedure for deriving unique transmissibilities. If
both transmissibilities are positive, the average is used. If one of the
transmissibility values are negative, the positive value is used. If both
transmissibilities are negative, the result from the previous step is used.

To compute the upscaled transmissibilities associated with the in-
terfaces of coarse cell Ei, we define a corresponding extended domain
Di. In Figure 2 an extended domain is obtained by connecting centres
in a ring of coarse cells surrounding Ei. This approach may give un-
necessarily large domains and make ALGUNG unnecessarily expensive,
especially in three dimensions. Wen et al. [33] therefore proposed an
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14 Kippe, Aarnes and Lie

alternative approach where the extended domain Di is obtained by
connecting centres in a ring of fine cells surrounding the local upscaling
region.

When the domains for extended local upscaling computations are
defined, one needs to introduce an operator that interpolates the coarse-
scale pressure pc onto the boundary of each extended region. In [15, 33]
this operator is based on a bilinear or trilinear interpolation between the
pressure values associated with cells in the coarse mesh whose centres
are closest to the boundary of the extended region. We would like to
note that for unstructured grids it may be difficult to decide which
coarse cells to use to define a good interpolation operator. Indeed, we
believe that generating proper interpolation operators will be a non-
trivial task for complex grids, such as corner-point grids with faults and
eroded layers that one frequently encounters in reservoir simulation.

After having solved (2) in Di with boundary conditions obtained
from the previous coarse-scale solution, new upscaled transmissibilities
are computed as

T c
ij =

qc
ij

pi − pj

. (23)

Here qc
ij is the total flux across the coarse-cell interface Γij, and pi and

pj are the volume averages of the fine-scale pressure over coarse cells
Ei and Ej , respectively. For the initial upscaling step we have used the
pressure method as described in, e.g., [18].

Reconstructing the Fine-Scale Solution

We now briefly describe the nested-gridding procedure [20] used to
reconstruct a fine-scale solution once the coupled local-global iterations
have converged. As for the MsFVM reconstruction, the idea is to solve
(2) within each coarse cell subject to Neumann boundary conditions,
but here the boundary conditions are scaled according to the fine-scale
transmissibilities. Hence, a mass-conservative velocity field on the fine
mesh is obtained by solving an elliptic problem of the following form:

v = −K∇u, ∇ · v = q in E,

v · n|Γ = qc ·
Tγi

P

γj⊂Γ
Tγj

on Γ ⊂ ∂E, (24)

for every E ∈ TH . Here qc is the coarse-scale flux across Γ and Tγi
is

the fine-scale transmissibility of interface γi ⊂ Γ.
The only difference between the nested-gridding reconstruction and

the reconstruction procedure (19) for MsFVM is the local boundary
conditions. Our experience indicates that the nested-gridding method
is more robust. This is partially due to the fact that (19) may generate
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bi-directional flow across coarse-grid interfaces, whereas the nested-
gridding method produces flow only in the same direction as the coarse-
scale solution. In Section 5.5, we will show an example where unphysical
curls in the MsFVM velocity solution are eliminated if (19) is replaced
with the nested-gridding reconstruction.

5. Numerical Experiments

The main objective of this section is to study how well the respective
multiscale methods outlined above capture the influence of small-scale
heterogeneous structures (small-scale variations in K), and to what
extent errors in the obtained velocity fields impact the solution of (3)
with fw(S) = S. We will begin with a simple example illustrating the
typical performance of the methods. Then we assess the robustness of
the methods with regard to different coarse meshes, before considering
robustness with regard to different heterogeneous structures.

In all the experiments we employ no-flow boundary conditions. The
flow conditions are therefore defined by the source and sink terms.
Although we will interpret the sources and sinks as injection and pro-
duction wells, respectively, we will not employ well-models. Instead,
we define a well configuration with one injection well with a static
injection rate, and a set of production wells with static and equal
production rates. This way, we ensure that the total amount of flow
through the model is the same for all methods, and hence that errors
can be attributed solely to the ability to correctly resolve the impact of
small-scale heterogeneous structures. The reason why we have chosen to
not employ well-models, is that well models are incorporated differently
into the respective multiscale methods. Moreover, only limited attempts
have been made to design well-models for multiscale methods. Hence,
although we acknowledge that well-models may have a strong impact
on flow solutions, we feel that well-modelling technology for multiscale
methods is not yet mature enough for a comparison study, and that by
including well-models we could get ambiguous results.

To study how well the respective multiscale methods model the im-
pact of small-scale heterogeneous structures, we assess the accuracy of
the multiscale velocity solutions. To this end, we compute a reference
solution vref by applying the TPFA method on a mesh obtained by
refining the fine mesh four times in each direction, and project the
resulting solution onto the original fine mesh. We then measure velocity
solution errors using the following measure:

δ(v) = δ(vx,vy) =
‖vx − vref

x ‖2

‖vref
x ‖2

+
‖vy − vref

y ‖2

‖vref
y ‖2

. (25)
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16 Kippe, Aarnes and Lie

Here vx and vy are vectors containing the average velocities across the
fine-mesh interfaces in the x- and y-directions, respectively, and ‖ · ‖2

is the Euclidean norm.
In addition to comparing velocity fields directly using (25), we also

want to monitor the impact that errors in the velocity fields has on
the solution of the saturation equation (3). In this section we exclude
nonlinear effects and use λw = S and λo = 1−S. The resulting system
(2)–(3) is decoupled, and may be viewed as a model of passive tracer
injection with S denoting normalized tracer concentration. We compare
saturation fields at t = 0.3 PVI using

δ(S) =
‖S − Sref‖2

‖Sref‖2
, (26)

where the reference solution is computed on the four-times refined
mesh. Pore-volumes-injected (PVI) is a standard time-unit in reservoir
simulation that refers to the fraction of the total accessible pore volume
that has been injected into the domain.

We do not measure errors in the pressure solutions. There are two
main reasons for this. First, for incompressible flow simulation, as we
consider in this paper, the pressure does not appear explicitly in the
saturation equation (3), and therefore pressure influences flow scenarios
only implicitly. Secondly, pressure fields are usually much smoother
than the associated velocity fields, and, unlike velocity fields, primarily
reflect large-scale heterogeneous structures. The pressure is therefore
not very well suited to assess the ability to model the influence of
small-scale heterogeneous structures correctly.

