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Summary. Flow in petroleum reservoirs occurs on a wide variety of physical scales.
This poses a continuing challenge to modelling and simulation of reservoirs since
fine-scale effects often have a profound impact on flow patterns on larger scales.
Resolving all pertinent scales and their interaction is therefore imperative to give
reliable qualitative and quantitative simulation results. To overcome the problem
of multiple scales it is customary to use some kind of upscaling or homogenisation
procedure, in which the reservoir properties are represented by some kind of averaged
properties and the flow is solved on a coarse grid. Unfortunately, most upscaling
techniques give reliable results only for a limited range of flow scenarios. Increased
demands for reservoir simulation studies have therefore led researchers to develop
more rigorous multiscale methods that incorporate subscale effects more directly.

In the first part of the paper, we give an overview of some of the many scales
that are considered important for flow simulations. Next, we present and discuss
several upscaling approaches that have played a role in the history of reservoir
simulation. In the final part, we present some more recent approaches for modelling
scales in the flow simulations based upon the multiscale paradigm. We conclude with
a discussion of benefits and disadvantages of using multiscale methods, rather than
using traditional upscaling techniques, in reservoir simulation.

1 Introduction

Simulation of petroleum reservoirs started in the mid 1950’s and has become
an important tool for qualitative and quantitative prediction of the flow of
fluid phases. Today, computer models have a widespread use as a complement
or even a competitor to field observations, pilot field and laboratory tests,
well testing and analytical models. However, even though reservoir simulation
can be an invaluable tool to enhance oil-recovery, the demand for simulation
studies depends on many factors. For instance, petroleum fields vary in size
from small pockets of hydrocarbon that may be buried just a few meters
beneath the surface of the earth, to huge reservoirs stretching out several
square kilometres beneath remote and stormy seas. This illustrates that the
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value of reservoir simulation studies depends on what kind of extra profit one
can expect by increasing the oil-recovery from a given reservoir.

A typical North Sea reservoir is located some two kilometres under the
sea floor and several hundred kilometres offshore with a sea depth between
one hundred and three hundred meters. These reservoirs are often fairly large
horizontally, but the vertical dimensions of the zones carrying hydrocarbon
may be just a few meters. The rock structures are usually layered with different
mixtures of rock types (called facies) in different layers forming an irregular
pattern. In addition, geological activity has created faults and fractures that
highly influence flow properties. On the other end of the length scale, the fluids
in the reservoir are embedded in porous formations like water in a sponge, and
flow through small channels formed by the void space between rock particles.
The volume fraction of the porous media formations consisting of pores open
to fluid flow (henceforth called porosity) is typically in the range 0.1–0.3. To
produce petroleum from the reservoir, one drills wells into the rock formations
carrying the petroleum resources. In simple terms, a well can be considered as
a hole with a diameter of about ten inches extending several kilometres into
the earth and through the reservoir. The hole is lined with a casing that is
perforated at places where the well is to produce or inject fluids.

We shall let this type of reservoir provide a conceptual model of a
petroleum reservoir on which we want to perform simulation studies. Flow
processes in this type of reservoir involve a large gap in scales. On one end
we have the kilometre scale of the reservoir. On the other end we have the
micrometer scale of the pore channels. In between we find, for instance, the
centimetre scale of the wells. To obtain a model of the reservoir, one builds
geological models that attempt to reproduce the true geological heterogeneity
in the reservoir rock. To create a geological model that properly reflects all
pertinent scales that impact fluid flow is, however, impossible. Indeed, the size
of a grid block in a typical geological grid-model is in the range 10–50 m in the
horizontal direction and 0.1–1 m in the vertical direction. Thus, a geological
model is clearly too coarse to resolve small scale features such as radiant flow
around wells, and flows through narrow high permeable channels. Neither can
we expect to resolve properly important geological features such as fractures
and faults. Nevertheless, from a simulation point of view, geological models
are too complex, i.e., they contain more information than we can exploit in
simulation studies. Indeed, in simulation models we usually use a coarsened
grid model, with the possible exception of regions in the proximity of wells,
and variations in the geological model occurring at length scales below the
simulation grid block scale are normally replaced with averaged or upscaled
quantities.

Many fields of science face the problem of multiple scales and share the
need for upscaling or homogenisation3. The main purpose of this chapter is to

3Homogenisation and upscaling are used interchangeably in the scientific liter-
ature to describe procedures for generating coarsened reservoir models. However,
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Fig. 1. Layered geological structures as seen in these pictures typically occur on
both large and small scales in petroleum reservoirs. Pictures are courtesy of Silje
Søren Berg, University of Bergen.

discuss alternative strategies for modelling reservoir heterogeneity at the scale
of the geological model in a coarsened model suitable for fluid flow simulation.
We review and discuss some historically important upscaling techniques in
Section 3. The basic motivation behind these upscaling regimes is to create
simulation models that produce flow scenarios that are in close correspondence
with the flow scenarios that one would obtain by running simulations directly
on the geological models. Unfortunately, experience has shown that it is very
difficult to design a robust upscaling scheme that gives somewhat reliable
results for all kinds of flow scenarios. Therefore, due to the limitations of
upscaling, a new type of methodology based on so-called multiscale methods
has started to gain popularity. The multiscale paradigm generally refers to a
class of methods that incorporate fine-scale information into a set of coarse-
scale equations in a way that is consistent with the local properties of the
differential operators. In Section 4 we present a recent class of methods that
seek to incorporate subscale information more directly in the flow simulation
as a means to avoid the use of upscaling. But before we discuss different
upscaling and multiscale approaches for simulating flow in reservoirs, we will
identify some scales of importance.

2 Models and Scales in Porous Media Flow

In petroleum reservoirs sedimentary structures are formed when sediments
are deposited to form thin layers called laminae. Due to alternating layers
of coarse and fine-grained material, laminae may exhibit large permeability
contrasts on the mm-cm scale, but these effects are usually left unresolved

homogenisation is also the name of a specific mathematical theory (for asymptotic
analysis of periodic structures) that has been applied, by coincidence, to upscaling
geological models for reservoir simulation. Thus, to avoid confusion we will only use
the term upscaling for this coarsening procedure.
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in geological models. Laminae are stacked to form beds, which are the small-
est stratigraphic units. The thickness of beds varies from millimetres to tens
of meters, and different beds are separated by thin layers with significantly
lower permeability. Beds are, in turn, grouped and stacked into parasequences
or sequences (parallel layers that have undergone similar geologic history).
Parasequences represent the deposition of marine sediments, during periods
of high sea level, and they tend to be somewhere in the range from meters to
tens of meters thick and have a horizontal extent of several kilometres.

The trends and heterogeneity of parasequences depend on the depositional
environment. For instance, whereas shallow marine deposits may lead to rather
smoothly varying permeability distributions with correlation lengths in the
order of 10–100 meters, fluvial reservoirs may contain intertwined patterns of
narrow high-flow channels on a background of significantly lower permeability.
Fractures and faults, on the other hand, are created by stresses in the rock. A
fault is a planar surface in the rock, across which the rocks have been displaced.
A fracture is a crack or a surface of breakage, across which the rocks have
not been displaced. These structures may have higher or lower permeability
than the surrounding rocks. The reservoir geology can also consist of other
structures like for instance shale layers, which consist of impermeable clays
and are the most abundant sedimentary rock.

We have seen that geological structures in petroleum reservoirs occur at
a range of length scales. Moreover, it is known that geological structures at
all scales can have a profound impact on fluid flow. Hence, ideally geological
features that span across all types of length scales should be reflected in the
geological reservoir model. However, since a geological model can only cope
with a certain range of scales, we need to discretise with respect to scale,
try to identify the most important scales, and develop different models when
studying different phenomena. Choosing scales is often done by intuition and
experience, and it is hard to give very general guidelines, but an important
concept in choosing model scales is the notion of representative elementary
volumes (REVs). This concept is based on the idea that petrophysical flow
properties (typically porosity and permeability) are constant on some intervals
of scale, see Figure 2. REVs, if they exist, mark transitions between scales of
heterogeneity, and present natural length scales for modelling.

In order to identify a range of length scales where REVs exist for porosity
(or permeability), we move along the length-scale axis from the micrometer
scale of the pores toward the kilometre scale of the reservoir. At the pore scale
level the porosity is a rapidly oscillating function equal to zero (in solid rock)
and one (in the pores). Hence, obviously no REVs can exist at this scale. At
the next characteristic length scale, the core scale level, we find laminae de-
posits. Since the laminae consist of alternating layers of coarse and fine grained
material, we cannot expect to find a common porosity value for the different
rock structures. Moving further along the length scale axis we may find long
thin layers, perhaps extending throughout the entire horizontal length of the
reservoirs. Each of these individual layers may be nearly homogeneous since
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Fig. 2. Flow properties may be approximately constant on scale intervals.

Fig. 3. Various scales in a reservoir.

they are created by the same geological process, and probably contain ap-
proximately the same rock types. Hence, at this level it sounds reasonable to
speak of REVs. If we move to the high end of the length scale axis we start to
group more and more layers into families of layers with different sedimentary
structures, and porosity REVs will probably not exist.

The previous discussion gives some grounds to claim that reservoir rock
structures contain scales where REVs may exist. However, from a general
point of view the existence of REV’s in porous media is highly disputable.
For instance a faulted reservoir with faults distributed continuously both in
length and size throughout the reservoir, will typically have no REV. More-
over, no two reservoirs are identical so it is difficult to capitalise from previous
experience. Indeed, porous formations in reservoirs may vary greatly, also in
terms of scales. Nevertheless, the concept of REVs can serve as a guideline
when deciding what scales to model. In the following we will discuss four
different model classes, as shown in Figure 3: pore scale models, core scale
models, geological models and simulation models.
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Fig. 4. Graphical illustration of a pore network.

2.1 Pore-Scale Model

Modelling flow at the pore scale is quite different from modelling flow at the
reservoir scale. On the reservoir scale, the fundamental equations are continu-
ity of fluid phases and Darcy’s law, as we will see below. Darcy’s law basically
assumes that the primary forces driving the flow are the pressure gradient
and gravity. Flow at the pore scale, on the other hand, is mainly dominated
by capillary forces, although gravitational forces can still be important. We
therefore need a different set of equations to model flow at the pore scale.
Since it would be off-track to give a thorough presentation of pore-scale flow
modelling, we give only a very simplified overview.

A pore-scale model (as illustrated in Figure 3) may be about the size of
a sugar cube. At the pore scale the porous medium is usually represented
by a graph (see e.g., [52]). A graph is a pair (V,E), where V is a set whose
elements are called vertices (or nodes), and E is a subset of V × V whose
elements are called edges. The vertices are taken to represent pores, and the
edges represent pore-throats (i.e., connections between pores), see Figure 4.

The flow process where one fluid invades the void space filled by another
fluid is generally described as an invasion–percolation process. Invasion is the
process where a phase can invade a pore only if a neighbouring pore is already
invaded. For each pore there is an entry pressure (i.e., the threshold pressure
needed for the invading phase to enter the pore) depending on the size and
shape of pores, the size of pore throats, as well as other rock properties. Among
those pores neighbouring invaded pores, the invading phase will first invade
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the pore with lowest threshold pressure. This gives a way of updating the set of
pores neighbouring invaded ones. Repeating the process establishes a recursive
algorithm, determining the flow pattern of the invading phase. In the invasion
process we are interested in whether a phase has a path through the model
(i.e., percolates) or not, and the time variable is often not modelled at all. For
pore networks this is misleading, because we are also interested in modelling
the flow after the first path through the model has been established. After a
pore has been invaded, the saturations in the pore will vary with pressures
and saturations in the neighbouring pores (as well as in the pore itself). New
pores may also be invaded after the first path is formed, so that we may get
several paths through the model where the invading phase can flow. Once
the invading phase percolates (i.e., has a path through the model) we can
start estimating flow properties. As the simulation progresses we will have an
increasing saturation for the invading phase, which can be used to estimate
flow properties at different saturation compositions in the model.

As mentioned initially this overview was simplified. To elaborate on the
underlying complexity we need to mention wettability. When two immiscible
fluids (such as oil and water) contact a solid surface (such as the rock), one of
them tends to spread on the surface more than the other. The fluid in a porous
medium that preferentially contacts the rock is called the wetting fluid. Note
that wettability conditions are usually changing throughout a reservoir. The
flow process where the invading fluid is non-wetting is called drainage and
is typically modelled with invasion–percolation. The flow process where the
wetting fluid displaces the non-wetting fluid is called imbibition, and is more
complex, involving effects termed film flow and snap-off. A further presenta-
tion is beyond the scope here, but the interested reader is encouraged to see
[52] and references therein.

From an analytical point of view, pore-scale modelling is very important
as it represents flow at the fundamental scale (or more loosely, where the flow
really takes place), and hence provides the proper framework for understand-
ing the fundamentals of porous media flow. From a practical point of view,
pore-scale modelling has a huge potential. Modelling flow at all other scales
may be seen as averaging of flow at the pore scale, and properties describing
the flow at larger scales are usually a mixture of pore-scale properties. At
larger scales, the complexity of flow modelling is often overwhelming, with
large uncertainties in determining flow parameters. Hence being able to single
out and estimate the various factors determining flow parameters is invalu-
able, and pore-scale models can be instrumental in this respect. However, to
extrapolate properties from the pore scale to an entire reservoir is very chal-
lenging, even if the entire pore space of the reservoir was known (of course, in
real life you will not be anywhere close to knowing the entire pore space of a
reservoir).
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Fig. 5. Three core plugs with diameter of one and a half inches, and a height of five
centimetres.

