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Abstract. In this paper we investigate two strategies for coarsemiagttired geological mod-
els. The first approach, which generates grids that resbb/&actures, is referred to as explicit
fracture-matrix separation (EFMS). The second approadiaged on a non-uniform coars-
ening strategy introduced in (Aarnes et al., 2007a). A seofetwo-phase flow simulations
where the saturation is modeled on the respective coards gre performed. The accuracy
of the resulting solutions is examined and the robustnegbeotwo strategies is assessed
with respect to number of fractures, degree of coarsenirgd|, lacations, phase viscosities,
and fracture permeability. The numerical results show Haatiration solutions obtained on
the non-uniform coarse grids are consistently more acetatn the corresponding saturation
solutions obtained on the EFMS grids. The numerical resisis reveal that it is much easier
to tune the upscaling factor with the non-uniform coarsgrapproach.
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1. Introduction

Many applications in science and engineering involve floacpsses in po-
rous media. Porous media flow simulations are for instaned as an inte-
grated part of planning and management of oil and gas resgrim monitor
transport of pollutants in the subsurface, and to assesag&t@apacity and
predict leakage rates for potential @@epositories, a key component in a
global strategy to mitigate emission of G@to the atmosphere, see e.g.,
(Schrag, 2007). However, although there is an establisheeiwork for
modeling subsurface flow, there are still important knowkedjaps, partly
due to inadequate data, and partly due to limitations in riragleapabilities.
The latter is particularly true for modeling of flow in fracad porous media.

Most natural porous media contain fractures at variousescait small
scales, the magnitude and orientation of fractures styanflence preferen-
tial flow directions. This effect can to some extent be upstaind embedded
into the permeability tensor. Fractures with size complar&dthe geological
flow domain, as is often observed in carbonate reservoirg, deeminate
large scale flow patterns and should ideally be resolved bystinulation
grid. Unfortunately, because fractures are thin relatveheir surface area
and can have complex geometries, it is difficult to resohactiires with
industry-standard grids of suitable size for flow simulatiélence, although
capability to resolve large scale fractures is essentraléveloping predictive
simulation models, this capability is generally not avaliéatoday.
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The traditional approach to model flow in fractured porousiiaés based
on the dual-porosity model (Barenblatt et al., 1960; Waaed Root, 1963;
Kazemi, 1969). In a dual-porosity model the fractured perowedium is
modeled as two overlapping domains, the fractures and ttmxiehe matrix
covers the entire domain, whereas the fractures constituiater-connected
web. The two overlapping continua interact through flow ¢fanterms be-
tween the two systems. The matrix system accounts for mdakegiore vol-
ume whereas most of the flow takes place in the fractureselduhll-porosity
and single-permeability model there is no flow from matrixriatrix, i.e., all
flow into a block flows directly into the fracture web, and theto the matrix
in neighboring blocks. In the dual-porosity and dual-pesibiity model the
flow is also allowed to go directly from matrix to matrix.

Dual-porosity models assume only geostatistical inforomagbout the
fractures, e.g., porosity, volume, and orientation. Foalracale fractures
deterministic information is not readily available, but @shmodeling flow
in subsurface formations with large scale fractures oneoftién have some
information available on the size, location and geometryheke fractures.
To utilize this information, alternatives to dual-porgsinodels where frac-
tures are treated as explicit lower dimensional entitieeeHaeen proposed
by several authors (Reichenberger et al., 2006; Karimitéad Firoozabadi,
2001; Karimi-Fard et al., 2003). These approaches are lmseadapting the
simulation grid so that the grid interfaces are aligned \iligh fractures.

In this paper we also assume explicit knowledge of the frastubut
instead of treating the fractures as lower dimensionatiestiwe represent
them as volumetric elements. That is, we assume that thests ex fine
scale geological model (geomodel) where the fractures gpeesented as
connected paths of adjacent cells in the grid. The chall¢ngewe address
here is how to model the flow on a coarsened grid. In other wovdsassume
that performing simulations directly on the geomodel isfeasible.