5.1. 10th SPE Comparative Solution Project, Model 2

We first consider how the multiscale methods perform on a sequence
of two-dimensional models with permeability data from Model 2 from
the 10th SPE Comparative Solution Project [16], henceforth referred
to as the SPE10 model. This model consists of 60×220×85 cells, each
of size 20 ft × 10 ft × 2 ft. The top 35 layers represent a prograding
near-shore environment, with quite smooth variation in the coefficients.
The bottom 50 layers model a fluvial formation with a spaghetti of
narrow high-flow channels. Long correlation length structures, such
as the high-flow channels in the lower part of the SPE10 model, are
generally difficult to model adequately using conventional upscaling
methods,

For each layer, we place sources/sinks in a five-spot pattern, i.e.,
injection in the centre and production in the four corners, and solve (2)
using the multiscale methods on a 15× 55 coarse mesh. Figure 3 shows
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Figure 3. Velocity errors (top) and saturation errors (bottom) for the multiscale
methods when using a 15 × 55 coarse mesh on each layer of the SPE10 model.

velocity and saturation errors for each of the layers. The difference
between the smooth layers (1–35) and the fluvial layers (36–85) is strik-
ing. In the smooth region, all methods perform reasonably well, with
NSUM being the most accurate. For the fluvial region, the situation
is reversed, and NSUM is the least accurate method. This is due to
the fact that NSUM does not allow non-smooth fine-scale variations
on the coarse-mesh interfaces, and is therefore not able to represent
the channels accurately. We note that MsFVM yields large velocity
errors for a few of the fluvial layers. This problem may occur when
there is a large variation in sensitivity to pressure gradients in different
coordinate directions, as is the case when high-permeable channels are
aligned along one of the axes. We study this problem in detail in
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18 Kippe, Aarnes and Lie

Section 5.5. On average, MsMFEM is the most accurate method for
these models, but also ALGUNG generally performs well on all layers.
This is reasonable since ALGUNG iterates between a global and local
solution in order to capture effects of both small-scale and large-scale
structures. The latter is exemplified in the fluvial region, in which the
channels represent structures with long correlation lengths.

5.2. Multiscale Methods as Upscaling Methods

Since the multiscale methods are conservative on the fine scale, we may
integrate the velocity field and perform simulation on any coarser mesh,
thus utilizing the multiscale methods as upscaling methods. In the
following we compare saturations obtained using the multiscale meth-
ods with saturations obtained using a standard flow-based upscaling
method, the numerical pressure computation technique [18], and plain
harmonic-arithmetic averaging [12] (see e.g., [30]). The experimental
setup is as above, i.e., we solve a five-spot flow problem in each layer of
the SPE10 model, but we now try four different coarse meshes. For each
coarse mesh, we compute saturation distributions on both the coarse
mesh and on the underlying fine mesh and measure errors relative to
reference solutions on the corresponding meshes. To generate fine-scale
velocities for the local upscaling and simple averaging methods we
use the nested-gridding reconstruction, and we refer to the resulting
approaches as PUPNG and HANG, respectively.

The average errors over the smooth region (Layers 1–35) are shown
in Figure 4, while Figure 5 displays the average errors over the chan-
nelized region (Layers 36–85). The fine-scale results demonstrate that
the relative performance of the multiscale methods on the different
types of data is as seen above, also for other coarse-mesh resolutions.
Moreover, we see that for both smooth and channelized data, the two
simple upscaling approaches (PUPNG and HANG) perform nearly as
well as the multiscale methods when the saturation equation is solved
on the coarse mesh, but are outperformed by the multiscale methods
when the saturation equation is solved on the fine mesh. Thus, in terms
of accuracy, there is a clear benefit in utilizing the fine-scale details in
the multiscale velocity fields when solving the transport equation.

5.3. Robustness with Respect to the Coarse Mesh

We now select a single layer (Layer 85) from the SPE10 model, and
study how the multiscale methods perform for all possible coarse meshes
with resolutions above a prescribed minimum. Figure 6 shows bar plots
of the velocity errors for coarse-mesh resolutions larger than or equal
to 5 × 11. The scale is chosen differently for each of the four plots
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Figure 4. Multiscale and upscaling method saturation errors, δ(S), averaged over
the smooth layers of the SPE10 model, for different coarse meshes, when solving the
saturation equation on the coarse and fine meshes, respectively.
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Figure 5. Multiscale and upscaling method saturation errors, δ(S), averaged over
the channelized layers of the SPE10 model, for different coarse meshes, when solving
the saturation equation on the coarse and fine meshes, respectively.

to emphasize the fact that all four methods loose accuracy when the
aspect ratio of coarse-mesh elements becomes large. For MsFVM, the
loss of accuracy is severe. This is due to the same issues causing large
errors for a few of the layers in Section 5.1, since large aspect ratios
in the mesh also cause large variations in pressure gradient sensitivity.
This will be discussed more thoroughly in Section 5.5.

5.4. A Synthetic Test Suite

To perform a more systematic study of robustness, we consider three
different heterogeneity scenarios and use the sequential Gaussian sim-
ulation routine sgsim from GSLIB [17] to generate 100 realizations
of each. For each scenario, we apply the multiscale methods to two
different source/sink configurations and measure velocity and satura-
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Figure 6. Velocity errors δ(v) as a function of coarse-mesh resolution for each of the
multiscale methods. Also shown is the mean error δ(v) over the displayed resolutions.

tions errors as we did above, except that we now average over the 100
different realisations. Each sample model consists of 64×64 square cells
of unit size, and we consider four coarse meshes with unit aspect ratio:
4 × 4, 8 × 8, 16 × 16, and 32 × 32.

The first row of Figure 7 shows permeability fields for a typical
realization of each scenario. Scenario 1 represents the common situation
of log-normally distributed permeability with spatial correlation. Here
the dimensionless correlation length equals 0.1 in both directions, and
the variance of log K is 5.0. The last two scenarios represent models
with structures of very long correlation length, which are typically quite
difficult to upscale. In Scenario 2, the structures run vertically and in
Scenario 3 they are rotated 45◦ clockwise. The two different source/sink
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Figure 7. Permeability realizations from each of the three scenarios and the two
different source/sink configurations; crosses represent sources and circles represent
sinks.

configurations are shown in the second row of Figure 7. Configuration
A is the standard quarter five-spot configuration.