2.2 Core-Scale Model

When drilling a well it is common to bring up parts of the rock from the well
trajectory. Three such rock samples are shown in Figure 5. These rock samples
are called cores or core plugs, and are necessarily confined (in dimension) by
the radius of the well, although they lengthwise are only confined by the
length of the well. Cores taken from a well can give detailed information at
scales restricted only by human apparatus. For instance, using thin slices of
the rock one may study the pore structure with an electron microscope with
micrometer resolution. However, it is common to do also flow experiments
on cores (e.g., flood them with water in a laboratory), thereby obtaining flow
properties for the core, e.g., relative permeability curves and capillary pressure
curves.

Properties from core-scale flow experiments are often used as input for the
geological model, or directly for the simulation model. Cores should therefore
ideally be representative for the heterogeneous structures that one may find
in a typical grid block in the geological model. However, flow experiments
are usually performed on relatively homogeneous cores that rarely exceed one
meter in length. Cores can therefore seldom be classified as representative el-
ementary volumes. For instance, cores may contain a shale barrier that blocks
flow inside the core, but which does not extend much outside the well bore
region. Thus, if the core was slightly wider, then there would be a passage
past the shale barrier. Flow at the core scale level is also more influenced by
capillary forces than flow on a reservoir field scale.

This discussion shows that the problem of extrapolating information from
cores to build a geological model is largely under-determined. Supplementary
pieces of information are also needed, and the process of gathering geological
data from other sources is described next.
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2.3 Geological Model

The two key characteristics that affect the fluid flow in a reservoir rock are
its porosity and permeability. Porosity is the fraction of space not occupied
by the rock, i.e., the volume fraction occupied by the phases (oil, water and
gas). Permeability is a measure of how easy fluid flows through the rock. The
main purpose of the geological model is therefore to provide the distribution
of these petrophysical parameters, besides giving location and geometry of
the reservoir. Thus, a geological model is a conceptual, three-dimensional rep-
resentation of a reservoir and consists of a set of grid cells that each has a
constant porosity and a corresponding constant permeability tensor. The ten-
sor is represented by a matrix where the diagonal terms represent direct flow
(i.e., flow in one direction caused by a pressure drop in the same direction),
and the off-diagonal terms represent cross-flow (flow caused by pressure drop
in directions perpendicular to the flow). Thus, a full tensor is needed to model
local flow in directions at an angle to the coordinate axes. For example, in
a layered system the dominant direction of flow will generally be along the
layers. Thus, if the layers form an angle to the coordinate axes, then a pres-
sure drop in, say, the x–coordinate direction will typically produce flow at an
angle to x–direction. This type of flow can be modelled correctly only with a
permeability tensor with nonzero off-diagonal terms.

Geological models are built using a combination of stratigraphy (the study
of rock layers and layering), sedimentology (study of sedimentary rocks), and
interpretation of measured data. Unfortunately, building a geological model
for a reservoir is like finishing a puzzle where most of the pieces are miss-
ing. Ideally, all available information about the reservoir is utilised, but the
amount of data available is limited due to costs of acquiring them. Seismic
surveys give a sort of X–ray image of the reservoir, but they are both expen-
sive and time consuming, and can only give limited resolution (you cannot
expect to see structures thinner than ten meters from seismic data). Wells
give invaluable information, but the results are restricted to the vicinity of
the well. While seismic has (at best) a resolution of ten meters, information
on a finer scale are available from well-logs. Well-logs are basically data from
various measuring tools lowered into the well to gather information, e.g., ra-
diating the reservoir and measuring the response. Even well-logs give quite
limited resolution, rarely down to centimetre scale. Detailed information is
available from cores taken from wells, where resolution is only limited by
the apparatus at hand. The industry uses X-ray, CT-scan as well as electron
microscopes to gather high resolution information from the cores. However,
information from cores and well-logs are from the well or near the well, and
extrapolating this information to the rest of the reservoir is subject to great
uncertainty. Moreover, due to costs, the amount of data acquisitions made is
limited. You cannot expect well-logs and cores to be taken from every well.
All these techniques give separately small contributions that can help build a
geological model. However, in the end we still have very limited information
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available considering that a petroleum reservoir can have complex geological
features that span across all types of length scales from a few millimetres to
several kilometres.

In summary, the process of making a geological model is generally strongly
under-determined. It is therefore customary to use geostatistics to estimate the
subsurface characteristics between the wells. Using geostatistical techniques
one builds petrophysical realisations in the form of grid models that both hon-
our measured data and satisfy petrophysical trends and heterogeneity. Since
trends and heterogeneity in petrophysical properties depend strongly on the
structure of sedimentary deposits, high-resolution petrophysical realisations
are not built directly. Instead, one starts by building a facies model. A fa-
cies is the characteristics of a rock unit that reflects its origin and separates
it from surrounding rock units. By supplying knowledge of the depositional
environment (fluvial, shallow marine, deep marine, etc) and conditioning to
observed data, one can determine the geometry of the facies and how they
are mixed. In the second step, the facies are populated with petrophysical
data and stochastic simulation techniques are used to simulate multiple re-
alisations of the geological model in terms of high-resolution grid models for
petrophysical properties. Each grid model has a plausible heterogeneity and
can contain from a hundred thousand to a hundred million cells. The col-
lection of all realisations gives a measure of the uncertainty involved in the
modelling. Hence, if the sample of realizations (and the upscaling procedure
that converts the geological models into simulation models) is unbiased, then
it is possible to supply predicted production characteristics, such as the cu-
mulative oil production, obtained from simulation studies with a measure of
uncertainty.

2.4 From Geomodel to Simulation Model

For full sized reservoirs the traditional approach has been to model geological
structures with a geological model, and fluid flow with a coarser simulation
model. Indeed, core models and pore models are designed only to give input to
the geological model and perhaps to derive flow parameters for the simulation
model. As we have seen, geological models are designed to reproduce the true
geological heterogeneity in the reservoir rock and possibly incorporate a mea-
sure of inherent uncertainty. The grid cells in the geomodels are considered as
a representative volume having certain geometry and constant petrophysical
properties like porosity and permeability. The petrophysical properties are
parameters in the equations governing fluid flow, and the size of the grid cells
are typically of order 10–50 m in the horizontal directions and 10 cm to 10 m
in the vertical direction, allowing the geomodel to capture the most impor-
tant variations and characteristics in the petrophysical parameters. However,
rocks are heterogeneous at all levels and the current choice of scales means
that geomodels are too coarse to capture small-scale geological structures like
tidal deposital layers that occur on a centimetre or even smaller scale.
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Geological structures on a finer scale than the resolution of the geomodel
may have a strong impact on fluid flow. On the other hand, geomodels are
typically too detailed for routine flow simulations. Indeed, flow simulations
are usually performed on coarser models where the petrophysical properties
in the geomodel are replaced with an average of some kind over regions that
correspond to a grid block in the simulation model. There are several reasons
for this. First of all, the global flow in the reservoir may be dominated by large-
scale phenomena (occurring on a scale of 10-1000 m) and a coarser model may
therefore be sufficient to predict the reservoir production with the required
accuracy. Secondly, since coarse models contain fewer parameters, they are
easier to history-match4 than fine-grid models. Similarly, the results of very
detailed flow simulations may be masked by the large uncertainty involved in
reservoir modelling. Thus, by running flow simulations directly on geomodels
we get more detailed flow scenarios, but they might not produce more accurate
production characteristics.

The primary reason for not running simulations on geomodels, however,
is that geomodels typically contain far too many grid-blocks from a numer-
ical point of view and cannot be used directly because the memory and the
computational time required are outside the limits of current computers. It is
perhaps tempting to believe that with future increase in computing power, one
will soon be able to simulate the flow in a full field reservoir model on a grid
fine enough to capture rock properties at the smallest significant scale. The
development so far, indicates that such an idea is wrong. The trend is rather
to increase the number of scales and the sizes of models whenever more com-
puting power or new numerical techniques become available. Indeed, the sizes
and complexity of geomodels have increased continuously with the increase in
computer memory and processing power. Hence, the need for handling differ-
ent scales will most likely persist in the foreseeable future and there will be
a continuing need for rescaling techniques in order to upscale and downscale
models.

Upscaling techniques have primarily been used to go from geomodels to
simulation models, but similar techniques are also used to go from e.g., a pore-
scale model to a geomodel. By upscaling detailed geomodels one generates
reduced simulation models that have fewer grid cells and possibly less irregular
grid structures. The effective petrophysical properties are calculated in each
cell of the simulation grids based on properties of the underlying geomodels.
In this process, the aim is to preserve the small-scale effects in the large-
scale computations (as well as possible). Systematic small-scale variations
in permeability and porosity can have a significant effect on a larger scale,
and this should be captured in the upscaled model. Upscaling techniques
range from simple averaging techniques to relatively complex flow analyses.
Although the latter type involves solving numerous local flow problems that

4History matching is the process of calibrating parameters (here porosity and
permeability) to observations.
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require a substantial computational effort, they do not always produce reliable
results. Indeed, if the heterogeneity in the reservoir rock does not contain well-
separated length-scales, this type of upscaling may lead to highly erroneous
results, even for single-phase flow.

Downscaling techniques are typically used when going from a simula-
tion model to a geomodel. For instance, one can be interested in refining
coarse-scale modifications in petrophysical properties obtained during a his-
tory match on a simulation model in order to update the underlying geomodel.
In this process, the aim is to preserve both the coarse-scale trends and the
fine-scale heterogeneity structures.

2.5 Reservoir Simulation Model

The fundamental equations that model flow in porous media are the continuity
equations. These equations ensure conservation of mass for the different fluids
phases, and take the following form

∂

∂t

(
φρisi

)
+∇ ·

(
ρivi

)
= qi. (1)

Here each fluid phase is modelled by its density ρi, phase velocity vi, and
saturation si. The saturations are the volume fractions occupied by each phase
and satisfy the closure relation

∑n
i=1 si = 1. Production and injection wells

are modelled by the source term qi. The phase velocities vi are related to the
phase pressure pi through an empirical relation called Darcy’s law

vi = −Kkri

µi

(
∇pi − ρiG

)
. (2)

Here K is the rock permeability given from the geological model; µi is the
viscosity of phase i; kri = kri(s1, . . . , sn) is the relative permeability of phase
i, i.e., reduced permeability due to the presence of other phases; pi is phase
pressure; and G = gnz where g is the gravitational constant and nz is the
unit vector pointing in the downward vertical direction. It is also customary
to introduce the phase mobility: λi = kri(si)/µi.

The primary unknowns in simulation models are the phase saturations
and the phase pressures. Darcy’s law together with the continuity equations
(1) gives us one equation for each phase. The closure relation

∑n
i=1 si = 1

for the phase saturations gives us one additional equation. This gives us a
complete model for single-phase flow. The simplest model for single-phase flow
is obtained by assuming incompressibility (constant density). In this case, the
equations (1)–(2) simplify to an elliptic equation for the fluid pressure

−∇ ·
[
K
µ

(
∇p− ρG

)]
=
q

ρ
. (3)

For multi-phase flow, however, we can eliminate only one of the saturations
and extra closure relations in terms of capillary pressure functions are added.
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That is, one assumes that the phase pressures are related through a func-
tion describing the difference between the phase pressures across fluid inter-
faces. These functions are assumed to depend solely on the phase saturations,
and are obtained from experiments and simulations on core scale models, or
from tables describing capillary pressure functions for different rock types
with known properties. We should also mention that pore scale-modelling can
provide capillary pressure curves, and provide an appropriate framework for
understanding the capillary forces.

For two-phase flow we can eliminate one of the transport equations. We
then get a coupled system consisting of pressure equation and an equation for
the fluid transport. Moreover, if we assume that the two fluids, say, water (w)
and oil (o) are incompressible, and introduce a so-called global pressure p (see
e.g., [3] in this book) and a total velocity v = vo + vw, then the corresponding
system reads

∇ · v = q, where v = −K
[
λ∇p− (λwρw + λoρo)G

]
, (4)

φ
∂sw

∂t
+∇ ·

[
fw

(
v + Kλo∇pcow + Kλo(ρw − ρo)G

)]
=
qw
ρw
. (5)

Here we have introduced the total mobility λ = λw +λo, the fractional flow of
water fw = λw/λ, the capillary pressure pcow = po−pw, and the accumulated
contribution from the wells q = qw/ρw + qo/ρo.