The main purpose in this work is to develop a strategy for alisg
geomodels with fractures to a coarsened model suitableirffaulation in a
way capable of preserving the most important flow charasties. To this
end we will investigate two different approaches. In thet fagproach we
introduce a coarse grid that separates the fractures fronméerlying coarse
grid. In the resulting grid, each grid block will either be@mected part of an
original coarse grid block with no fractures, or a connegiaa of the fracture
web. The second approach employs a non-uniform coarsetiagpgy for
structured and unstructured grids introduced in (Aarneal.e2007a). This
approach aims to resolve high flow regions more accuratedy that is
generally possible with conventional coarse grids. A majdvantage with
this approach is that it is very flexible with respect to thecfure geometry
so that no special model to handle fractures is needed.
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The bulk of the paper deals with pressure driven flow scegatiie., im-
miscible and incompressible two-phase flow without efféam gravity and
capillary pressure. Most field-scale reservoir flow regiraesprimarily pres-
sure driven, but gravity may be important during a transifi@riod with grav-
ity segregation, and capillary pressure has a local diffusiffect. As such,
the current model problem, chosen primarily for clarity bétpresentation,
accounts for the main driving force.

A description of how to extend the current simulation apploto flow
models with effects from gravity and capillary pressurel Wé given in Sec-
tion 6. Inclusion of gravity effects is straightforward, tdaclusion of cap-
illary forces require special treatment. In this paper weppise a method
based on taking a Galerkin projection with respect to a cstitered finite
difference model on the fine grid. It should be mentioned, énaw, that flow
based grids, e.g., (Durlofsky et al., 1997; He and Durlof806), and grids
tuned to heterogeneous structures, e.g., (Garcia et 8, o and Kitandis,
1999; King et al., 2005), target flow scenarios where therbgtmeity has a
dominant impact on flow patterns. In other words, it is assithat viscous
forces dominates gravity and capillary forces. This is @&splicitly assumed
in this paper, but the methodology is, as is shown in Sectj@ts® applicable
to flows influenced by gravity and capillary pressure.

The model problem will be introduced in Section 2. Next, irctge 3
we present the two grid coarsening strategies. In Sectior 4l@gcribe the
numerical methods used to discretize the two-phase flow mid8ection 5
we present numerical results that demonstrate the perfarenaf the grid
coarsening strategies on models with large scale fractiieslly, we de-
scribe how to include effects from gravity and capillarygsere in Section 6
and summarize the main observations in Section 7.

2. Mathematical model and fractured reservoir

We consider immiscible and incompressible two-phase flowaikr and oil,
denoted by subscripts ando, respectively. Gravity and capillary effects are
neglected. The mathematical model is given by the conservat mass for
each phase:

0Sj(X,t)
¢ ot

where¢ is the porosity (fraction of void spacey; ando; denote the satura-
tion and velocity of phasg, respectively, and; is a volumetric source term.
The phase velocity; is related to the phase pressumethrough Darcy’s law:
_ Kk
wi

—I—V-l)j:qj', jZO,w, (1)

vj =—=AVp;, A j=0,w, @
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whereK, k;j and u; are the absolute permeability, relative permeability and
viscosity of phasg, respectively. The relative permeability models the re-
duced permeability of a phase due to the presence of otheeph@/e assume
that
kfw=83)9 k(0=335 OSSUQS)SJ-

Since we neglect capillary pressure effects so ¥hpt = Vp,, we as-
sume thatp, = p, = p. Then the Darcy equations (2) combined with
conservation of mass (1) yield the pressure equation:

v=—-.Vp, V.o=q, inQ c IRY, ©)

wherev = vq + vy, 4 = Ao + 1, @andq = ¢, + q,, andd is the spatial
dimension. We close the system by imposing no-flow boundanglitions.