Figure 8 shows the mean relative errors in velocity and saturation
obtained by averaging over the 100 realizations for each scenario and
source/sink configuration. The errors are shown as a function of the
number of coarse-mesh cells in each direction. We note that velocity
errors are larger than the saturation errors and generally lack the con-
vergence behaviour of the latter. This is partly because the velocity
typically oscillates rapidly as a response to the fine-scale heterogeneity.

The relative performance of the methods depends on both perme-
ability data and source/sink configuration. The results reveal that all
methods give reasonably accurate solutions for the spatially correlated
log-normal permeability. For the scenarios with long correlation struc-
tures, we observe that MsFVM sometimes gives very inaccurate velocity
fields, and that NSUM generally gives the least accurate saturation
fields because of the limited ability to model variations in flow across
coarse-mesh interfaces. In terms of saturation errors, MsMFEM is, on
average, the most accurate method for all cases considered, except for
Scenario 3A. In the following sections we will elaborate on special issues
that cause the three multiscale methods to produce inaccurate results,
and indicate possible remedies.

Although the ALGUNG method is not the most accurate method
for any of the cases, it is generally quite robust in the sense that it
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Figure 8. Mean errors as function of the number of coarse-mesh cells in each
direction for Configuration A for Scenarios 1 to 3 (from top to bottom).

never produces very poor solutions. The robustness of ALGUNG can
be attributed to the fact that the method invokes global information.
Indeed, ALGUNG employs the solution of a global flow problem to
determine boundary conditions for extended local upscaling. A direct
comparison of ALGUNG with the (local versions of the) three multi-
scale methods is therefore unjust in a certain sense, since ALGUNG
exploits more information about the flow than the three multiscale
methods. In Section 7.2 we discuss how global information can also be
incorporated into the three multiscale methods to further increase their
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Figure 9. Mean errors as function of the number of coarse-mesh cells in each
direction for Configuration B for Scenarios 1 to 3 (from to to bottom).

robustness for cases where local flow patterns are largely influenced by
global effects.

5.5. MsFVM: High Aspect or Anisotropy Ratios

We have seen that MsFVM can produce inaccurate solutions, for in-
stance when applied to meshes with high aspect ratios or for perme-
ability fields with high-permeable channels on a low-permeable back-
ground. As an illustrative example, consider a realization from Sce-
nario 1A above, i.e., a quarter five-spot with spatially correlated log-
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Figure 10. Saturation fields for a problem with high aspect ratios. For MsFVM the
velocity error is δ(v) = 353.00 and the saturation error is δ(S) = 0.46. For MsMFEM
the velocity error is δ(v) = 1.41 and the saturation error is δ(S) = 0.57.

normal permeability, but scale the model such that ∆x = 100∆y.
Figure 10 shows saturation profiles obtained from velocity fields com-
puted using MsFVM and MsMFEM on a 4 × 4 coarse mesh together
with a reference solution computed on the underlying 64×64 fine mesh.
Although MsFVM produces a lower saturation error on the underlying
fine mesh than MsMFEM for this problem, we note that all fine-scale
details are lost in the MsFVM solution.

To understand why the saturation has been smeared out in Fig-
ure 10, consider the four basis functions supported in a single dual cell
E, e.g., the dark-shaded quadrant in Figure 1. The restriction of the
MsFVM pressure solution to E can now be expressed as follows:

p|E = p(xi−1,j−1)φ
E
i−1,j−1

+p(xi,j−1)φ
E
i,j−1 + p(xi−1,j)φ

E
i−1,j + p(xi,j)φ

E
i,j .

Here φE
i,j is the restriction of the basis function centred at xi,j to E.

Assuming that the permeability is smooth inside E, we now deduce
that each basis function is approximately bilinear and that the fluxes
associated with each basis function are roughly ten thousand times
larger in the y-direction than in the x-direction. Hence, if the pres-
sure gradient in the y-direction is small, e.g., p(xi−1,j−1) ≈ p(xi−1,j)
and p(xi,j−1) ≈ p(xi,j), then the total flux in the y-direction across

the coarse-scale interfaces ΓE inside E will be small relative to the
flux contribution from each basis function. Thus, when we force mass
conservation for a solution that is expressed as a linear superposition
of the basis functions, we frequently get situations where the fine-scale
fluxes are large relative to the associated coarse-scale flux, i.e, situations
where ∫

ΓE

|K∇p · n| ds≫

∣∣∣∣
∫

ΓE

K∇p · n ds

∣∣∣∣ .
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Figure 12. Water-cut curves measured for the problem with high aspect ratios.

This is because the contributions from φE
i−1,j−1 and φE

i,j−1 to the total

flux across ΓE approximately cancel the contributions from φE
i−1,j and

φE
i,j, respectively; see Figure 11. This implies that the boundary con-

ditions used in the reconstruction step (19) are oscillatory, and hence
that fine-scale fluxes across coarse-scale interfaces may oscillate.

Hence, since the fine-scale fluxes are used as boundary conditions for
the subgrid problems in the final reconstruction step, the velocity fields
that one obtains for this type of problem will typically contain circular
currents that cause the saturation profiles to be smeared out. However,
although the fine-scale velocity error is very large, the measured satura-
tion error is often comparable to that of the other multiscale methods.
This indicates that the problems that occur for MsFVM are fine-scale
phenomena. Indeed, if we view MsFVM as an upscaling method and
utilize only the coarse-scale fluxes to solve the saturation equation, then
one generally obtains reasonable solutions.

Somewhat counter-intuitively, the smeared saturation profile in Fig-
ure 10 obtained using MsFVM is more accurate in the δ(S) measure
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Figure 13. Saturation and velocity fields for a problem with high aspect ratios
obtained with MsFVM using the nested-gridding reconstruction. For comparison,
we show also the MsFVM velocity field that contains circular currents. Using the
nested-gridding reconstruction, the velocity error is reduced to δ(v) = 1.97, but the
saturation error has increased to δ(S) = 0.63.

than the corresponding solution obtained using MsMFEM. This in-
dicates that δ(S) is not always an appropriate measure. Indeed, for
real-life reservoir simulation one is more interested in computing func-
tions of pointwise (or localized) saturations in wells, such as water cuts,
cumulative production, etc. The MsMFEM saturation solution, which
clearly seems to capture the qualitative behaviour of the saturation
field better than MsFVM, gives significantly more accurate production
characteristics; see Figure 12. Hence, in this case, errors in production
characteristics better reflect the errors one expects from looking at the
saturation profiles in Figure 10.