The transport equation (5) contains three different terms that stem from
three different types of forces: viscous forces give rise to the term qv = fwv,
capillary forces give rise to qc = fwKλo∇pcow, and gravity forces give rise to
qg = fwKλo(ρw−ρo)g. The range of these different forces is influenced by the
flow process and model. In particular, model size, flow-rate, heterogeneities
and fluid system are all important ingredients in determining the balance
of forces. There are no absolute rules as to what problems are dominated
by the different forces, although some rules of thumb apply. Gas-oil systems
are generally more influenced by gravity than oil-water systems due to larger
density differences, and horizontally layered reservoirs with poor vertical com-
munication are less influenced by gravity than reservoirs with layers that are
tilted with respect to the vertical axis or have good vertical communication.
Capillary effects are mainly small-scale phenomena, and are therefore more
apparent in small-scale models, but capillary forces can play a dominant role
also in large reservoir regions with strong heterogeneous structures. However,
as a general rule we can say that viscous forces tend to be dominant on a
reservoir (or field) scale, whereas capillary forces typically are dominant in
core scale models. In fact, capillary forces are rarely included in simulation
models, implying that small scale effects of capillary forces need to be adjusted
for in the relative permeability curves.

In the introduction we discussed why reservoir simulation models are usu-
ally posed on a different length scale than the geomodel and how this intro-
duces an upscaling of the grid models. Another reason for operating with dif-
ferent grid-models for the fluid simulation comes from the fact that geological
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grid models tend to follow the spatial structure of the geology. For (classi-
cal) numerical methods to behave properly, one would generally prefer that
grid-blocks are as regular as possible. However, reservoir dimensions impose
very different length scales in the vertical and horizontal direction. Moreover,
layers, fractures and faults all give rise to complex physical geometries and
grid-blocks that represent the underlying geology are rarely orthogonal, but
tend to be skewed, irregular, and even have non-neighbour connections. These
geometrical problems are also related to the multiscale structure of the reser-
voirs and lack of local grid resolution, but will not be discussed at all in the
current paper. Instead, we will focus on the multiscale structures in perme-
ability and discuss approaches for meeting the challenges they impose on the
simulation. To ease the presentation, we will therefore henceforth assume that
our reservoirs have a shoe-box geometry and consist of Cartesian grid-blocks.

In the oil industry, it is common to discretise the pressure equation with
a finite-volume method. These methods consider the grid cells Vi as control
volumes, and invoke the divergence theorem to yield∫

Vi

q dx = −
∫

∂Vi

K [λ∇p− (λwρw + λoρo)G] · n dν.

Here n is the outward unit normal on ∂Vi. A fully discrete scheme is obtained
by expressing the flux across the cell interfaces in terms of the pressure at the
cell centres. For instance, the most basic finite volume method, the two-point
flux approximation (TPFA) scheme, takes the following form:∫

Vi

q dx =
∑

j

Tij(pi − pj). (6)

Here the sum is taken over all non-degenerate interfaces, i.e., over all j such
that ∂Vj ∩ ∂Vi has a positive measure. The coupling factors Tij are called
transmissibilities and we will return to these later.

Similarly, the transport equation (5) is usually discretised with a finite
volume method where upstream weighting is used to discretise the term rep-
resenting viscous forces. Invoking the divergence theorem once again we have∫

Vi

φ
∂Sw

∂t
+
∫

∂Vi

fw

(
v + Kλo∇pcow + Kλo(ρw − ρo)G

)
dν =

∫
Vi

qw
ρw

dx.

By upstream weighting, it is meant that fwv is computed using the saturation
on the upstream side of the cell interfaces. For a discussion of how to discretise
the terms representing gravity and capillary forces, we refer the reader to the
previous chapter in this book [3], where a more thorough introduction to the
governing equations and corresponding numerical methods is given.

3 Upscaling for Reservoir Simulation

In the introduction we saw how reservoir modelling often involves an upscal-
ing phase, where high-resolution geological models containing several million
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cells are turned into coarser grid models that are more suitable for fluid flow
simulation. This process leads to many fundamental questions. For instance,
do the partial differential equations modelling porous media flow at the coarse
scale take the same form as the equations modelling flow at the subgrid level?
And, if so, how do we honour the fine-scale heterogeneities at the coarse scale?

Even though upscaling has been a standard procedure in reservoir simula-
tion for nearly four decades, nobody has answered these questions rigorously,
except for cases with special heterogeneous formations such as periodic or
stratified media. Most upscaling techniques are based on some kind of local
averaging procedure in which effective properties in each grid-block are cal-
culated solely from properties within the grid block. As such, the averaging
procedure does not account for coupling with neighbouring coarse grid-blocks.
This implies in particular that the upscaled quantities do not reflect the impact
of global boundary conditions and large scale flow patterns in the reservoir.
Because different flow patterns may call for different upscaling procedures, it
is generally acknowledged that global effects must also be taken into consid-
eration in order to obtain robust coarse-scale simulation models.

A related problem to upscaling is that of gridding. That is, what kind of
grid do we want to use to represent our porous medium, what resolution do we
need, and how do we orient the grid. To design robust simulation models, the
grid should be designed so that the grid blocks capture heterogeneities on the
scale of the block. This often implies that we need significantly more cells in a
regular grid than if we use corner point grids in which the grid block corners
are on straight, but possibly tilted lines, that extend from top-to-bottom of
the reservoir. It is therefore much more common to use corner-point grids in
reservoir simulation. In the vicinity of wells one might use a different type of
grid, for instance some kind of radial grid, to account for a radial flow pattern
in the near well region. The importance of obtaining a good grid representation
of the porous medium should not be underestimated, but gridding issues will
not be discussed any further here. We assume henceforth that we have a fixed
coarse grid suitable for numerical simulation and focus on upscaling techniques
for the pressure equation (4) and the saturation equation (5).

The literature on upscaling techniques is extensive, ranging from simple
averaging techniques, e.g., [44], via local simulation techniques [10, 20], to
multiscale methods [2, 17, 39, 41] and rigorous homogenisation techniques for
periodic structures [11, 38, 43]. Some attempts have been made to analyse
the upscaling process, e.g., [7, 62], but so far there is generally no theory
or framework for assessing the quality of an upscaling technique. In fact,
upscaling techniques are seldom rigorously quantified with mathematical error
estimates. Instead, the quality of upscaling techniques is usually assessed by
comparing upscaled production characteristics with those obtained from a
reference solution computed on an underlying fine grid.

It is not within our scope to give a complete overview over the many
upscaling techniques that have been applied in reservoir simulation. Instead,
we refer the reader to the many review papers that have been devoted to this
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topic, e.g., [9, 19, 55, 60]. However, to understand why some upscaling methods
work well for some flow scenarios, and not for others, whereas other upscaling
techniques may work well for a completely different set of flow scenarios, we
do need to discuss some basic concepts. To this end, we start by giving a brief
introduction to upscaling rock permeability for the pressure equation (3) or
(4) in Subsection 3.1. In Section 3.2 we discuss techniques for generating
pseudo functions for upscaling the saturation equation (5). In Subsection 3.3
we present a different type of upscaling technique for the saturation equation
that splits the variables into volume averaged and fluctuating components.
In this approach various moments of the fluctuating components are used to
derive a coarse scale equation for grid block saturations. Finally, in Subsection
3.4 we describe a class of upscaling techniques that assume steady state flow,
i.e., that the time derivative term in the continuity equations can be neglected
in the upscaling process.

Before we proceed with details, we should mention that upscaling is also
applied to other quantities, but then mostly using very simple techniques.
For instance, quantities such as saturation and porosity are upscaled using
simple volume averaging. That is, for a grid block V we obtain porosity and
saturations, denoted φ∗ and s∗i , respectively, by

φ∗ =
1
|V |

∫
V

φ(x) dx, s∗i =
1

φ∗|V |

∫
V

si(x)φ(x) dx.

Fluxes are upscaled similarly. Moreover, if a grid block is known to contain a
certain fraction of different rock types (also often termed flow-units), then a
so-called majority vote can be used to approximate the effective properties. In
this method one identifies which rock type occupies the largest volume fraction
of the grid block and simply assigns the properties associated with this rock
type to the entire grid block. Note however, that such a simple approach is not
robust, see, e.g., [63]. Actually, the problem of upscaling rock-types is closely
related to that of upscaling permeability, but has not received much attention
in the literature.

3.1 Single-Phase Upscaling

The process of upscaling permeability for the pressure equation (3) or (4) is
often termed single-phase upscaling. Most single-phase upscaling techniques
seek homogeneous block permeabilities that reproduce the same total flow
through each coarse grid-block as one would get if the pressure equation was
solved on the underlying fine grid with the correct fine-scale heterogeneous
structures. However, to design upscaling techniques that preserve averaged
fine-scale flow-rates is in general nontrivial because the heterogeneities at
all scales have a significant effect on the large-scale flow pattern. A proper
coarse-scale reservoir model must therefore capture the impact of heteroge-
neous structures at all scales that are not resolved by the coarse grid.
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To illustrate the concept behind single-phase upscaling, let p be the solu-
tion that we obtain by solving

−∇ ·K∇p = q, in Ω (7)

on a fine grid with a suitable numerical method, e.g., a TPFA scheme of the
form (6). To reproduce the same total flow through a grid-block V we have
to find a homogenised tensor K∗

V such that∫
V

K∇p dx = K∗
V

∫
V

∇p dx. (8)

This equation states that the net flow-rate vV through V is related to the
average pressure gradient ∇V p in V through the upscaled Darcy law vV =
−K∗∇V p.

In the discrete case, the choice of an appropriate upscaling technique also
depends on the underlying numerical method. For instance, if the pressure
equation is discretised by a TPFA finite-volume scheme of the form (6), then
grid-block permeabilities are used only to compute interface transmissibilities
at the coarse scale. As a result, one needs correct coarse-scale transmissibilities
to reproduce a fine-scale flow field in an averaged sense. Hence, instead of up-
scaled block-homogenised tensors K∗, one should seek block transmissibilities
T ∗

ij satisfying

Qij = T ∗
ij

(
1
|Vi|

∫
Vi

p dx− 1
|Vj |

∫
Vj

p dx

)
, (9)

where Qij = −
∫

∂Vi∩∂Vj
(K∇p) · n dν is the total Darcy flux across ∂Vi ∩ ∂Vj .

If all transmissibilities T ∗
ij are positive, then the TPFA scheme defined by

∑
j:∂Vi∩∂Vj 6=∅

T ∗
ij(pi − pj) =

∫
Vi

q dx,

will reproduce the net grid block pressures pl = 1
|Vl|
∫

Vl
p dx, and hence also the

coarse grid fluxes Qij . Unfortunately, there is no guarantee that the transmis-
sibilities defined by (9) are positive, or even exist. Neither can we guarantee
that the upscaled permeability tensors defined by (8) are positive definite.
Positive transmissibilities and positive definite permeability tensors ensure
stability of TPFA finite-volume and finite-element methods, respectively. The
possible absence of these properties illustrates that the fundamental problem
of single-phase upscaling is ill-posed. However, this ill-posedness is usually not
a subject of debate since upscaling methods are usually devised such that the
occurrence of unphysical upscaled quantities is avoided. For a more thorough
discussion of existence and uniqueness, we refer the reader to [62]. In the next
subsections we review some standard single-phase upscaling methods.
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Averaging Methods

The simplest form of upscaling permeability is to take some kind of average of
the permeabilities at the subgrid level. A general class of averaging techniques
is defined by the power average,

K∗,p
V =

( 1
|V |

∫
V

K(x)p dx
)1/p

, −1 ≤ p ≤ 1.

Note that p = 1 and p = −1 correspond to the arithmetic and harmonic
means respectively, while the geometric mean is obtained in the limit p→ 0.

The use of power averaging can be motivated by the so-called Wiener-
bounds [61], which state that for a statistically homogeneous medium, the
correct upscaled permeability will be bounded above and below by the arith-
metic and harmonic mean, respectively. This result has also a more intuitive
explanation. To see this, consider the one dimensional pressure equation:

−∂x(K(x)∂xp) = 0 in (0, 1), p(0) = p0, p(1) = p1.

It is easy to see that the solution of this equation induces constant Darcy
velocity v. This implies that ∂xp must scale proportional to the inverse of
K(x). Hence, we derive

∂xp =
p1 − p0

K(x)

[∫ 1

0

dx

K(x)

]−1

=
p1 − p0

K(x)
K∗,−1

V .

If we insert this expression into equation (8) we find that the correct upscaled
permeability K∗

V is identical to the harmonic mean K∗,−1
V .

This result, which shows that the harmonic mean gives the correct upscaled
permeability, is generally valid only in one dimension, but it applies to a special
case in higher dimensions as well. Indeed, consider the following problem:

−∇ ·K∇p = 0 in V = (0, 1)3,
p(0, y, z) = p0, p(1, y, z) = p1,

(−K∇p) · n = 0 for y, z ∈ {0, 1},
(10)

where n is the outward unit normal on ∂Ω.
Now, if K models a perfectly stratified isotropic medium with layers per-

pendicular to the x–axis (so that K(x, ·, ·) is constant for all x), then the
solution models uniform flow in the x–coordinate direction. This means that
for each pair (y, z) ∈ (0, 1)2 the solution py,z = p(·, y, z) solves

−∇ ·K∇py,z(x) = 0 in (0, 1), py,z(0) = p0, py,z(1) = p1.