Henceforth we assume th& + S, = 1, and drop the subscript @&,
so thatS, = SandS = (1 — S). The conservation equation for water,
henceforth called the saturation equation, is then wrigten

0S
¢_ + V. (fwl)) = Qo> (4)
ot
where f, = 1,/4. Finally we assume that the computational domain is

initially completely oil-saturated, i.e., th&(x, 0) = 0.
2.1. FRACTURE MODEL

Assigning permeability to fractures is a non-trivial tablat fractures gener-
ally transmit flow more easily than its surroundings. Thipli@s that the flow
will seek to follow paths in the high permeable fracture reaty rather than
in the surrounding matrix. Since the fractures have litttgage capacity, the
flow will move quickly through the connected parts of the ftae web. But
fractures are also sometimes filled with clay, and have sagmitly lower per-
meability than the surroundings. In this case the fractaotss flow barriers,
and the flow will attempt to take a detour around the fractures

In this paper we will for the most part consider high permedidctures,
but low permeable fractures will also be considered. Thetir@s will be
represented as a collection of adjacent cells in a highugseo grid. The
Darcy flow model is assumed to be valid in the fractures.

3. Grid coarsening strategy
To generate a coarse grid for solving the saturation equatie will con-
sider two different strategies; An approach where the fnas are identified

and separated from an underlying coarse grid by extractimpected com-
ponents of the fracture web, and a non-uniform coarseniggrigéhm first
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introduced in (Aarnes et al., 2007a). For both algorithmis Bssumed that
the fractures are represented on the fine grid so that eattuifesis defined as
a connected “path” of cells in the fine grid. To distinguisltvoeen the coarse
and fine grid we will use the terinlockto denote a cell in the coarse grid.

3.1. NON-UNIFORM GRID COARSENING

The coarsening strategy presented in (Aarnes et al., 2087@3sentially
based on grouping cells according to flow magnitude. Theridhgo involves
two parameters which determine the degree of coarseningwaribound on
volume of blocksVpin, and an upper bound on total amount of flow through
each blockGmax As a rule of thumb, to generate a coarse grid with approx-
imately N; blocks, choos&/min ~ |Q|/(4N.) andGmax ~ 5[Q|g(Q)/(4N,),
where|Q]| is the total volume of the reservoir and

1

E)= —
9(E) = 5

/ log|o(x)| dx — mig(log o)) + 1, E cQ.
E Xe

The steps in the coarsening algorithm are as follows:
1. Group cells according to flow magnitude:

a) Compute the initial velocity field on the fine grid.
b) Assign an integer from 1 to 10 to each alh the fine grid by

n(E = Cen( 10[g(c) — minc g(c)] )

max, g(c) — minc g(c)

c) Create an initial coarse grid with one block assigned thezon-
nected collection of cells with the same vahug).

The coarse grid now consists of a connected collection d§ aeith
similar flow magnitude and corresponds to the top left pldtigure 1.

2. Merge each blocB with less volume thaV,, with the block

B'=arg min |g(B)—g(B")],

B”eneighbors

that is, merge with neighboring blocks subject to flow of $mmagni-
tude.

3. Refine each blocB with a total flow through the block greater than the
given bound, that is withB|g(B) > Gmax as follows

a) Pick an arbitrary celty ¢ B and locate the cell; c B with center
furthest away from the center o.
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b) DefineB’” = ¢; and progressively enlarg®’ by adding the layer of
cells in B adjacent to cells iB" until |B’|g(B") > Gmax-

c) DefineB = B\ B’ and refineB further if |IB|g(B) > Gmax

4. Repeat step 2 and terminate.

Coarse grid: Initial step, 152 cells Coarse grid: Step 2, 47 cells

Coarse grid: Step 3, 95 cells

Figure 1. Coarse grid after each step in the non-uniform coarseniggrigdhm for a case
with a 50-by-50 Cartesian grid with homogeneous matrix penility and 30 high permeable
fractures. The coarsening parameters\4s, = |Q|/250 andQ|g(€2)/50.