To improve the prediction of localized production characteristics, it
is of interest to consider ways of removing the smearing effect that is
sometimes experienced when using MsFVM. If the coarse-scale fluxes
obtained using MsFVM are accurate, then the fine-scale solution will
be accurate provided that the boundary conditions used in the final
reconstructing step are appropriate. A natural approach to remove the
smearing effect is therefore to replace the MsFVM reconstruction pro-
cedure with the nested-gridding reconstruction (24). Figure 13 shows
that the circular currents in the velocity are removed using this option,
but the saturation error has now increased slightly. Other possible ap-
proaches are to apply nested-gridding in certain regions only, or try to
dampen the oscillations in the boundary conditions for the MsFVM re-
construction procedure. The latter approaches will typically introduce
a problem-dependent parameter.

5.6. MsMFEM: Quarter Five-Spot with Diagonal Channels

In Section 5.4, we saw that Scenario 3A was the most difficult problem
for MsMFEM. Since the method performed well on all cases for Sce-
nario 3B (and on a large number of similar cases not reported here), it
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Figure 14. Reference and MsMFEM saturation profiles for a quarter-of-a-five-spot
simulation of an idealized channel.
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Figure 15. Reference, MsMFEM, and MsFVM saturation profiles for a quarter-of-a–
five-spot simulation of the idealized channel in Figure 14, where the channel now
has been moved slightly in the vertical direction.

is reasonable to claim that MsMFEM does not suffer from problems on
flow cases where the major flow direction is not aligned with one of the
coordinate directions. Rather, the difficulties of Scenario 3A are related
to a special interplay between the quarter five-spot configuration, the
diagonal structures, and the MsMFEM coarse mesh.

Figure 14 shows an idealized model with a narrow high-permeability
channel along the diagonal. The permeability in the channel is 100 times
the background permeability. We see that the MsMFEM saturation
profile clearly bears the markings of the underlying 8× 8 coarse mesh.
To explain why the problem occurs, recall that the MsMFEM basis
functions are designed to model inter-element flow, i.e., flow from one
element to one of its neighbours. Since elements that share a common
vertex are not considered to be neighbours, the flow we get by MsM-
FEM is forced to take a detour into a neighbouring coarse element
before continuing along the channel.

The situation in Figure 14 is a sort of worst-case scenario for MsM-
FEM. Indeed, we have experienced mesh-related problems of this type
only for models where a majority of the flow occurs in narrow channels
that intersect corners of coarse elements. If we for instance perturb the
synthetic model depicted in Figure 14 slightly so that the channel hits
the midpoint of the element interfaces, then MsMFEM gives accurate
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results, as shown in Figure 15. In the figure, we have also included the
corresponding MsFVM solution to illustrate that these mesh-related
problems are not particular to MsMFEM. The midpoints of the coarse-
mesh interfaces correspond to the corners of the dual coarse mesh used
for computing MsFVM basis functions, and the channel hitting these
corners results in MsFVM showing the same symptoms as MsMFEM
did on the original model.

5.7. NSUM: Enabling Variation Across Element Interfaces

To be able to compute subgrid contributions independently, NSUM had
to localize the fine-scale spaces to each coarse element. This localiza-
tion is a severe limitation when applying the method to datasets with
long correlation structures. Indeed, long and thin correlated structures,
such as the flow channels in the SPE10 model, cannot be accurately
represented with the BDM1 velocity basis functions on the coarse mesh.
MsMFEM, on the other hand, represents inter-element flow in a better
way, but is based on a low-order method and will therefore have lower
accuracy in smooth regions, as shown in [3].

Although NSUM and MsMFEM are based on fundamentally differ-
ent ideas, it is remarkably straightforward to combine the two methods
to obtain a scheme that is more general than MsMFEM, in the sense
that it allows higher-order methods on the coarse scale, and at the
same time captures inter-element flow better than NSUM. To this end,
we only need to replace the RT0 part of the NSUM velocity space
VH by the MsMFEM velocity space Vms. More precisely, we replace
the NSUM velocity approximation space VH,h in (8) with the space

ṼH,h = VH,h − VRT0 + Vms.
We now make some observations that simplify the computations.

First, since the MsMFEM basis functions solve (2) locally, the fine-

scale responses u
j
h to these basis functions will be zero, as will the

response u0
h to the fine-scale variation in source terms (PWH

q in (13)
should be replaced by q). Thus, in addition to computing the MsMFEM
basis functions, we only need to solve local problems to compute the
responses associated with basis functions that are in VBDM1, but not
in Vms. The computational complexity of the combined approach will
therefore correspond roughly to the complexity of NSUM.

As we will see in Section 6 below, NSUM, and thus also the com-
bined NSUM–MsMFEM method, is significantly more expensive than
MsMFEM, but most of the computational time is spent solving local
problems. If we are willing to sacrifice some accuracy, we may obtain a
more efficient method by ignoring the nonzero fine-scale responses u

j
h.

The overall method will then correspond to MsMFEM plus a BDM1
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Table I. Velocity error δ(v) on the fluvial model for the two original and the
two combined approaches.

MsMFEM NSUM Ms-NSUM Ms-BDM1

5 × 11 0.54533 1.22102 0.48941 0.52428

10 × 22 0.60181 1.24661 0.50085 0.57322

15 × 55 0.55667 1.38514 0.42369 0.47356

30 × 110 0.38635 1.06916 0.20954 0.23694

method on the coarse scale, and the computational complexity will be
almost the same as for MsMFEM. In the following we refer to this
latter approach as Ms-BDM1, and write Ms-NSUM when we speak of
the approach where all fine-scale contributions are included.

To illustrate the performance of the combined approaches, we revisit
the fluvial reservoir model from Section 5.1 (i.e., Layers 36–85 of the
SPE10 model). The velocity errors δ(v) in Table I show the desired
improvement of the NSUM method. For this problem, the effect of
including all subgrid contributions, i.e., using Ms-NSUM instead of
Ms-BDM1, does not appear to be significant. Moreover, since Vms ⊂
ṼH,h, the two combined methods give more accurate velocity fields than
MsMFEM and the significance of the improvements increases with the
resolution of the coarse mesh. For fields with smoother heterogeneity,
numerous computer experiments not reported herein indicate that there
may be more to gain by using a higher-order method on the coarse scale;
see e.g., [26].