It follows that

−K(x)∇p = −(K(x)∂xpy,z, 0, 0)T = −K∗,−1
V (p1 − p0, 0, 0)T .
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Hence, the correct upscaled permeability is equal to the harmonic mean.
Similarly, if K models instead a stratified isotropic medium with layers

perpendicular to the y– or z–axis, then the correct upscaled permeability
would be equal to the arithmetic mean. These examples show that averaging
techniques can give correct upscaling in special cases, also in three dimensional
space. However, if we consider the model problem (10) with a less idealised
heterogeneous structures, or with the same heterogeneous structures but with
other boundary conditions, then both the arithmetic and harmonic average
will generally give wrong net flow-rates. Indeed, these averages give correct
upscaled permeability only for cases with essentially one-dimensional flow.

To try to model flow in more than one direction, one could generate a
diagonal permeability tensor with the following diagonal components:

kxx = µz
a(µy

a(µx
h)), kyy = µz

a(µx
a(µy

h)), kzz = µx
a(µy

a(µz
h)).

Here µξ
a and µξ

h represent respectively the arithmetic and harmonic means
in the ξ-coordinate direction. Thus, in this method one starts by taking a
harmonic average along grid cells that are aligned in one coordinate-direction.
One then computes the corresponding diagonal by taking the arithmetic mean
of all “one dimensional” harmonic means. This average is sometimes called
the harmonic-arithmetic average and may give good results if, for instance,
the reservoir is layered and the primary direction of flow is along the layers.

Despite the fact that averaging techniques can give correct upscaling in
special cases, they tend to perform poorly in practise since the averages do not
reflect the structure or orientation of the heterogeneous structures. It is also
difficult to decide which averaging technique to use since the best average
depends both on the heterogeneities in the media and the flow process we
want to model (flow direction, boundary conditions, etc). To illustrate the
dependence on the flow process we consider an example.

Example 1. Consider a reservoir in the unit cube [0, 1]3 with two different ge-
omodels that each consist of a 8× 8× 8 uniform grid-blocks and permeability
distribution as depicted in Figure 6. We consider three different upscaling
methods: harmonic average; arithmetic average; and harmonic-arithmetic av-
erage. The geomodels are upscaled to a single coarse grid-block, which is then
subjected to three different boundary conditions:

BC1: p = 1 at (x, y, 0), p = 0 at (x, y, 1), no-flow elsewhere.
BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.
BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

Table 1 compares the observed coarse-block rates with the flow-rate obtained
by direct simulation on the 8×8×8 grid. For the layered model, harmonic and
harmonic-arithmetic averaging correctly reproduces the vertical flow normal
to the layers for BC1. Arithmetic and harmonic-arithmetic averaging correctly
reproduces the flow along the layers for BC2. The harmonic arithmetic aver-
aging method also performs reasonably well for corner-to-corner flow (BC3).
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Fig. 6. Plot of the logarithm of two permeability distributions: (left) a layered
medium, and (right) a cube extracted from the lower part of the fluvial Upper Ness
formation from the 10th SPE test case [18].

Table 1. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QH/QR 1 2.31e−04 5.52e−02 1.10e−02 3.82e−06 9.94e−04
QA/QR 4.33e+03 1 2.39e+02 2.33e+04 8.22 2.13e+03

QHA/QR 1 1 1.14 8.14e−02 1.00 1.55e−01

For model two, however, most of the methods produce some significant errors,
and none of the methods are able to produce an accurate flow-rate for the test
cases with boundary conditions specified by BC1 and BC3.

Averaging techniques can also be used to upscale transmissibility. One such
method is the half-block method [45]. In this method each grid block is divided
into two pieces (using the average surface between the two opposing faces),
obtaining six upscaled permeabilities for each block. The transmissibility Tij

for the coarse grid interface, which essentially models the conductivity across
the corresponding interface in the direction of the associated coordinate unit
normal nij , is then obtained by taking the harmonic average of the half-
block arithmetic averages on both sides of the interface. This method has the
advantage of improving the model resolution at a low computational cost.

Numerical Pressure Computation Techniques

To approximate the combined effect of heterogeneous structures and imposed
boundary conditions, the idea of inverting local pressure computations was
suggested by Begg et al. [10]. In this approach one solves, for each grid block
V , a set of homogeneous pressure equations on the form

−∇ ·K∇p = 0 in V,

with prescribed boundary conditions. Thus, this method raises the immediate
question: what kind of boundary conditions should be imposed?
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Fig. 7. A schematic of the pressure solver method with p=1 and p=0 along the inflow
and outflow boundaries respectively, and no-flow boundary conditions elsewhere.

One alternative is to impose three different sets of boundary conditions for
each block to create a pressure drop across the coarse cell in each of the three
coordinate directions (see Figure 7). This gives us a set of flow-rates for each
grid block that can be used to compute an effective diagonal permeability
tensor with components

kxx = −QxLx/∆Px, kyy = −QyLy/∆Py, kzz = −QzLz/∆Pz.

Here Qξ, Lξ and ∆Pξ are respectively the net flow, the length between oppo-
site sides, and the pressure drop in the ξ-direction inside V .

Another popular option is to choose periodic boundary conditions. That
is, one assumes that each grid block is a periodic cell in a periodic medium and
imposes full correspondence between the pressures and velocities at opposite
sides of the block, e.g., to compute kxx we impose the following boundary
conditions:

p(1, y) = p(0, y)−∆p, p(x, 1) = p(x, 0),
v(1, y) = v(0, y), v(x, 1) = v(x, 0)

This approach yields a symmetric and positive definite tensor [20], and is
usually more robust than the directional flow boundary conditions.

Improved accuracy of the upscaled permeability can be obtained if one uses
an oversampling technique, in which the domain of the local flow problem is
enlarged with a border region surrounding each grid block. In this approach
we let the coarse grid-block V be embedded in a macro-block V ′ and solve the
elliptic pressure equation (7) in V ′ with some prescribed boundary conditions
on ∂V ′. The flow is then solved in the whole enlarged region, but the averaging
of the permeability tensor is performed only over the (original) coarse block.
The motivation for using such a technique is to better account for permeability
trends that are not aligned with the grid directions and possible large-scale
connectivity in the permeability fields.

Example 2. We revisit the test-cases considered in Example 1, but now we
compare harmonic-arithmetic averaging (HA) with the pressure computation
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Fig. 8. A schematic of the pressure solver method for upscaling transmissibility.

techniques using; (D) the boundary conditions depicted in Figure 7; and (P)
the periodic boundary conditions with a directional pressure drop. The latter
method gives rise to full permeability tensors, but for the cases considered
here the off-diagonal terms in the upscaled permeability tensors are small,
and are therefore neglected for simplicity.

Table 2. Flow-rates relative to the reference rate QR on the fine grid.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QHA/QR 1 1 1.143 0.081 1.003 0.155
QD/QR 1 1 1.143 1 1.375 1.893
QP /QR 1 1 1.143 0.986 1.321 1.867

Table 2 compares the observed coarse-block rates with the flow-rate obtained
by direct simulation on the 8× 8× 8 grid. For the layered model, all methods
give rise to the same diagonal permeability tensor, and hence give exactly the
same results. For model 2 we see that the numerical pressure computation
methods give significantly better results than the HA averaging technique.
Indeed, the worst results for the pressure computation methods, which were
obtained for corner-to-corner flow, is within a factor 2, whereas the HA aver-
aging technique underestimates the flow rates for BC1 and BC3 by almost an
order of magnitude.

A similar approach can be used to derive upscaled transmissibilities. A
simple way of doing this is illustrated in Figure 8. Here we create a flow across
the interface between Vi and Vj by imposing a pressure drop between the grid
block faces opposite to ∂Vi∩∂Vj . Thus, by solving the corresponding pressure
solution in the two-block domain Vi ∪ Vj numerically, we can compute the
average pressures pi and pj in Vi and Vj respectively, and derive an upscaled
transmissibility by requiring that equation (9) holds.
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Global and Local-Global Upscaling Techniques

The methods described so far have all been local in nature; the averaging
techniques derive the upscaled permeability solely from local heterogeneous
structures, whereas the pressure computation techniques try to account for
flow responses by solving local problems with prescribed boundary conditions.
The numerical examples show, however, that all the local methods may fail
to capture the correct flow behaviour. For instance, none of the local methods
were able to capture the correct flow behaviour for model 2 with boundary
conditions prescribed by BC3. The main problem for the pressure computation
techniques is, of course, that we do not know a priori the precise flow that
will occur in a given region of the reservoir. Thus, it is generally not possible
to specify the appropriate boundary conditions for the local flow problems in
a unique manner (unless we already have solved the flow problem).

In order to account for global flow patterns, Holden and Nielsen [37] pro-
posed to solve the pressure equation once on a fine grid, and extract infor-
mation about the fine-grid flow pattern to compute correct upscaled trans-
missibilities. This approach may seem to contradict the purpose of upscaling,
but it can be justified for the numerical treatment of two-phase flows. In-
deed, for two-phase flow the pressure equation has to be solved several times
throughout the simulation, and the cost of solving the pressure once (or even
a few times) on a fine grid will typically be negligible compared with the total
computational cost of the full multi-phase flow simulation. Another question
is of course the robustness of such an upscaling with respect to changes in
the well configuration and global boundary conditions. For some cases the
upscaled transmissibilities may prove useful, while for other cases they may
not. A similar technique avoiding the solution of the fine-grid problem was
presented by Nielsen and Tveito [51].

Another way to avoid the full fine-grid computation was proposed by Chen
et al. [15, 16] in the form of a local-global technique that uses global coarse-
scale calculations to determine boundary conditions for local calculations that
determine upscaled transmissibilities. Since the initial coarse-grid calculation
may still give quite poor boundary conditions for the subgrid problems, they
use an iteration procedure to ensure consistency between the local and global
calculations.

A problem encountered in the global and local-global upscaling proce-
dures is the occurrence of negative or anomalously large transmissibilities.
Holden and Nielsen [37] avoid negative and very large transmissibilities by
perturbing the transmissibilities through an iterative process, involving an
optimisation problem, until all the transmissibilities are contained in some
interval [a, b] ⊂ R+. Chen et al. [15, 16] observed that unphysical trans-
missibilities occur mainly in low-flow regions. Therefore, instead of using an
optimisation procedure that alters all transmissibilities in the reservoir, they
use a thresholding procedure, where negative and very large transmissibilities
are replaced with transmissibilities obtained by a local pressure computation
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technique. Since the transmissibilities are altered only in low-flow regions, the
perturbation will have limited impact on the total flow through the reservoir.

Another class of methods that account for global boundary conditions are
multiscale methods. One can think of these methods as a way of upscaling the
flow field instead of computing coarse scale reservoir properties (e.g., porosity
and permeability) while trying to preserve important trends in the fine-scale
flow pattern. Two examples of such methods will be discussed in Section 4.

Other Techniques

There are many upscaling techniques that we have not discussed. For instance,
we have not said anything about a class of methods that are based on the
homogenisation theory (see e.g., [11, 38, 43]). Homogenisation is a rigorous
mathematical theory for asymptotic analysis in periodic structures. A relevant
result states that for a periodic medium with permeability K(x

ε ), there exists
a constant symmetric and positive definite tensor K0 such that the solutions
pε and vε = −K(x

ε )∇pε to the following elliptic problem

−∇ ·K(
x

ε
)∇pε = q

converges uniformly as ε→ 0 to the corresponding solutions of a homogenised
equation of the form

−∇ ·K0∇p0 = q.

Thus, if we consider each coarse grid-block as a cell in an infinite periodic
medium, then homogenisation theory can be used to derive corresponding
homogenised tensors for each grid-block. The use of homogenisation theory
to upscale grid-block permeability for porous media flow has, however, been
a subject of debate. A common question is why one should study a periodic
medium when no natural medium is periodic? A natural response to this
question is that the homogenisation theory provides the mathematical tools
capable of proving the existence and uniqueness of the solution, and gives
some verification that the governing equations at the macroscopic level take
the same form as (7), which governs porous media flow at the continuous level.

Among other techniques for single-phase upscaling that have not been
discussed above are the fast, but less robust, real-space renormalisation tech-
niques [46], and the use of geostatistical methods and Monte-Carlo analysis to
generate reservoir descriptions at the reservoir simulation scale directly [33].
Neither have we mentioned how the definition of the coarse-grid geometry can
be linked to upscaling through non-uniform coarsening approaches [23], or the
use of elastic grids [31]. For a deeper discussion of these, and other related,
issues, we ask the reader to consult [19, 55, 60] and the references therein.

3.2 Pseudo Functions for Upscaling the Saturation Equation

Single-phase upscaling alone is often not sufficient to capture large-scale het-
erogeneity effects in a multi-phase system; for instance, when the flow follows
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narrow high-flow channels that penetrate the coarse grid blocks. In such cases,
only a small portion of a grid block may be subjected to flow, and the fluid
displacement cannot be characterised by single-phase upscaling, even in an
averaged sense. Similar problems arise in the presence of long and thin shale
barriers or high-permeable layers. Thus, in addition to capturing the macro-
scopic effect of the rock permeability, we need to incorporate the large-scale
effects of the relative permeabilities.