(a) Logarithm of velocity on fine grid. (b) Logarithm of velbcon coarse grid.

Figure 2. Logarithm of velocity fields for the example case in Figure 1.

Figure 1 illustrates the four steps in the non-uniform ceaisg algorithm.
We emphasize that the colors do not represent permeabdltyes, but are
only used to visualize the sizes and shapes of the blocksiedhrse grid.
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Moreover, since the color used to visualize each block isehat random
each time a grid is plotted, there is no correspondence leethe colors in
the four subplots.

The top left plot in Figure 1 shows the initial coarse grid.eTbgarithm
of the velocity magnitude in each cell has been used to segtinercells in
the fine grid into ten different bins. More specifically, easl ¢ is assigned
a numbem(c) = 1,...,10 by upper-integer interpolation in the range of
g(c). Then an initial coarse grid is created with one block assigio each
connected collection of cells with the same valuen@f). Next, in the top
right plot in the figure, blocks with volume less than the gilundV,,;, has
been merged with a neighboring block. Indeed, we obsentghiasmallest
blocks from the initial grid have now disappeared and the emof blocks
has been reduced from 152 to 47. In the lower left plot the remobblocks
has increased to 95 from the previous step by refining to@lafgcks with
respect to the upper bound on the total fl@&ax. The lower right plot shows
the final coarse grid. The number of coarse blocks is sligitiuced again
to 69 after removing small blocks that were introduced in tenement
process.

Figure 2(a) plots the magnitude of the velocity field usedeneagate the
initial grid in Figure 1 and Figure 2(b) plots the magnitudetie velocity
projected onto the final grid shown in Figure 1. Although threefgrid con-
tains 36 times as many cells as the coarse grid, we observ¢htira is a
good match between Figure 2(a) and Figure 2(b). In particula see that
the high-flow regions, i.e., the red-colored regions, arécimed well.

3.2. EXPLICIT FRACTURE-MATRIX SEPARATION (EFMS)

The EFMS grid generation strategy starts by introducinghéial coarse grid.
The next step is to split each block that contains fractunés a matrix part
and a fracture part. The final step is to assign grid block$i¢odonnected
pieces from the matrix and fracture web, respectively. Egahblock in the
EFMS grid is then a connected collection of cells that eitwersist solely of
fracture cells or solely of matrix cells.

Figure 3 illustrates the steps in this coarsening stratébe. fine grid is
100-by-100 Cartesian grid and the initial coarse grid is lay% Cartesian
grid. Figure 3(b) shows how the first coarse block in the Gaite coarse
grid is split into a matrix part 1 and a fracture part 2. In Fig3(c) a further
splitting of blocks 1 and 2 is obtained when the non-conretiecks are
split into connected components.

In the example in Figure 3 the number of coarse grid blockadseiased
from 25 to 130. Thus, the upscaling factor is significantigréased. The final
number of coarse blocks is case specific since it dependsadoothe initial
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(a) Initial coarse grid. (b) Separate fractures andkc) Identify connected parts.
matrix.

Figure 3. The EFMS coarsening strategy.

coarse grid and inter-connectivity of the fractures. Itherefore difficult to
tune the upscaling factor with this algorithm.

4. Numerical discretization

The algorithms presented in the previous section, whiclegea coarsened
grids for solving the saturation equation (4), assume taktoity is computed
on the fine grid. Only the non-uniform coarsening algorithsesithe veloc-
ity field to generate the coarse grid (Step 1), but both aligars implicitly
demand that one can provide inter-block fluxes, i.e., pmvielocity on the
interfaces between the blocks in the coarse grid.