6. Computational Aspects

In this section we will discuss two important issues with the multiscale
methods: computational efficiency and implementational aspects. For
a discussion (mostly for MsMFEM) of two other important aspects—
flexibility with respect to mesh types and cell geometries and flexibility
with respect to subgrid solvers—we refer the reader to [3].

6.1. Computational Complexity

To discuss and compare the computational efficiency of the methods, we
perform a simplified order-of-magnitude analysis under the assumption
that the dominating factor is the solution of linear systems, with the
time to solve a linear system of size n× n given by,

t(n) = O(nα), (27)
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for some α > 1. In particular, we ignore the work associated with
determination of boundary conditions for local problems, numerical
quadrature, and assembly of the linear systems.

The validity of these assumption may vary for the different meth-
ods and also depend on the size of the fine and coarse meshes. For
large n, it is clear that (27) will dominate, but if the coarse mesh has
nearly the same resolution as the fine mesh, the multiscale methods will
need to solve many small linear problems. In this case, other factors
may become significant, such as the work associated with numerical
quadrature and assembly in NSUM, or the work associated with com-
puting boundary conditions for MsFVM. However, only considering the
solution of linear systems will give an idea of the potential efficiency of
the methods.

For simplicity, we restrict our analysis to Cartesian meshes in D
dimensions (D = 2, 3), and disregard special considerations at the
global boundary ∂Ω. Let N denote the total number of fine cells and
divide the mesh into Nc coarse cells, each consisting of Ns = N/Nc fine
cells. Figure 16 shows a summary of the steps for each of the methods.
For ALGUNG, m denotes the number of iterations needed to converge,
r is the radius (with unit length equal to the coarse mesh parameter
H) of the border region in the extended domains, and σ is the average
fraction of coarse elements that need to be updated in each iteration.
Estimates of the number of operations for each of the four methods are
summarized in the tabular at the bottom of Figure 16.

To better understand the meaning of these estimates, we consider
a specific model with a 128 × 128 × 128 fine mesh. Figure 17 shows
bar plots of the computational complexity as a function of coarse-mesh
size, for two different values of α. Here it is assumed that ALGUNG
converges in m = 3 iterations using border regions of size r = 1/2
(meaning that the boundary of the border region is obtained by con-
necting the cell centres of the nearest ring of surrounding coarse blocks,
see Figure 2), and that on average σ = 1/3 of the transmissibility values
needed to be updated in each iteration. We note that these assumptions
generally yield a less accurate version of ALGUNG than the one we
used above, since we then intended to show the potential accuracy of
the method, whereas we now intend to show the potential efficiency.
The plots indicate that MsMFEM and MsFVM are the most efficient
methods, while NSUM and ALGUNG are more costly. Since NSUM
has a significantly larger coarse-scale system than the other methods,
its efficiency on high-resolution coarse meshes can be quite sensitive to
the choice of linear solver. ALGUNG is more robust in this respect,
but with the implementation that we have used to obtain the results in
Section 5 it is by far the most expensive of the methods. However, as
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MsMFEM:

1. Compute basis functions: t1 ≈ D · Nc · t(2 · Ns)

2. Solve coarse-scale system: t2 ≈ t(D · Nc)

NSUM:

1. Compute subgrid contribution: t1 ≈ (2 · D2 + 1) · Nc · t(Ns)

2. Solve coarse-scale system: t2 ≈ t(D2 · Nc)

MsFVM:

1. Calculate transmissibilities: t1 ≈ 2D · Nc · t(Ns)

2. Solve coarse-scale system: t2 = t(Nc)

3. Reconstruct conservative velocity field: t3 = Nc · t(Ns)

ALGUNG:

1. Initial local upscaling: t1 ≈ D · Nc · t(Ns)

2. For m iterations:

a) Compute coarse-scale solution: t2,a = t(Nc)

b) Compute upscaled transmissibilities: t2,b ≈ σ · Nc · t((2r + 1)D · Ns)

3. Reconstruct fine-scale velocity field: t3 = Nc · t(Ns)

Method Local (fine scale) Global (coarse scale)

MsMFEM D · 2α · Nc · Nα
s + Dα · Nα

c

NSUM (2 · D2 + 1) · Nc · Nα
s + D2·α · Nα

c

MsFVM (2D + 1) · Nc · Nα
s + Nα

c

ALGUNG (D + 1 + (2r + 1)α·D · σ · m) · Nc · Nα
s + m · Nα

c

Figure 16. Summary of the simplified complexity analysis for the four methods.

mentioned in Section 4.2, a more efficient version of the algorithm can
be obtained by choosing quite small border regions, defined in terms
of rings of fine cells instead of rings of coarse cells [33]. Figure 17 also
displays the cost of solving (2) on the fine scale using the TPFA method
(16). It is clear that the efficiency of the multiscale methods relative
to a direct fine-scale solution depends strongly on the computational
complexity of the linear solvers available. For typical flow problems
arising in porous media with highly oscillating coefficients, the alge-
braic multigrid method (AMG) [32] has reported complexity scaling as
α ≈ 1.2, indicating that the situation in Figure 17b is realistic.
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Figure 17. Comparison of computational work for the different methods as a func-
tion of coarse mesh size and the parameter α. For ALGUNG we have assumed that
σ = 1

3
, m = 3 and r = 1

2
.

Figure 17b shows that, unless scale separation can be assumed, the
computational complexity of the multiscale methods is comparable to
the complexity of solving (2) directly on the fine scale using AMG.
Multiscale methods are, however, not targeted at solving a single el-
liptic equation. Instead, the multiscale methods discussed herein are
designed for dynamic problems where one needs to solve the same
type of (elliptic) equation multiple times. This situation arises in, for
instance, in two-phase and multiphase flow simulation. Then, the key
to computational savings is that subgrid computations only need to be
performed once, or infrequently throughout the simulations. Indeed,
Figure 17 shows that almost all of the computational work in the
multiscale methods is associated with solving local fine-scale problems.
It should also be noted that multiscale methods, as opposed to algebraic
multigrid algorithms, are almost trivial to parallelize, and can also be
used to decompose problems that are too large to fit into memory.