Whereas the problem of upscaling permeability for solving the pressure
equation on a coarse scale is fairly well understood, derivation of upscaling
techniques for the saturation equation has only been moderately successful. In
fact, a robust methodology that can be used to upscale the saturation equation
reliably for general heterogeneous formations still does not exist. This is obvi-
ously a very difficult task, since we need to trace sharp saturation fronts and
at the same time model high-flow channels. Indeed, consider the saturation
equation in its simplest form (neglecting gravity and capillary forces)

φ
∂s

∂t
+∇ · fw(s)v = 0, (11)

and suppose that it is discretised with the following upstream-weighted finite-
volume method:

φ̄
sn+1

i − sn
i

∆t
+
∑

j

Fus(si, sj)Qij = 0 ∀Vi ⊂ Ω. (12)

Here sn
i is the average saturation in grid-block Vi at time tn, φ̄ denotes the

arithmetic mean of the porosity and Qij is the total flux across the interface
between grid-blocks Vi and Vj obtained from the coarse grid solution of the
pressure equation. The numerical fractional flux function Fus is given as

Fus(si, sj) =

{
fw(si), if Qij ≥ 0,
fw(sj), if Qij < 0.

In this scheme, the only way to properly account for the discrepancy between
the scales of the coarse grid and the fine grid, is to define special fractional
flow functions Fij (so-called pseudo functions) that represent the averaged
flux over each coarse grid interface. An intrinsic feature with this approach
to two-phase flow upscaling is that pseudo functions depend, not only on the
heterogeneous porous media structures, but also on the saturation distribution
within the grid block and on the reservoir flow history, which in turn depends
on well locations and global boundary conditions. All these effects must be
accounted for in the macroscopic reservoir characterisation to achieve robust
coarse-scale models.

Pseudo functions can generally be divided in two categories: (vertical) equi-
librium pseudo functions and dynamic pseudo functions. Equilibrium pseudo
functions have traditionally been used to reduce the dimension of the system
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under static flow conditions, e.g., from three to two spatial dimensions and
are reminiscent of the steady-state methods discussed below. Dynamic pseudo
functions, on the other hand, aim at reproducing subscale effects under dy-
namic flow conditions by upscaling relative permeabilities or fractional flow
functions. Below we briefly review some of the most important techniques that
have been proposed for generating dynamic coarse-grid pseudo functions.

Dynamic Pseudo Functions for Two-Phase Flow

The main idea behind dynamic pseudo functions is to do simplified fine-scale
flow simulations that mimic the flow patterns of the case that we want to
model. An intrinsic feature with this approach to two-phase flow upscaling is
that pseudo functions depend, not only on the heterogeneous porous media
structures, but also on the saturation distribution within the grid block and on
the reservoir flow history, which in turn depends on well locations and global
boundary conditions. All these effects must be accounted for in the macro-
scopic simulation model to achieve reliable results. It is therefore generally not
sufficient to perform local, or even extended local, flow simulations [36]. This
makes generating reliable pseudo functions without too much computational
effort a very challenging task.

The use of dynamic pseudo functions for two-phase flow simulation goes
back to Jacks et al. [40], and Kyte and Berry [49]. Their objective was to design
relative permeability functions in coarse grid-blocks that account for subgrid
flow patterns and scale discrepancies to reduce numerical dispersion. Since
then, many different methods have been developed for generating dynamic
pseudo functions. Here we will describe two basic types: pseudo functions
from individual phase flow-rates and pseudo functions based upon averaged
total mobility.

The individual phase flow-rate methods include the methods of Jack
et al. [40], the Kyte and Berry method [49], the flux-weighted potential
method [34], and the pore-volume weighted method. All methods are based
upon the upscaled Darcy’s law and vary only in the way the fine-grid simu-
lations are factored into averaged quantities. Although, these methods have
received some criticism for being unreliable (and for being limited to cases
where capillary or gravity equilibrium can be assumed at the coarse scale) [9],
the individual phase flow-rate methods have been widely used for upscaling
of two-phase flow in reservoir simulation. To describe the essential ingredients
in these methods, assume that we have a coarse grid overlaying a fine grid, as
illustrated in Figure 9. Moreover, we assume that the flow has been computed
on the fine grid such that the saturation and pressure history is known in
each fine-grid cell along with derived quantities like relative permeability and
flow-rates. Based on this, the aim is to define pseudo functions that produce
a coarse-grid solution equal to the averaged fine-grid solution. The functions
are dynamic in the sense that they are saturation (and pressure) dependent.
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The method of Jacks et al. [40] (which is sometimes called the weighted rel-
ative permeability method) defines an upscaled relative permeability function
for each coarse grid interface by taking a transmissibility-weighted average of
relative permeabilities in cells on the upstream side. To be precise, assume
that Qij > 0, so that there is a net flow from Vi to Vj and denote by Ti,kl the
transmissibility for a fine grid interface that lies on ∂Vi ∩ ∂Vj , i.e., between
two fine-grid cells Uk ⊂ Vi and Ul ⊂ Vj . The upscaled relative permeability
associated with ∂Vi ∩ ∂Vj is now defined as follows:

k̄rw,ij =
∑

kl Ti,klkrw,k(sk)∑
kl Ti,kl

.

Thus, the sum is taken over all interfaces (∂Uk ∩ ∂Ul) ⊂ (∂Vi ∩ ∂Vj). The
suffix k in krw,k indicates that there may be different relative permeabilities
in each layer (for different rock types). If Qij < 0 then saturations from the
corresponding grid cells in Vj are used.

Similar methods to the method of Jacks et al. [40] first average the phase
pressure pα or the phase potential Φα = pα − ραgD as will be described
below and then calculate upscaled pseudo-relative permeabilities by inverting
Darcy’s law for each phase. For water,

k̄rw = − µ̄w q̄w∆x

K̄(∆p̄w − gρ̄w∆D)
.

Here D is the average depth of the coarse block, q̄w is the spatial average of the
fine-grid water fluxes, and K̄ is an upscaled permeability obtained by using
a single-phase upscaling technique. The coarse-grid viscosity and density are
computed as pore-volume weighted or flow-rate weighted averages.

In the Kyte and Berry method the pseudo water phase-pressures p̄w are
obtained by computing the weighted average along the centre column of the
coarse grid block,

p̄w =

∑J2
j=J1

[
Kkrwδy

(
pw − gρw(d−D)

)]
j∑J2

j=J1

[
krwKδy

]
j

. (13)

In the equation, values with subscript j refer to midpoint (or cell-average) val-
ues on the underlying fine-grid along centre column in the coarse block (i.e.,
i = 1

2 (I1 + I2), see Figure 9). The weighting factor is the phase permeabil-
ity multiplied by the thickness of each layer. The dynamic behaviour of the
pseudo functions follows by tabulating each averaged quantity as a function
of the corresponding average saturation. The model can easily be extended to
three dimensions, see [59]. By using the procedure on each cell-interface on
the coarse grid, one should, in principle, obtain ideal pseudo functions that
reproduce the underlying fine-scale simulation in an averaged sense.

Let us now analyse the method in some detail. Notice first that since dis-
tinct weighting factors are used for different phases in (13), nonzero capillary
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Fig. 9. Schematic of the coarse and the fine grid used in calculation of dynamic
pseudo functions.

pressures may be introduced on the coarse grid even if the phase pressures
are equal on the fine grid. Moreover, the weighing factors are directionally de-
pendent, leading to pseudo functions that depend on the flow direction (and
thus the history of the reservoir). More alarming, however, is the fact that
pseudo-relative permeabilities may be negative or have arbitrary large mag-
nitudes. Negative k̄rw values occur if the average flux q̄w has the same sign as
the increment in the phase potential ∆p̄w − gρwg∆D, and if this increment
tends to zero, then |k̄rw| → ∞. The Kyte and Berry method can therefore be
very sensitive to small perturbations in the flow conditions.

Alternative methods can be derived by using different weighting factors in
to compute the phase pressures. The pore-volume weighted method reads

p̄w =

∑J2
j=J1

∑I2
i=I1

[
φδxδy

(
pw − gρw(d−D)

)]
j,i∑J2

j=J1

∑I2
i=I1

[
φδxδy

]
j,i

,

and similarly, the flux-weighted potential method [34]

k̄rw = − µq̄w∆x

K̄x∆Φw
, Φ̄w =

∑J2
j=J1

[
qwΦw

]
j∑J2

j=J1

[
qw]j

,

where the sums are taken over the fine-grid column in the centre of the coarse
block.

To avoid some of the problems associated with the individual phase flow-
rate methods, Stone [58] suggested upscaling the fractional-flow function fo(S)
based on averaging the total mobilities λ at the fine scale,

f̄o =

∑J2
j=J1

[
qtfo

]
j∑J2

j=J1

[
qt
]
j

, λ̄ =

∑J2
j=J1

[
Txλ

]
j∑J2

j=J1

[
Tx

]
j

.

Here the sum is taken over the fine-grid column on the upstream side of the
coarse-grid interface. Stone’s formula assumes constant pressure drop in the
layers and neglects gravity and capillary pressure. His method for is there-
fore usually inadequate in cases with significant gravity or capillary pressure
effects, or in cases with large local variations in total mobility.
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Several authors [8, 35, 47] have proposed methods similar to e.g., Stone’s
method, with “better” averaging of the total mobility. One possibility is to
do local potential calculations with e.g., periodic boundary conditions and
invert the solution with respect to the phase mobilities. These total mobility
methods are more robust than the Kyte and Berry method in the sense that
infinite values can be avoided and negative values occur less frequently (but
can still occur if the net flows of the two phases are in opposite directions). In
summary, both the Kyte and Berry method and the method proposed by Stone
(and variants of the respective methods) have their drawbacks. The Kyte and
Berry method is computationally expensive, and may be highly sensitive to
small perturbations in the flow conditions. Total mobility methods like Stone’s
method are also computationally expensive, but at least these methods tend
to be more robust than the Kyte and Berry method.

3.3 Volume Averaged Equations

As an alternative to using pseudo functions, a more general framework based
on using higher moments to develop volume-averaged equations (VAE) has
been proposed by several authors, e.g., [22, 27, 50]. In this approach the basic
idea is to express the unknown quantities in terms of average and fluctuating
components. To illustrate, consider the simplified saturation equation (11)
with unit porosity φ = 1. Furthermore, for any given variable ν(x), write

ν(x) = ν + ν̃(x),

where ν̄ denotes a volume-averaged quantity (constant within the averaging
region), and ν̃(x) denotes a spatially fluctuating quantity with zero mean in
the averaging region. Substituting now the volume-average expansions for s,
v, and fw into (11), and then averaging the resulting equations gives

st + s̃t + v · ∇fw + v · ∇f̃w + ṽ · ∇fw + ṽ · ∇f̃w = 0. (14)

Averaging each term in this equation, noting that the average of terms with
only one fluctuating component vanishes, we obtain the following volume av-
eraged equation for s:

st + v · ∇fw + ṽ · ∇f̃w = 0 (15)

By subtracting (15) from (14) one obtains a corresponding equation for the
fluctuating part s̃:

s̃t + v · ∇f̃w + ṽ · ∇fw + ṽ · ∇f̃w = ṽ · ∇f̃w. (16)

The equation for the fluctuating component can be used to generate equations
for various moments of the fine-scale equations, see e.g., [21].

Assuming a unit mobility ratio, Efendiev et al. [25, 27] derive a single
coarse-grid equation from (15) on the form
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∂s

∂t
+∇ ·G(x, s) = ∇ ·D(x, t)∇s, (17)

where G(x, s) = vf(s) and D(x, t) is a history dependent function that models
the cross term ṽ · ∇f̃w. If we compare this equation with (11) we observe that
(17) contains an extra diffusion term. The general form of the coarse-scale
equation (17) has been obtained by many authors, e.g., [21, 22, 29, 50], and
the history dependence in the diffusion term has been rigorously verified using
homogenisation theory, see e.g., [29, 43]. This shows that the correct form of
the coarse-scale saturation equation does not, unlike the coarse-scale pressure
equation, take the same form as the equation that models the phase transport
at the continuous level. This observation gives some justification for developing
coarse-scale models that attempt to incorporate the history dependence.

Unfortunately, the implementation of VAEs into a simulator can be a
bit complicated due to the nonlocal memory effect. As a remedy for this
difficulty, Efendiev and Durlofsky [26] introduced a generalised convection-
diffusion model for modelling subgrid transport in porous media. Here they
observe that the nonlocal dispersivity in (17) imparts a somewhat convective
character to the model. Therefore, to eliminate the history-dependence in (17),
they propose a generalised convection-diffusion model where they introduce a
convective correction term so that the convective term in (17) is on the form

G(x, s) = vf(s) +m(x, s).

The convective correction term m(x, s) is determined from local subgrid com-
putations, as is the diffusion term D(x, s).

Durlofsky has investigated the relation between upscaling methods based
on the VAE methodology and existing upscaling techniques for two-phase flow,
with an emphasis on pseudo-relative permeability generation [9, 49, 53, 58],
the non-uniform coarsening approach5 [23], and the use of higher moments
of the fine-scale variables to correlate upscaled relative permeabilities [21]. It
is illustrated that some of the benefits and limitations with the various ap-
proaches can be understood and quantified with respect to volume averaged
equations. Specifically, it is demonstrated that for flows without gravity and
capillary forces, the VAE approach shows a higher degree of process indepen-
dence than the traditional pseudo-relative permeability methods. However,
to our knowledge, all published literature on VAEs and so-called generalised
convection-diffusion models for two-phase flow neglect capillary and gravity
forces. In addition, the methodology has for the most part been tested on
cases with unit mobility ratio [22, 21, 24, 27]. In recent work, Efendiev and
Durlofsky [25, 26] make an effort to generalise the VAE approach to two-phase

5The non-uniform coarsening method tries to generate grids that are coarsely
gridded in low-flow regions and more finely gridded in high-flow regions. Thus, rather
than modelling subgrid effects explicitly, the non-uniform coarsening methodology
attempts to minimise errors caused by subgrid effects by introducing higher grid
resolution in regions where subgrid terms would otherwise be important.
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flow with general mobility ratios, and obtain promising results. However, fur-
ther research is needed to validate the method and investigate if it can be
extended to include capillary and gravity forces.