4.1. DISCRETIZATION OF THE PRESSURE EQUATION

The geometric complexity of the blocks in the grids genetateing the
algorithms presented in Section 3 prevents coarse gridedization of the
pressure equation with standard discretization techsigbence, the pres-
sure equation must either be solved on the fine grid, or withuttiscale
method (e.g., (Arbogast, 2000; Jenny et al., 2003; Aarn@34) that pro-
vides a mechanism for recovering a conservative velocity fia a fine grid
from a coarse grid solution.

As the goal of this paper is to present a robust way of moddlmg in
fractured porous media as part of a coarse grid simulatiaméwork, we
propose solving the pressure equation with a suitable swalié method.
However, since the focus is on modeling the saturation omiapeoarse
grids, we want to eliminate factors that can make it hard temieine where
errors stem from. We have therefore chosen to discretizprifgsure equation
on the fine grid. To this end, we have employed a mimetic finitergénce
method (F. Brezzi and Shashkov, 2005; F. Brezzi and Simgriz@®5) that
on Cartesian grids (which will be considered in this papsriduivalent to
the Raviart-Thomas mixed finite element method of loweseo(Raviart
and Thomas, 1977). Note that if a multiscale method is useah the coarse

paper.tex; 5/04/2008; 16:02; p.8



9

grid for the pressure equation need not coincide with theseogrid for
the saturation equation, although this is an option whengugie multiscale
mixed finite element method (Aarnes et al., 2007b).

4.2. DISCRETIZATION OF THE SATURATION EQUATION

The saturation equation (4) is discretized on coarse gritksrgveach block
Bm consists of a connected collection of cells in the fine gridc&ise the
blocks typically have highly irregular shapes, it is im@ot that the numeri-
cal scheme used to discretize the saturation equationatvedly insensitive
to the grid block geometry. One apparent option is the firdepupstream
weighted finite volume method

41 At +1 Vi +1
gy W (S dx =S V(S |, 5

HereS], is the net saturation iB, at timestem, I'n; = 6By, N 0B; denotes
a non-degenerated interface betwdanand B;, and

Vini(S) = f,(Sit,) max@mj, 0} + f,(Slt,) min{om;, O},

whereon,; is the total Darcy flux fromBy, to B;.

The coarsening algorithms may, however, give rise to gridh blocks
that encapsulate other blocks. If an encapsulated block mliecontain non-
zero source terms, then the velocity is divergence freglenii This implies
that the total Darcy flux across the interface between thagdated block
and the block surrounding it is zero, which implies that maghwill flow into
or out of the encapsulated block when using (5). To avoidribis-physical
artifact we can utilize the subgrid resolution in velocitpdeed, we will
generally have that every block is subject to some inflow amdesoutflow.
Hence, by discretizing the saturation equation with a frster finite volume
method wheréf,, (S) is upstream weighted with respect to the fine grid fluxes
on each coarse interface, we avoid the undesirable artifactioned above.

Denote the non-degenerate interfaces in the fine grigjby= 6T, N oT;.
The scheme used to discretize the saturation equation tio8écreads

= S /qw Hdx— 3 VY|, @)

7ij C9Bm

Jon # 0 ¢d

where V;; (S) = f,(S|,) maxuvij, 0} + f,(S|t;) min{vj;, 0} andvj; is the

flux from T; to T;. We point out that althougti,,(S) is upstream weighted
with respect to fine grid fluxes, and hence evaluated basedtarasion in a
fine grid cell, we seek a saturation solution that is piecewisnstant on the
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coarse grid level. The dimension of the discretized systetharefore equal
to the number of coarse grid blocks.

5. Numerical smulations

The purpose of the numerical simulations reported in thisice is to com-

pare accuracy of solutions obtained by solving the saturagiquation on
grids generated using the non-uniform coarsening algorigimd the EFMS
algorithm, respectively. Robustness will be assessed negthect to number
of fractures, degree of coarsening, well configurationg,\ascosity ratio. We

will for the most part consider high permeable fractureg, lbw permeable

fractures (e.g., fractures filled with clay) will also be smfered.