6.2. Comments on Implementation

During the last few years we have made several implementations (and
careful reimplementations) of various multiscale and upscaling-downscaling
methods, amongst others the four methods discussed above. Through
this work, we have gained valuable insight into several issues that affect
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how difficult the various methods are to implement. A discussion of the
implementational complexity of one method relative to another will (of
course) never be completely unbiased. Nevertheless, we will here try
to point out some issues, since the complexity of making an (efficient
and flexible) implementation is often difficult to read from the scientific
papers describing the method.

All methods are quite straightforward to implement for cases where
the coarse and the fine mesh are Cartesian. However, in our opinion
the finite-element methods are less difficult to implement. The domains
for computing pressure basis functions for MsFVM and the domains
used for the extended local upscaling in ALGUNG are generally chosen
differently along external boundaries and in the interior of the global
domain. This introduces special cases along external boundaries for
both MsFVM and ALGUNG. In addition, we claim that the need to
introduce a dual mesh complicates the implementation of MsFVM.
These issues are avoided in the multiscale methods based on a finite-
element formulation.

Additional complications arise for complex meshes, for instance, for
unstructured meshes and non-conforming meshes with non-matching
faces (that typically appear in geological models along large-scale frac-
tures and faults). For NSUM it may be difficult to define an approxi-
mation space VH on the coarse mesh; using an RT0 space or a BDM1
space will generally place strong restrictions on the coarse mesh. For
MsFVM it may be difficult to define a dual mesh and to generate
proper boundary conditions for the pressure basis functions. For AL-
GUNG it may be difficult to define proper interpolation operators that
map coarse-scale pressure solutions onto the boundary of regions for
extended local upscaling. These complicating factors are avoided in
MsMFEM. Hence, based on our experience we strongly believe that
MsMFEM is less complicated to implement, especially for complex
meshes. Indeed, the cells in the coarse mesh can in principle consist
of an arbitrary connected collection of cells from the fine mesh. In fact,
given a proper fine-scale solver on the fine mesh, the implementation
of multiscale methods based on finite elements is relatively straightfor-
ward, as shown in [3], regardless of whether the underlying fine-grid
solver uses a finite-element or a finite-volume formulation.

Another important question is the ease with which one can include
more complex flow physics. Here, however, it is not possible to make
an assessment of the various methods, since MsFVM, so far, is the only
method that has been extended to more complex physical models such
as the black-oil model.
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7. Two-Phase Flow Simulations

In Section 5 we demonstrated that given an elliptic problem of the
form (2), the multiscale methods introduced in Sections 3 and 4 may
be used as approximate fine-scale solution methods. Moreover, in the
previous section we discussed the computational complexity for a single

pressure solution and concluded that the multiscale methods are not
significantly faster than solving the fine-scale problem directly with a
(very) efficient linear solver. We also remarked that multiscale methods
for flow in porous media are targeted at multiphase flow applications
where one needs to solve an equation of the form (2) multiple times.

In this section we use the multiscale methods to solve time-dependent
pressure equations as part of incompressible two-phase simulations, for
which the pressure will depend on the saturation distribution through
λt and therefore needs to be recomputed repeatedly throughout the
simulation. The simulations will be performed on Layer 85 from the
SPE10 model; this is a fluvial layer where MsFVM does not suffer from
the problems described in Section 5.5. Source/sink terms are placed in
quarter five-spot pattern, and we define mobilities by

λw = MS2, λo = (1 − S)2, 0 ≤ S ≤ 1.

Hence, we use quadratic relative permeabilities and assume unit oil
viscosity. The coarse mesh used in all simulations below is 10 × 22.

To solve the system (2)–(3), we apply a non-iterated sequential split-
ting. This means that the pressure equation is solved at the current
time-step with total mobility computed using saturations from the
previous time-step. Next, the the saturations are convected forward
in time using the current velocities, and the new saturation values are
used to compute the pressure at the next time-step, and so on.

The dynamic character of an incompressible two-phase flow system
is often quantified by the ratio of the end-point values of the total mo-
bility, usually called the mobility ratio for brevity. In our case, we have
λt(0) = 1 and λt(1) = M , so that the end-point mobility ratio for the
problems considered in this section is M . Different end-point mobility
ratios give rise to very different flow scenarios. Indeed, with M > 1 we
get so-called unstable displacement flows, for which small-scale fingers
develop and move rapidly at the saturation front. In contrast, M < 1
gives so-called stable displacement flows, for which the saturation front
is quite sharp (piston-like displacement). We will apply the multiscale
methods to both stable and unstable displacement flows to demonstrate
their versatility.

The key to get enhanced efficiency when using multiscale methods is
to perform new subgrid computations only where it is necessary, e.g., in
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regions where large changes in the total mobility λt have occurred. The
main objective in this section is to reveal to what extent the subgrid
computations in the respective multiscale methods can be avoided. To
this end, we only consider MsMFEM, MsFVM, and Ms-NSUM (the
version of NSUM that is modified to enable variation across coarse-
mesh interfaces). We apply Ms-NSUM instead of NSUM because in
this framework the key to obtain accurate simulation results with low
computational cost is to build as much information as possible into the
initial approximation space VH,h.

There are two reasons why we do not consider ALGUNG. First, to
avoid the full iterative algorithm at each time-step, ALGUNG needs
to be supplied with a strategy for updating transmissibilities when
the total mobility changes. This can be done by, e.g., using averaged
values of the total mobility, but such approaches are, to our knowledge,
not well-documented in the literature. Secondly, to obtain a mass-
conservative velocity field on the fine mesh, one needs to perform
the nested-gridding reconstruction at each time-step. Hence, even if
we have a strategy for updating the coarse-scale transmissibilities at
each time step, ALGUNG still needs to perform subgrid computations
everywhere.

7.1. Efficient Two-Phase Flow Implementations

The purpose of this section is to demonstrate that one may obtain
accurate two-phase flow simulation results using MsMFEM, MsFVM,
and Ms-NSUM without recomputing the multiscale basis functions,
i.e., the velocity basis functions Ψij that span Vms for MsMFEM and
Ms-NSUM, and the pressure basis functions φj for MsFVM. For MsM-
FEM and Ms-NSUM one only needs to reassemble the mass matrix
that stems from the term (K−1uh, vh) in (5) (but with K replaced
with Kλt), and solve the corresponding coarse-scale system. Hence,
all subgrid computations that involve solving local elliptic problems
are made part of a preprocessing step. The reassembly of the mass
matrix involves only local matrix-vector products and is therefore a
computation with O(n) complexity, where n is the number of cells in
the fine mesh.