3.4 Steady-State Equilibrium Upscaling for Two-Phase Flow

Dynamic pseudo methods are numerical in nature and tend to ignore the
underlying physics. The focus is on adjusting parameters to match a numerical
solution, rather than basing the upscaling on effective physical properties.
Steady-state upscaling (see e.g., [56]) is an alternative where the essential
assumption is steady-state flow, i.e., that the time derivative in equation (1)
is zero. Away from the well, this assumption leads us to a steady-state equation
for each phase on the form on the following form:

∇ ·
[
Kkri

µi
(∇pi − ρiG)

]
= 0. (18)

It may seem very restrictive to impose steady-state flow. However, away from
saturation fronts and in regions with low flow we may have small saturation
changes with respect to time, and small changes in fractional flow. Disregard-
ing the temporal derivative in (1) can therefore be justified in these types of
flow regions.

To derive effective relative permeabilities from equation (18) we first need
to determine the saturation distribution inside each coarse grid block. This
will be done from various physical principles, depending on the flow regime.
An upscaled relative permeability that corresponds to the prescribed subgrid
saturation distribution is then obtained by upscaling the phase permeabil-
ity Kkri using a pressure-computation single-phase upscaling technique, and
dividing the result with the corresponding upscaled permeability tensor K.
Thus, steady-state relative permeability curves are defined by the following
formula:

k̄rw = K̄−1Kkrw. (19)

This technique may thus be viewed as an extension to two-phase flows of the
pressure computation technique for single-phase upscaling.

To model the subgrid saturation, additional assumptions are made. The
precise assumptions will depend on the scale that we wish to model, the flow
process (e.g., the magnitude of the flow velocity) as well as an assessment
of which physical effects that are important. Assuming for the moment that
we have a way of extracting an appropriate saturation field on the subgrid
from the coarse scale solution, it is clear that also other saturation-dependent
physical parameters, such as the capillary pressure, may be upscaled. Thus, as
opposed to dynamic pseudo functions, we see that these methods do not seek
numerical devices that reproduce subscale flow effects. Instead, steady-state
upscaling techniques seek effective physical properties and therefore have a
more physical motivation. On the other hand, steady-state methods do not
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correct for grid effects and numerical dispersion like dynamic pseudo functions
tend to.

Steady-state upscaling methods may be put into three categories that are
linked to the balance of three forces: viscous forces, capillary forces, and grav-
itational forces which give rise to flows qv, qc, and qg (see (5) and the sub-
sequent discussion). Understanding the balance of these forces may indicate
which method to warrant. It is often not clear how to quantify these three
forces for a particular modelling problem, and they will usually vary both with
time and space. However, we can try to investigate the role of the different
forces by comparing the respective contributions to the saturation equation

φ∂tsw = −∇ ·
[
qv + qc + qg

]
. (20)

For certain types of models it may be possible to choose representative val-
ues for qv, qc and qg. Thus, if we normalise them with respect to their sum
and place them in a ternary diagram, then the position in the diagram may
serve as a guideline deciding on which steady-state method to apply, see, e.g.,
[57]. Another possibility is to measure the balance of these three forces using
laboratory experiments. This type of experiment is usually performed on core
samples with constant saturation fraction injected through an inlet boundary,
and pressure controlled production at an outlet boundary, where the outlet
boundary is at the opposite face of the inlet boundary. By comparing the
observed flow-rates at the outlet boundary with corresponding flow-rates ob-
tained from numerical simulation studies, possibly through some tuning of
relevant parameters, it is possible to say something about the importance of
including the various forces in the upscaled model. Note that care need to
be exercised when using laboratory experiments. The balance of forces are
sensitive to scale, and also to whether reservoir conditions are used during
a core flooding experiment. We now present how to determine the subgrid
saturations for the different steady-state methods.

Capillary Equilibrium Methods

In these steady-state upscaling methods one assumes, in addition to the
steady-state assumption, that capillary pressure is constant in space and time.
In practise, approximately constant capillary pressure occurs mainly in regions
with very low flow-rates. This implies that viscous and gravity forces are dom-
inated by capillary forces. Viscous forces, and sometimes also gravity forces,
are therefore neglected in capillary equilibrium steady-state methods.

In capillary equilibrium steady-state methods, the saturation in each grid-
cell within the block to be upscaled is determined by inverting the capillary
pressure curve. Indeed, for a two-phase system the capillary pressure is mod-
elled as a strictly monotone function of one of the phases, so it is invertible
on its range. The capillary pressure function is often scaled by the so-called
Leverett J-function. This function takes the following form:
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J(sw) =
pc

√
K
φ

σcos(θ)
, (21)

where σ is the interfacial tension between the phases, and θ is the contact an-
gle between the phases. The contact angle and interfacial tension are usually
measured in a laboratory. The Leverett J-function is usually a known (tabu-
lated) function of sw. Now, since the capillary pressure is a known constant
within each grid block and K and φ are known subgrid quantities, we can
invert (21) to obtain the subgrid saturation distribution

sw = J−1

 p̄c

√
K
φ

σcos(θ)

 . (22)

With the J-function scaling, the capillary pressure curve for each grid block
will be scaled according to the ratio between permeability and porosity, and
tend to give large saturation contrasts in the model.

Once the subgrid saturation is known, we solve the steady-state equation
(18) for each phase, and use (19) to derive effective relative permeabilities.
Gravity forces can be included in the model by replacing pc in (22) with
% = pc + (ρw − ρo)gz, where z is vertical position in the model. This follows
by observing that in absence of viscous forces we have vw = fwKλo∇%. Thus,
conceptually the mapping defined by % allows us to include gravity forces in
the capillary pressure function. However this approach should be used only
if capillary forces are dominant since the Leverett J-function does not model
effects of gravity. Finally, we remark that the assumption that viscous forces
are negligible can be relaxed, as is shown in [6].

Steady-State Upscaling Methods for Viscous Dominated Flows

The basic assumption in the capillary equilibrium methods was that the flow
was dominated by capillary forces, or equivalently that the Darcy velocity v
is so small that the viscous forces can be neglected. At the other end of the
rate scale we have the viscous limit, which can be interpreted as the limit
when capillary and gravitational forces tend to zero relative to the viscous
forces. This can be the case in, for instance, nearly horizontal high permeable
layers with restricted vertical extent. For a more in depth discussion on the
applicability of viscous limit steady-state the reader may consult [30]. By
convention, one often refers to this as the limit when the Darcy velocity goes
to infinity.

In the viscous-limit approach to steady-state upscaling methods, one ne-
glects gravity and capillary forces and assumes constant fractional flow. In
addition, it is assumed that the pressure gradient across a grid-block is the
same for both phases. If kro is nonzero, we now can divide the flow-rate of the
phases with each other (given by Darcy’s law) to derive
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vw

vo
=

−Kkrw

µw
∇p

−Kkro

µo
∇p

=
krwµo

kroµw
.

The relative permeability curves are assumed to be known functions of the
phase saturations and rock type (i.e., functions of x). With the additional
equation that saturations add to one, solving for saturations is just a matter
of solving two equations with two unknowns sw(x) and sw(x),

sw + so = 1, krw(sw, x) =
(vwµw

voµo

)
kro(so, x).

Note that saturations obtained are unique when the relative pressure curves
are strictly monotonic. Moreover, if we have a single set of relative permeabil-
ity curves, the subgrid saturations will be constant within the coarse block.
As in the capillary equilibrium methods, effective relative permeabilities are
obtained from the subgrid saturation distribution by using (19) and an effec-
tive permeability tensor K̄ is obtained by solving the steady-state single-phase
equation.

It should be noted that for numerical implementation a strategy presented
in [48] should be preferred. Rather that upscaling each phase separately, it is
suggested to upscale the total mobility λt, and at the final step calculate the
individual relative permeabilities using fractional flow. This approach has two
advantages, the first being that you only need to solve the steady-state single
phase equation once, the other being that you reduce contrast in the model,
softening the numerical properties of the equation.

General Steady-State Methods

The two steady-state upscaling methods described above apply to cases with
either very low or very high flow-rates. This may apply to certain regions of
an oil-reservoir, but one will always have regions with somewhat moderate
flow-rates. Moreover, many grid blocks will have some cells with low perme-
ability and some blocks with high permeability. Hence, one will often have
both high and low flow-rates inside the same grid block. In these situations,
neither the capillary equilibrium method nor the viscous limit method tend to
perform well. Still, the basic steady-state upscaling methodology that involves
upscaling steady-state equations of the form (18) and using (19) to derive ef-
fective relative permeabilities may still be used. However, this requires full
flow simulations for each grid block and is therefore computationally expen-
sive. Moreover, since we can not exploit physical principles to derive upscaled
parameters, we need to determine an initial saturation distribution for the
simulations, as well as fluid injection rates on the boundary. On the upside
we have that no physical assumptions are required other than steady-state, so
that effects from gravity, phase transfer, and compressibility can be included.



Modelling Multiscale Structures in Reservoirs Simulation 35

Final Remarks on Two-Phase Upscaling

As with all mathematical tools for handling simulation of flow, the value of
upscaling techniques will ultimately be judged by its success in applications
to practical problems. Upscaling two-phase flow reliably has proved to be a
very difficult task. In fact, although pseudo methods are widely used, Barker
and Thibeau [9] argue that existing pseudo methods can only be used to
upscale two-phase flow reliably for cases where gravity equilibrium (gravity
forces dominate capillary and viscous forces) or capillary equilibrium can be
assumed at the coarse-grid scale. One of the reasons why it is so hard to
upscale reservoir flow scenarios reliably is that different types of reservoir
structures require different upscaling methodologies. Hence, in principle one
should divide grid blocks into different categories that each represents a par-
ticular type of representative elementary volumes. This implies that upscaling
should ideally be linked to gridding. Of the methods discussed in this section,
only pseudo methods tend to correct for grid effects, meaning that simulation
results differ if you change the grid resolution. Relative permeability curves
obtained using pseudo methods may therefore be effective for reproducing the
production history of a field, but may perform poorly if the production strat-
egy of the field is changed (e.g., if a new well is drilled). Conclusively, pseudo
and steady-state methods both have their drawbacks. Pseudo-functions have
been used by the industry for quite some time, so their limitations are well-
known. Methods based on the VAE methodology are still immature for real
field applications.

4 Multiscale Methods for Solving the Pressure Equation

Several types of multiscale methods have recently begun to emerge in various
disciplines of science and engineering. By definition, multiscale methods is
a label for techniques that model physical phenomena on coarse grids while
honouring small-scale features that impact the coarse-grid solution in an ap-
propriate way. Mathematical-oriented multiscale methods are often geared
toward solving partial differential equations with rapidly varying coefficients.
These methods try to incorporate subgrid information by utilising solutions
of local flow problems to build a set of equations on a coarser scale. This
is similar to the approach of flow-based upscaling methods, but the multi-
scale methods are different in the sense that they ensure consistency of the
coarse-scale equations with the underlying differential operator. In practice
this means that the solution of the coarse-scale system is consistent with the
differential operator also on the finer scale on which the local flow problems
are solved, and therefore gives an accurate solution on this scale as well.

To accomplish this, the multiscale methods may express the fine-scale
solution as a linear combination of basis functions, where the basis functions
are solutions to local flow problems. Here we describe and discuss two methods
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Fig. 10. Schematic reservoir model with a coarse grid superimposed on the fine
grid.

of this type that are designed for solving pressure equations arising in reservoir
simulation. The methods we shall consider are the the multiscale finite-volume
method (MsFVM) [41, 42], and the multiscale mixed finite-element method
(MsMFEM) [17, 2]. Both methods generate mass-conservative velocity fields
on the subgrid scale, while solving only a coarse-scale system globally.

The starting point for both methods is a subdivision of the reservoir into
polyhedral grid-blocks, with a coarse grid superimposed on the fine grid, e.g.,
as shown in Figure 10. Usually each coarse grid-block is a connected union of
fine grid-blocks, but the coarse grid may be any connected non-overlapping
partition of the reservoir, provided quantities may be properly mapped from
the underlying fine grid. We shall assume that the reservoir data (K and
λ) are given on the fine grid, and since this grid must be suitable for nu-
merical discretisation of (23) using standard numerical techniques, it can not
be completely arbitrary. However, in the multiscale methods we use the fine
grid only to solve local problems. The properties that enter the coarse-scale
equations are extracted from these local solutions alone, hence the multiscale
formulations are in a sense independent of coarse grid geometry.