The simulations will be performed using a sequential sptof the pres-
sure and saturation equation. That is, we compute presadregdocity at the
next time-step with.(S) evaluated using the saturation solution at the current
time-step. Next, we keep the velocity fixed and solve (6) to obtain the
saturation at the next time-step. We then reevalua®, compute pressure
at the next time-step, and so on.

The alternative to a sequential splitting scheme is eithtedlg implicit
scheme, in which one uses a Newton method to solve for peessut satu-
ration simultaneously, or an iterated sequential spijtiivhere a fixed-point
iterative scheme is used to compute the solution of the faijlicit system.
Both of these solution strategies may be applied in conjonatith the dis-
cretization methods utilized here, and should give quaigly similar results
for the problems considered in this paper.

We measure accuracy of saturation solutions by compariegadmputed
water-cut curves — the fraction of water in the produced fluio the corre-
sponding water-cut curve obtained by solving the satunagiguation on the
fine grid. Thus, ifw(t) is a water-cut curve obtained by solving the saturation
equation on a coarse grid amge(t) is the reference water-cut curve, then
thewater-cut erroris defined by

e(w) = [|w — wrefl|L2(0,1)/ || wrefl| L20,1)-

Time is here measured in PVI (pore volume injected).

5.1. FRACTURE REPRESENTATION

The fractures will be generated stochastically and repiteseas either a
horizontal or vertical strip of cells in a uniform Cartesigrid. The number
of fractures in each direction will be proportional to thenginsions of the
reservoir, and the length of the fractures is randomly itisted between 20
and 40 percent of the length of the shortest side of the reseRigure 4
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(a) 30 fractures (b) 100 fractures (c) 200 fractures

Figure 4. Three fracture realizations in a reservoir with homogesdmackground permeabil-
ity. Each fracture is represented as a horizontal or vént@a of cells.

shows three reservoir models with different number of nees. Unless stated
otherwise the total number of fractures will be 100.

Our fracture distribution model is clearly not realistic. Aore realistic
model would mainly have fractures of smaller aperture, aathgps also
fractures of preferred orientation. Still our model sholle adequate for
assessing performance of the proposed approaches for imgpdakturation.
Indeed, the fractures act as either preferential flow pattesdlow barriers,
and flow in reservoirs consisting of only horizontal and mit fractures
does not differ fundamentally from flow in reservoirs witloararily oriented
fractures or fractures with a preferred orientation. Mwe representing
arbitrarily oriented fractures as a strip of cells in a fin@gequires an un-
structured grid. Although both coarsening algorithms areatly applicable
to unstructured grids (this was demonstrated for the ndferum coarsening
algorithm in (Aarnes et al., 2007a)), we here use only Cetesrodels for
implementational simplicity.

In contrast to what a more realistic model would require, véerthat
the fractures in our models are relatively thick, i.e., may Imave the proper
length-scale proportions. The large fracture thicknesssdwt pose a funda-
mental constraint. The basic constraint in our approachas the velocity
field is computed on a grid where each fracture is a connec#dqgr surface
of cells. For the general case with thin arbitrarily orighfeactures we need
to modify our fine grid model as follows:

1. Assume that an initial grid that does not resolve the fras is given.

2. Trace the interface between the fractures and the matd>eaploy the
EFMS strategy to define a new fine grid that resolves the frastu

3. Compute velocity on the new grid, e.g., using a mimetiddidifference
method (F. Brezzi and Shashkov, 2005; F. Brezzi and Simgoriz095)
or the multiscale mixed finite element method in (Aarnes 2807b).