For MsFVM it is not possible to avoid all subgrid computations
without also suffering from severe loss of accuracy. Indeed, if all subgrid
computations were to be made part of a preprocessing step, one could
neither recompute the basis functions nor repeat the final reconstruc-
tion step (19). To achieve this, one could not update the coarse-scale
transmissibilities. This implies that the coarse-scale solution would not
change (unless the source and sink terms change) throughout the sim-
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ulation, i.e., one would obtain a static velocity field. This is a severe
limitation that generally gives a major loss of accuracy. Hence, in the
simulations reported below where we state that we do not update basis
functions, we do not recompute the pressure basis functions, but we do

update the coarse-scale transmissibilities according to changes in the
total mobility. We therefore need to perform the reconstruction step
(19) in all cells in the coarse mesh at every time-step.

As discussed in Section 5.5, the L2-saturation error (26) is not al-
ways an applicable measure for assessing the predictive qualities of a
numerical two-phase flow model. In addition to the saturation errors, we
therefore consider errors in the water-cut w(t); i.e., errors in the fraction
of water in the produced fluid as a function of time. We measure errors
in the water-cut using the following measure:

δ(w) = ‖w − wref‖2 / ‖w
ref‖2.

Figure 18 shows water-cut curves and corresponding saturation er-
rors for a stable displacement with M = 0.1. We observe that the
accuracy is slightly improved by recomputing the basis functions at
each time step. Moreover, we see that the methods based on finite
elements give larger errors in water-cut than MsFVM when the basis
functions are never updated. This is to be expected since MsFVM
reconstructs the conservative fine-scale velocity field in every step, and
is therefore able to account for the large variations in total mobility as
a strong saturation front passes through a coarse cell.

Next we consider mobility ratio M = 10, giving an unstable dis-
placement. Figure 19 demonstrates that unstable displacement flow
scenarios are actually simpler for the multiscale methods. Indeed, all
methods give highly accurate saturation solutions without recomputing
basis functions. For high end-point mobility ratios, the displacement
profile consists of a weak water shock followed by a smooth and slowly
increasing rarefaction wave. In other words, there are no abrupt changes
in total mobility within coarse cells, and it is therefore sufficient to
account for mobility changes on the coarse scale. This is an advantage
for the methods based on finite elements, since they do not need to
perform subgrid calculations at all in these situations.

Adaptive Simulation with MsFVM

In the previous section we remarked that it is not possible to make all
subgrid computations for MsFVM part of a preprocessing step with-
out significant loss of accuracy. Clearly, this makes MsFVM much less
efficient than the corresponding versions of MsMFEM and Ms-NSUM.
It has been shown [24, 23] that MsFVM can be made more efficient by
selectively updating basis functions and coarse-scale transmissibilities
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Figure 18. Saturation errors and water-cuts for the whole production period and
zoomed in around the water breakthrough for mobility ratio M = 0.1. The basis
functions are recomputed at each time step (left) and never recomputed (right).
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Figure 19. Water-cuts and saturation errors for mobility ratio M = 10. The basis
functions are only computed initially.
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only in regions with large changes in mobility. In this approach, one
introduces a second set of basis functions to express the reconstructed
velocity field as a linear superposition of basis functions, i.e., analo-
gously to the way the fine-scale velocity is obtained in MsMFEM and
Ms-NSUM. Unfortunately, as explained in Section 4.1, the number of
additional basis functions needed is quite large. A direct reconstruction
at every step may therefore be more efficient unless the fraction of
updated basis functions is very small [23].

The authors have observed that it tends to be quite difficult to
make the adaptive version of MsFVM robust; by recomputing only a
portion of the basis functions and coarse-scale transmissibilities, one
frequently obtains inaccurate results. Hence, to avoid severe loss of
accuracy, we recompute all coarse-scale transmissibilities at each time
step, and thereby perform a direct reconstruction using (19) in all cells
in the coarse mesh at each time-step. To make this version of MsFVM as
efficient as possible, we do not recompute the pressure basis functions,
since these generally have less impact on the results.

Adaptive Simulation with MsMFEM and Ms-NSUM

For mobility ratio M < 1, i.e., for cases where the viscosity of the
wetting fluid is larger than the viscosity of the non-wetting fluid, it
was observed in [1] that enhanced accuracy can be obtained by recom-
puting basis functions in regions where the total mobility has changed
significantly since the previous update. In particular, it was proposed
that all basis functions that are supported in a coarse-mesh element Ei

with
1

|Ei|

∫

Ei

λt(x) dx > ǫ,

for some threshold ǫ should be recomputed. In Figure 20 we show the
results obtained with this approach for M = 0.1 and ǫ = 0.2, which
corresponds to updating on average 10% of the basis functions.

Comparing with the results depicted in Figure 18 we see that one
obtains significantly more accurate water-cut curves for both MsMFEM
and Ms-NSUM using the adaptive strategy. However, it should be noted
that the cost of reconstructing on average 10% of the basis functions
is about half the computational cost of performing the reconstruction
(19) for MsFVM in all blocks. The adaptive version of MsMFEM and
Ms-NSUM is therefore only slightly less expensive than MsFVM with
no pressure basis functions recomputed.
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Figure 20. Water-cuts zoomed in around the water breakthrough and saturation
errors for the finite-element based multiscale methods when updating basis functions
near the saturation front. The mobility ratio is M = 0.1, and on average 10% of the
basis functions are updated.

7.2. Utilizing an Initial Fine-Scale Velocity Solution

In Section 5.4 we argued that the relatively robust behaviour of the
ALGUNG method with respect to different flow configurations could
be attributed to the use of global information to build local boundary
conditions. From this observation, we may find it natural to ask if the
accuracy of the multiscale methods can be improved by building more
information into the local subgrid problems. For instance, is it possible
to incorporate global effects that stem from global boundary conditions,
well configurations, and large correlation lengths as seen in reservoirs
with channelized heterogeneity structures?

For MsMFEM and MsFVM it was demonstrated in [1] and [19],
respectively, that it is indeed possible to exploit global information
from an initial fine-scale solution to enhance accuracy. For MsMFEM,
this is done by adding an extra “boundary” condition in (6). If v is the
initial fine-scale velocity solution, one requires that

ψij · nij =
v · nij∫

Γij
v · nij ds

on Γij ,

and thereby splits the calculation of basis functions into two separate
problems in Ei and Ej , respectively. A corresponding version of Ms-
NSUM is obtained by replacing the RT0 part of VH with the span of
the basis functions used in the improved MsMFEM.