As a consequence of this, we can allow very general coarse grids. For in-
stance, we can allow grids that are locally structured, but globally unstruc-
tured. This convenient feature allows us to use the subgrid to model physical
features such as fractures and faults, or to tune the grid geometry to advanced
well architectures. Moreover, few restrictions are placed on the geometry of
each coarse grid-block. This is particularly true for the MsMFEM, which has
demonstrated accurate results with almost arbitrarily shaped grid-blocks [1].
Such a flexibility makes multiscale methods amenable for solving problems
that demand unstructured grids, or grids with high grid-block aspect ratios.

Before describing each of the methods in more detail, we specify the model
equations we will work with. For simplicity, we consider the elliptic pressure
equation only, i.e., we assume incompressible flow. The methods can be ex-
tended to solve the parabolic equation arising from compressible flow using,
for instance, an implicit Euler or the Crank-Nicholson method to discretise
the time derivative. Moreover, we will disregard gravity effects, since these
are straightforward to include, but complicate notation. After these simplifi-



Modelling Multiscale Structures in Reservoirs Simulation 37

cations, the pressure equation for two-phase flow (4) reads

v = −Kλ∇p, ∇ · v = q, (23)

and we assume this is to be solved in a domain Ω subject to no-flow boundary
conditions v · n = 0 on ∂Ω.

4.1 The Multiscale Finite-Volume Method

The MsFVM, introduced by Jenny et al. [41, 42], is essentially a finite-volume
scheme that extracts a mass-conservative velocity field on a fine scale from
a coarse-grid solution. The method employs numerical subgrid calculations
(analogous to those in [39]) to derive a multi-point finite-volume stencil for
solving (23) on a coarse grid. The method then proceeds and reconstructs a
mass-conservative velocity field on a fine grid as a superposition of local sub-
grid solutions, where the weights are obtained from the coarse-grid solution.

Computation of the Coarse-Scale Solution

The derivation of the coarse-scale equations in the MsFVM is essentially an
upscaling procedure for generating coarse-scale transmissibilities. The first
step is to solve a set of homogeneous boundary-value problems of the form

−∇ ·Kλ∇φk
i = 0, in R, φk

i = νk
i , on ∂R, (24)

where R are so-called interaction regions as illustrated in Figure 11 and νk
i

are boundary conditions to be specified below. The subscript i in φk
i denotes

a corner point in the coarse grid (xi in the figure) and the superscript k runs
over all corner points of the interaction region (xk in the figure). Thus, for each
interaction region associated with e.g., a hexahedral grid in three dimensions,
we have to solve a total of eight local boundary-value problems of the form
(24). The idea behind the MsFVM is to express the global pressure as a
superposition of these local pressure solutions φk

i . Thus, inside each interaction
region R, one assumes that the pressure is a superposition of the local subgrid
solutions {φk

i }, where k ranges over all corner points in the interaction region
(i.e., over the cell centres of the coarse grid-blocks).

We define now the boundary conditions νk
i in (24). At the corner points of

the interaction region, the boundary condition νk
i satisfies νk

i (xl) = δkl, where
δkl is the Kronecker delta function. Assuming we are in three dimensions, the
corner-point values νk

i (xl) are extended to the edges of the interaction region
by linear interpolation. To specify the boundary conditions on each face F of
the interaction region, one solves a two-dimensional boundary problem of the
form

−∇ ·Kλ∇νk
i = 0 in F, (25)

with the prescribed piecewise-linear boundary conditions on the boundary of
F (the edges of the interaction region that connect the corner points). In two
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x
i

R

K
k

xk

Fig. 11. The shaded region represents the interaction region R for the MsFVM,
where xi denotes corner points and xk the midpoints of the coarse grid-blocks Kk.
The midpoints xk are the corner points of the interaction region R.

dimensions it is not necessary to interpolate between corner points, and the
boundary conditions νk

i (x) are obtained by solving (25) subject to the corner
point values along the edges of the interaction region.

Having computed the local pressure solutions φk
i , we now show how to

obtain a global solution as a superposition of the local subgrid solutions. To
this end, we observe that the cell centres xk constitute a corner point for eight
interaction regions (in a regular hexahedral grid). Moreover, for all corner
points xi of the coarse grid, the corresponding boundary conditions νk

i for the
different pressure equations coincide on the respective faces of the interaction
regions that share the corner point xk. This implies that the base function

φk =
∑

i

φk
i (26)

is continuous (in a discrete sense). In the following construction, the base
functions defined in (26) will serve as building blocks that are used to construct
a global “continuous” pressure solution.

Thus, define now the approximation space V ms = span{φk} and observe
that all base functions vanish at all but one of the grid-block centres xk.
This implies that, given a set of pressure values {pk}, there exists a unique
extension {pk} → p ∈ V ms with p(xk) = pk. This extension is defined by

p =
∑

k

pkφk =
∑
i,k

pkφk
i . (27)

We derive now a multi-point finite-volume stencil by assembling the flux con-
tribution across the grid-block boundaries from each base function. Thus, let

fk,l = −
∫

∂Kl

n ·Kλ∇φk ds

be the local flux out of grid-block Kl induced by φk. The MsFVM for solving
(23) then seeks constant grid-block pressures {pk} satisfying
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k

pkfk,l =
∫

Kl

q dx ∀l. (28)

We now explain how to reconstruct a mass-conservative velocity field on the
underlying subgrid from the coarse-grid solution.

Reconstruction of a Conservative Fine-Scale Velocity Field

To reconstruct a mass-conservative velocity field on a fine scale, notice first
that the expansion (27) produces a mass-conservative velocity field on the
coarse scale. Unfortunately, this velocity field will not preserve mass across
the boundaries of the interaction regions. Thus, to obtain a velocity field that
also preserves mass inside the coarse grid-blocks, one solves

vl = −Kλ∇pl, ∇ · vl =
1
|Kl|

∫
Kl

q dx in Kl, (29)

with boundary conditions obtained from (27), i.e.,

vl = −Kλ∇p on ∂Kl, (30)

where p is the expanded pressure defined by (27).
Hence, in this approach the subgrid fluxes across the coarse-grid interfaces

that we obtain from p are used as boundary conditions for a new set of local
subgrid problems. If these subgrid problems are solved with a conservative
scheme, e.g., a suitable finite-volume method, then the global velocity field
v =

∑
Kl
vl will be mass conservative. Moreover, since the fluxes correspond to

interfaces that lie in the interior of corresponding interaction regions, it follows
that the boundary condition (30) is well defined. Note, however, that since
the subgrid problems (29)–(30) are solved independently, we loose continuity
of the global pressure solution, which is now defined by p =

∑
Kl
pl.

It is possible to write the new global fine-scale solutions p and v as linear
superpositions of (a different set of) local base functions, see [41] for details.
This may be convenient when simulating two-phase flows with low mobility
ratios. This is because low mobility ratios lead to a slowly varying mobility
field. As a result, it is sometimes possible to achieve high accuracy with a
unique set of base functions. Thus, by representing p and v as a linear super-
position of local base functions, solving the subgrid problems (24)–(25) and
(29)–(30) becomes part of an initial preprocessing step only.

It is worth noting that the present form of the MsFVM, which was devel-
oped by Jenny et al. [41], does not model wells at the subgrid scale. Indeed,
the source term in (29) is equally distributed within the grid-block. Thus, in
order to use the induced velocity field to simulate the phase transport, one has
to treat the wells as a uniform source within the entire well block. However,
to get a more detailed representation of flow around wells one needs only to
replace (29) in grid blocks containing a well with the following equation:
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vl = −Kλ∇pl, ∇ · vl = q in Kl.

This completes the description of the MsFVM. The next section is devoted
to a multiscale method with similar properties that is based on a so-called
mixed formulation of the elliptic pressure equation (23); see [3].

4.2 A Multiscale Mixed Finite-Element Method

For finite-volume methods and finite-element methods the velocities are de-
rived quantities of the unknown pressures, computed using some kind of nu-
merical differentiation. In this section we consider a method that obtains the
velocity directly. The underlying idea is to consider both the pressure and
the velocity as unknowns and express them in terms of basis functions. The
corresponding method is called a mixed finite-element method. In the lowest-
order mixed method one uses piecewise-constant scalar basis functions for the
pressure and piecewise-linear basis functions for the velocity (this is usually
referred to as the Raviart–Thomas basis functions, see [54]).

In mixed finite-element discretisations of elliptic equations on the form
(23), one seeks a solution (p, v) to the mixed equations∫

Ω

u · (Kλ)−1v dx−
∫

Ω

p ∇ · u dx = 0, (31)∫
Ω

l ∇ · v dx =
∫

Ω

ql dx, (32)

in a finite-dimensional product space U × V ⊂ L2(Ω) × H1,div
0 (Ω). If the

subspaces U ⊂ L2(Ω) and V ⊂ H1,div
0 (Ω) are properly balanced (see, e.g.,

[12, 13, 14]), then p and v are defined (up to an additive constant for p) by
requiring that (31)–(32) holds for all (l, u) ∈ U × V .

In MsMFEMs one constructs a special approximation space for the velocity
v that reflects the important subgrid information. For instance, instead of
seeking velocities in a simple approximation space spanned by base functions
with linear components, as in the Raviart–Thomas method, one computes
special multiscale base functions ψ in a manner analogous to the MsFVM, and
defines a corresponding multiscale approximation space by V ms = span{ψ}.
An approximation space for the pressure p that reflects subgrid structures can
be defined in a similar manner. However, there are reasons for not doing so.

First, the pressure equation (23) models incompressible flow. This means
that the pressure is never used explicitly in the flow simulation, except pos-
sibly to determine well-rates through the use of an appropriate well-model.
It is therefore often sufficient to model pressure on the coarse scale as long
as we can obtain a detailed velocity field without knowing how the pressure
behaves at the subgrid scale. This is one of the nice features with mixed finite-
element methods. Indeed, by treating the pressure and velocities as separate
decoupled variables, we gain some freedom in terms of choosing the resolu-
tion of the two approximation spaces U and V more independently. In other
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j

Fig. 12. Schematic of the coarse and fine grid for the MsMFEM. The shaded region
denotes the support of the velocity base function associated with the edge between
the two cells Ki and Kj .

words, the computational effort can be spent where it is most needed. On
the other hand, the approximation spaces can not be chosen arbitrarily. In-
deed, the convergence theory for mixed finite element methods, the so-called
Ladyshenskaja–Babuška–Brezzi theory (see [12, 13, 14]) states that the ap-
proximation spaces must satisfy a relation called the inf-sup condition, or
the LBB condition. By defining a multiscale approximation space also for the
pressure variable, it can be quite difficult to show that this relation holds.
Therefore, in the following we assume, unless stated otherwise, that U is the
space of piecewise constant functions, i.e.,

U = {p ∈ L2(Ω) : p|K is constant for all K ∈ K}.

Observe that this space is spanned by the characteristic functions with respect
to the coarse grid-blocks: U = span{χm : Km ⊂ K} where

χm(x) =
{

1 if x ∈ Km,
0 else.

Next, we We define the approximation space V for the velocity.

Approximation Space for the Velocity

Consider a coarse grid that overlays a fine (sub)grid, for instance as illustrated
in Figure 12. For the velocity we associate one vector of base functions with
each non-degenerate interface γij between two neighbouring grid-blocks Ki

and Kj . To be precise, for each interface γij we define a base function ψij by

ψij = −Kλ∇φij , in Ki ∪Kj , (33)

where φij is determined by
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Homogeneous medium Heterogeneous medium

Fig. 13. The figure depicts the x-component of two MsMFEM base functions for
an interface between two rectangular (two-dimensional) grid-blocks that are not
penetrated by a well. The base function to the left corresponds to homogeneous per-
meability, whereas the base function to the right corresponds to random coefficients.

(∇ · ψij)|Ki
= `(x)/

∫
Ki

`(x) dx, (34)

(∇ · ψij)|Kj
= −`(x)/

∫
Kj

`(x) dx. (35)

with no-flow boundary conditions along the edges ∂Ki ∪ ∂Kj\γij .
The function `(x) can be defined in various ways. One option that was

proposed by Chen and Hou [17] is to simply choose `(x) = 1. This option
produces mass-conservative velocity fields on the coarse scale, but the subgrid
velocity field is mass conservative only if we treat the wells as a uniform
source term within grid-blocks containing wells. To model flow around wells
at the subgrid scale, one can for instance choose `(x) = q(x) in coarse blocks
penetrated by an injection or production well. Another possibility is to choose
`(x) = 1 and then to reconstruct a velocity field that models near-well flow
patterns from the coarse grid solution. This final option is analogous to the
way one models flow around wells with the MsFVM.

We are here primarily interested in getting a velocity field that can be used
to model flows in heterogeneous porous media on a subgrid scale. To this end
we must solve the subgrid problems (33)–(35) with a conservative scheme, for
instance the Raviart–Thomas mixed finite-element method. Moreover, it is
generally acknowledged that it is important to model the flow around wells
correctly to obtain reliable production forecasts from reservoir simulations.
In the current MsMFEM we have the possibility to do this in a rigorous
manner by incorporating near-well flow patterns in the base functions. We
will therefore choose `(x) = 1 away from the wells and `(x) = q(x) in grid
blocks penetrated by wells. As discussed in [2, 5], it is not necessary to change
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the approximation space for p even if we change l(x) in blocks penetrated by
wells.

Figure 13 shows the x-component of the velocity base functions for the
MsMFEM obtained for two cases with homogeneous and random permeabil-
ity, respectively. We see that the base function corresponding to random co-
efficients fluctuates rapidly and hence reflects the fine-scale heterogeneous
structures. Note also that the base functions ψij will generally be time depen-
dent since they depend on λ, which is time dependent through sw(x, t). This
indicates that one has to regenerate the base functions for each time step.
However, for nearly incompressible fluids, the total mobility λ usually varies
significantly only in the vicinity of propagating saturation fronts. It is there-
fore usually sufficient to regenerate a small portion of the base functions at
each time step, see [2]. Similar observations have been made for the MsFVM,
see [41].

Computing the Coarse Scale Solution

In the MsFVM the only information from the subgrid calculations that was
explicitly used in the coarse grid equations was the flux contribution across
the coarse grid interfaces from the respective base functions. This implies
that a lot of potentially valuable information is disregarded in the coarse scale
equations. For the MsMFEM, all information (apart from the subgrid pressure
solutions) is exploited and enters directly into the coarse-scale system. Indeed,
the MsMFEM seeks

p ∈ U, v ∈ V ms such that (31)–(32) holds for ∀l ∈ U, ∀u ∈ V ms.

This leads to a linear system of the form[
B −CT

C 0

] [
v
p

]
=
[
0
f

]
, (36)

where

B = [
∫

Ω

ψij · (λK)−1ψkl dx],

C = [
∫

Km

div(ψkl) dx],

f = [
∫

Km

f dx].

The linear system (36) is indefinite, which generally makes it harder to
solve than the symmetric, positive definite systems arising from, e.g., the two-
point flux approximation (6). This is not particular to the multiscale version
of the mixed finite-element method, but a well-known characteristic of mixed
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finite-element methods in general. Fortunately it is possible to reformulate
the discrete form of the mixed equations (31)–(32) to eventually obtain a
symmetric, positive definite linear system by applying a technique usually
referred to as hybridisation [14].

The idea is to first remove the constraint that the normal velocity must be
continuous across block interfaces and integrate (23) to get a weak form con-
taining jump terms at block boundaries. Continuity of the normal component
is then reintroduced by adding an extra set of equations, where the pressure
at the interfaces plays the role of Lagrange multipliers. This procedure does
not change the velocity solution, nor the grid cell pressures, but enables the
recovery of pressure values at the cell interfaces, in addition to inducing the
desired change in structure of the linear system.

In our multiscale setting, the mixed-hybrid problem is to find

(p, v, π) ∈ (U × Ṽ ms ×Π),

where
U ⊂ L2(Ω), Ṽ ms ⊂ (L2(Ω))2, and Π ⊂ L2({∂K}),

such that∫
Ω

u · (Kλ)−1v dx−
∫

Ω

p ∇ · u dx+
∑

κ∈{∂K}

∫
κ

[u · n] π ds = 0, (37)

∫
Ω

l ∇ · v dx =
∫

Ω

ql dx, (38)∑
κ∈{∂K}

∫
κ

[v · n] µ ds = 0, (39)

holds for all (l, u, µ) ∈ (U×Ṽ ms×Π). The square brackets denote the jump in
a discontinuous quantity. The new approximation space for the Darcy velocity
is still defined by (34)–(35), but since Ṽ ms is not required to be a subspace
of H1,div

0 , the matrices B and C in the resulting linear systemB −CT ΠT

C 0 0
Π 0 0

vp
π

 =

0f
0

 , (40)

will have a block-diagonal structure. The new matrix Π is defined by

Π =
[∫

∂Km

ψkl · n ds
]
,

and block reduction of the system (40) yields

Mπ = f̃ , (41)

where
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M = S(CT D−1C−B)ST ,

f̃ = SCT D−1f ,

S = ΠB−1, and D = CB−1CT .

Here B is block-diagonal, so B−1 can be computed block-by-block. Moreover,
D is diagonal6 and can therefore easily be inverted, and M is symmetric
positive definite (see, e.g., [14]). Hence, M can be computed explicitly, and the
linear system can be solved using one of the many efficient methods specialised
for symmetric positive-definite linear systems.

4.3 Examples

Both the MsMFEM and the MsFVM solve a coarse-scale equation globally
while trying to resolve fine-scale variations by using special multiscale basis
functions. The basis functions are local solutions of the elliptic equation, and
the therefore overall accuracy only depends weakly on the coarse grid size.
We shall demonstrate this with an example.

Example 3. Consider a horizontal, two-dimensional reservoir with fluvial het-
erogeneity. An injection well is located in the centre and a producer is located
in each of the four corners. The permeability on the 220×60 fine grid is taken
from the bottom layer of Model 2 in the Tenth SPE Comparative Solution
Project [18]. The dataset has many narrow and intertwined high-permeability
channels that greatly impact the flow pattern. We solve the pressure equa-
tion using both the MsFVM and the MsMFEM with various coarse grid di-
mensions, and employ an upstream finite-volume method for the saturation
equation on the underlying fine grid. A reference solution is computed using
a two-point flux approximation scheme on a grid that is refined four times in
each direction. Figure 14 shows the resulting saturation fields at dimensionless
time t = 0.3PVI. The solutions are quite difficult to distinguish visually. We
therefore measure errors in the saturation fields by

δ(S) =
ε(S)
ε(Sref)

, ε(S) =
‖S − I(S4×

ref )‖L1

‖I(S4×
ref )‖L1

.

Here the operator I(·) represents mapping from the refined to the original grid.
The results displayed in Table 3 verify that the accuracy is indeed relatively
insensitive to coarse grid size, although there is a slight degradation of solution
quality as the grid is coarsened.

6This may be seen by observing that XYT will be diagonal for any two matrices
X and Y having the sparsity structure of C, . The result then follows from the fact
that multiplication by B−1 does not change the sparsity structure of C.
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(c) MsFVM 30× 110 (d) MsMFEM 30× 110
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(e) MsFVM 15× 55 (f) MsMFEM 15× 55
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(g) MsFVM 10× 44 (h) MsMFEM 10× 44
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(i) MsFVM 5× 11 (j) MsMFEM 5× 11

Fig. 14. MsMFEM and MsFVM solutions for various coarse grids on the bottom
layer of the SPE 10 test case. The two figures at the top show the reference solution
on the original fine and the 4× refined grids.
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Table 3. δ(S) for various coarse grids.

30× 110 15× 55 10× 44 5× 11

MsMFEM 1.0916 1.2957 1.6415 1.9177
MsFVM 1.0287 1.6176 2.4224 3.0583

Boundary Conditions

The accuracy of the multiscale methods is largely determined by the bound-
ary conditions for the local problems. In fact, it can be shown that by using
properly scaled restrictions of a global fine-scale solution as boundary condi-
tions for the basis functions, it is possible to replicate the fine-scale solution
by solving the pressure equation on the coarse grid with the MsMFEM [2, 1]
or the MsFVM [28]. For simulations with many time steps, computation of
an initial fine-scale solution may be justified. Indeed, if the pressure field is
reasonably stable throughout the simulation, it is possible to exploit the ini-
tial solution to obtain proper boundary conditions at subsequent time-steps
[2, 42]. We usually refer to such boundary conditions as global boundary con-
ditions, and they have been shown to give very accurate results, e.g., for the
SPE10 model [4, 42].

Example 4. We now demonstrate in Table 4 that the multiscale methods with
global boundary conditions are capable of replicating a fine-scale solution.
Since we here use the TPFA to compute the fine-grid solution, we have δ(S) ≡
1 only for the MsFVM. If the lowest-order Raviart–Thomas mixed finite-
element method had been used to compute the fine-grid solution and basis
functions for the MsMFEM, we would get δ(S) ≡ 1 for the MsMFEM instead.

Table 4. δ(S) for various coarse grids, boundary conditions determined using a
fine-scale solution.

30× 110 15× 55 10× 44 5× 11

MsMFEM 0.9936 0.9978 0.9938 0.9915
MsFVM 1.0000 1.0000 1.0000 1.0000

Multiscale Methods used as Upscaling Methods

Although the multiscale methods provide velocities on whatever we decide to
use as the fine-grid, they can also be utilised as upscaling methods. Indeed,
the velocities can easily be integrated along grid lines of an arbitrary coarse
grid. The multiscale methods can therefore be viewed as seamless upscaling
methods for doing fluid-transport simulations on user-defined coarse grids.
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(c) P-Upscaling (d) ALG-Upscaling
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(e) MsFVM (f) MsMFEM

Fig. 15. Saturation profiles on a 15×55 grid obtained by the various upscaling and
multiscale methods.

Next we show that the multiscale methods give comparable accuracy to stan-
dard upscaling techniques on fixed coarse grids if the saturation equation is
solved on the coarse grid.

Example 5. To validate the multiscale methods as upscaling methods, we again
use the data from the bottom layer of the SPE10 model and solve the satura-
tion equation on the same coarse grid that is used in the multiscale methods.
For comparison, we also compute solutions obtained by using some of the up-
scaling methods described in Section 3. Figure 15 shows saturations for the
15 × 55 coarse grid. Table 5 shows the corresponding error measure δc(S),
where the subscript c indicates that errors are computed on the coarse (up-
scaled) grid. We see that the multiscale methods perform slightly better than
the upscaling methods. A more substantial improvement of saturation accu-
racy cannot be expected, since the listed upscaling methods for the pressure
equation are quite robust, and generally perform well.

We now reverse the situation from Example 5 and compute saturations on
the fine grid also for the upscaling methods. This requires that we downscale
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Table 5. δc(S) for various coarse grids.

30× 110 15× 55 10× 44 5× 11

MsMFEM 0.9891 0.9708 0.9556 0.9229
MsFVM 0.9932 0.9675 1.0351 1.1439
ALG-Upscaling 0.9813 0.9826 1.0223 1.0732
P-Upscaling 1.0313 1.0216 1.1328 1.2371
HA-Averaging 1.0371 1.0654 1.2300 1.8985

Table 6. δc(S) for various coarse grids, saturations computed on the original grid.

30× 110 15× 55 10× 44 5× 11

MsMFEM 1.0775 1.2849 1.8564 2.9680
MsFVM 1.0190 1.7140 2.8463 5.9989
ALG-Upscaling 1.1403 1.5520 2.3834 4.4021
P-Upscaling 1.6311 2.6653 4.1277 6.5347
HA-Upscaling 1.6477 2.9656 4.8572 15.3181

the velocity field by reconstructing a conservative fine-scale velocity field from
a coarse-scale solution. For this we employ the procedure described in [32].
After having solved the saturation equation on the fine grid, we map the
saturations back to the upscaled grid and compute the errors there. From the
results in Table 6 we see that the multiscale methods give much better results
than simple averaging and purely local upscaling. The local-global method,
on the other hand, gives good accuracy, but computationally it is also much
more expensive than the multiscale methods.

4.4 Concluding Remarks

As we have seen, the multiscale methods are capable of producing accurate
solutions on both the fine and coarse scales, and may therefore be utilised as
either robust upscaling methods or efficient approximate fine-scale solution
methods. Having fine-scale velocities available at a relatively low computa-
tional cost gives great flexibility in the choice of solution method for the
saturation equation. In light of the limited success of upscaling methods for
the saturation equation, it seems beneficial to perform the transport on the
finest grid affordable, and a fine-scale velocity field may aid in choosing such
a grid as well as ensure the accuracy of the resulting solution.

Although we have shown only very simple examples, we would like to em-
phasise the advantage multiscale methods have in their flexibility with respect
to grids. In particular this is true for the MsMFEM, since it avoids the dual-
grid concept. For the MsMFEM each coarse-grid block is simply a connected
union of fine-grid blocks, which makes the method virtually grid-independent
given a fine-scale solver. Therefore it is straightforward to perform multiscale
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Fig. 16. The fine-grid is a corner-point grid, which is the industry standard for
reservoir modeling and simulation. The coarse-grid blocks are given by different
colours.

Fig. 17. The coarse grid is tuned to model a well and the near-well region. Away
from the well regions the coarse-grid blocks are aligned with the physical layers.

simulations on models with rather complicated fine-grids, such as the one
displayed in Figure 16.

Furthermore, since the only real constraint on the geometry of coarse-grid
blocks seems to be that it must allow computation of the local solutions,
we may tune the coarse-grid to model particular reservoir features or wells
without worrying about grid-block shapes. Figure 17 shows an example where
the coarse-grid blocks are aligned with the physical layers. A vertical well is
modelled by a narrow block, and the near-well region is modelled by another
block with a hole. Even such exotic grid-blocks are unproblematic for the
MsMFEM, and the multiscale simulations yield accurate results.

Finally, it is worth mentioning that the multiscale methods are flexible not
only with regard to grids, but also with regard to fine-grid solution methods.
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The fine-scale numerical method may be chosen independently for each of
the local problems, and thus a higher-order method or local grid-refinement,
may be employed for higher accuracy in regions of interest. Such approaches
will not significantly impact the efficiency of the methods, since multiscale
efficiency mainly comes from adaptively updating only a small portion of the
local solutions. The multiscale methods may therefore have the potential to
combine accuracy and efficiency in an ideal way.
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