Similarly, an initial global fine-scale pressure solution p may be
used to specify boundary conditions for the pressure basis functions
in MsFVM. To specify the basis function φi,j associated with node xi,j
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Figure 21. Water-cuts and saturation errors for MsMFEM, MsFVM and Ms-NSUM
on Layer 68 from the SPE10 model when using standard boundary conditions for
the basis functions.

inside the dark-shaded quadrant in Figure 1, one requires that

b(x) =

{
p(x)−p(xi,j−1)

p(xi,j)−p(xi,j−1) on Γ2,
p(x)−p(xi−1,j)

p(xi,j)−p(xi−1,j)
on Γ4.

As before, homogeneous boundary conditions are used on Γ1 and Γ3.
To demonstrate the utility of these approaches, we consider Layer

68 from the SPE10 model, which is quite difficult for all of the multi-
scale methods according to Figure 3. In particular, this was the only
layer where MsMFEM produced saturation error significantly above
the level of its general performance. We use the experimental setup
from Section 5.1, i.e., five-spot source configuration and a 15 × 55
coarse mesh, and choose a mobility ratio of M = 10 to eliminate issues
related to updating of basis functions from the discussion. Figure 21
shows the saturation error and water-cuts for the three producers where
there were significant errors, when only local information is used in the
multiscale solutions. For MsMFEM and Ms-NSUM, the large saturation
errors initially indicate that some trends are not appropriately captured
by the finite-element basis functions. The corresponding results when
utilizing an initial fine-scale solution are displayed in Figure 22 and
demonstrate improved overall accuracy for all of the methods.
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Figure 22. Water-cuts and saturation errors for MsMFEM, MsFVM and Ms-NSUM
on Layer 68 from the SPE10 model when global information is used to define
boundary conditions for the basis functions.

The results obtained here reflect that by incorporating global infor-
mation from an initial fine-scale solution one obtains methods capable
of capturing effects that normally are not resolved properly, such as
large-scale flow barriers (see [2] for a discussion of MsMFEM’s accuracy
around low permeable obstacles). In fact, we find invariably that the
saturation and water-cut errors are considerably reduced when initial
fine-scale solutions are utilized. We would also like to point out that
utilizing an initial fine-scale solution alleviates the problems in Sec-
tions 5.5 and 5.6 for MsFVM and MsMFEM, respectively. However,
for MsFVM we have encountered examples where the version using an
initial fine-scale solution introduces velocity instabilities even though
the original approach does not, and we can therefore only recommend
it as a complement to other stabilization procedures.

As discussed in Section 6, obtaining a single fine-scale solution is
in practice less computationally demanding than constructing the full
set of basis functions. Hence, provided the global flow patterns do not
change significantly during the simulation, utilizing an initial fine-scale
solution can increase the accuracy at a relatively low computational
overhead. However, if flow conditions change frequently, e.g., due to
shut down of wells, the local approach may be preferable. Alterna-
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tively, one could exploit information from initial fine-scale solutions
from generic, axes-oriented flows, similar in spirit to what was done in
the original local-global upscaling method [15].

8. Concluding Remarks

In this paper we have reviewed three multiscale methods applicable
to elliptic problems in porous media flow; the two-scale conservative
subgrid method (NSUM) [5, 6]; the multiscale mixed finite-element
method (MsMFEM) [13, 1]; and the multiscale finite-volume method
(MsFVM) [25, 24]. As a benchmark for the multiscale methods, we
use the adaptive local-global upscaling method [14] combined with a
nested-gridding downscaling approach (ALGUNG), which is a state-of-
the-art upscaling-downscaling approach with multiscale characteristics.
The performance of the methods is compared in terms of accuracy, ro-
bustness, computational complexity, implementational complexity, and
the ability to accelerate fine-scale two-phase flow simulations.

The results presented in the paper demonstrate that the multiscale
methods are quite robust when applied to problems with spatially
correlated log-normal permeability fields. For channelized permeability
fields, so-called fluvial formations, the accuracy of the methods differ.
MsMFEM and ALGUNG appear to be robust and produce accurate
solutions. NSUM generally gives lower accuracy because it is not able
to resolve the channels correctly. Finally, MsFVM can in some cases
produce velocity solutions with local circular currents. For these cases,
MsFVM produces solutions that are reasonable on a coarse-scale, but
fails to give correct flow patterns on a fine scale. We presented ways of
remedying the shortcomings of NSUM and MsFVM. We also showed
that MsMFEM (and MsFVM) can suffer from loss of accuracy due to
grid effects in a special case.

To assess the computational complexity of the methods, we have
presented complexity estimates that, along with our own experience,
indicate that MsMFEM and MsFVM are less expensive than NSUM
and ALGUNG. The latter methods can, however, be made more ef-
ficient by sacrificing some accuracy, where the gain in computational
efficiency is significantly larger than the accuracy loss.

In our experience, all four methods are more or less equally straight-
forward to implement for Cartesian meshes, although MsFVM and
ALGUNG have some mesh-related issues that make the resulting codes
more voluminous. For unstructured meshes, meshes with non-matching
faces, or meshes with complex cell geometries, we claim that MsM-
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FEM is significantly less complicated to implement (see e.g., [3] for
implementations of MsMFEM on corner-point grids).

The multiscale methods considered in this paper can be viewed both
as upscaling methods and as approximate fine-scale solvers. As upscal-
ing methods they generally offer equally or more accurate solutions
than traditional upscaling methods. As approximate fine-scale solvers,
they offer a tool to compute high-resolution velocity fields for dynamic
flow simulations at a low computational cost.

In particular it is shown that using MsFVM, MsMFEM and a spe-
cial version of NSUM, it is possible to obtain accurate two-phase flow
simulations without performing all the local subgrid computations at
each time step. For MsMFEM it is even possible to get accurate results
by performing the subgrid computations as part of a preprocessing
step. For MsFVM similar results can be obtained by performing only a
small portion of the subgrid computations during the simulation. In this
way, these multiscale methods offer a tool to accelerate simulations of
multiphase flow on high-resolution geological models, and can therefore
bring the industry closer to having an Earth Model shared between the
reservoir engineers and the reservoir geologists.
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