This approach avoids local grid refinement in the vicinityfratctures, which
would normally give rise to a significant increase in theltatamber of cells.
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This is possible due to the capability of mimetic finite difflece methods to
handle cells with arbitrary polygonal or polyhedral shapes

5.2. NUMERICAL EXPERIMENTS

Each numerical experiment will be conducted with both a hgemeous and
a heterogeneous background permeability field, both witbgty 0.1. Frac-
tures are cracks in the rock that usually contain void spagehich flow may
take place. In this case the porosity is 1 inside the frasjuyat from a mod-
eling point of view it is more reasonable to try to model a &afgacture zone.
Due to the void space inside the fractures, the fracture zaheypically
have larger porosity than the surrounding rock. Here we lessimed that
the fracture zone has a porosity of 0.3 for simplicity. Ifdnares are filled
with clay, then fractures will have very low porosity. Hehetporosity of low
permeable fractures is set to 0.001. The flow is, apart froifSention 5.6,
driven by a so-called quarter-of-a-five-spot, i.e., by dtijgg water at constant
rate in cell at the bottom left corner and producing at camstate whatever
reaches the cell in the opposite corner. Finally, apart fioi@ection 5.7, we
run the simulations witht,, = 0.1 andu, = 1.

The homogeneous model is a 100-by-100 Cartesian grid witialedj-
mensions in the- andy-coordinate direction. The background permeability
is set to 1 mD, the permeability in the high permeable frasus 1 D, and
the permeability in the low permeable fractures is3dmD.

The heterogeneous model is a 60-by-220 Cartesian grid imgdeler 46
in Model 2 from the Tenth SPE Comparative Solution Projedir{€lie and
Blunt, 2001), a model used for comparison and validationpsicaling tech-
niques. The layer is from the lower Upper Ness formation, @dliformation
characterized by a spaghetti of intertwined high permeeldsnels on a low
permeable background. The dimensions insthandy-coordinate direction
are 1200 ft and 2200 ft, respectively. Here the permealwfithe high perme-
able fractures is 20 D (the maximum of the background perifig@bwhile
the permeability of the low permeable fractures is&mD, i.e., the same as
for the homogeneous model. This is about five orders of madeitess than
the minimum of the background permeability.

Apart from in Sections 5.5 and 5.8, the initial coarse gridtfee EFMS
algorithm will be a 5-by-5 Cartesian grid for the homogereawdel and a
3-by-11 Cartesian grid for the heterogeneous model. ThanpatersV/n, and
Gnmax for the non-uniform coarsening algorithm are chosen suatittie num-
ber of blocks in the non-uniform coarse grid is slightly Iéisan the number
of blocks in the grid generated using EFMS. For brevity wd sgimetimes
use NUC when referring to the non-uniform coarsening atgori
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Table I. Number of blocks and water-cut error for each of tbarse grids generated
for the introductory models depicted in Figure 5(a) and Fega(b).

Homogeneous background] Heterogeneous background:

# of blocks e(w) # of blocks e(w)
NUC grid 206 0.0245 273 0.0273
EFMS grid 236 0.1027 294 0.1208
Cartesian grid 400 0.1458 330 0.1684

5.3. INTRODUCTORY EXAMPLE

Consider the models depicted in Figure 5(a) and Figure Hfldhe homo-
geneous case, the EFMS algorithm transforms the 5-by-%e€lart grid into
a grid with 236 blocks. IIN denotes number of cells in the fine grid model,
then usingVmin = 13/Q|/N and Gnax = 65/Q|g(Q)/N in the non-uniform
coarsening algorithm generates a grid with 206 blocks. énhtiterogeneous
case, the EFMS algorithm transforms the 3-by-11 Cartesimhigto a grid
with 294 blocks, and the non-uniform coarsening algoritusing Viin =
15/Q|/N andGnax = 751Q2|g(2)/N, produces a grid with 273 blocks.

To illustrate capability to provide accurate saturatiofusons, we per-
form a single simulation on each grid and compare the resuittsthe cor-
responding results obtained on the fine grids and on modgredarsened
Cartesian grids (a 20-by-20 Cartesian grid for the homogesenodel and
a 15-by-22 Cartesian grid for the heterogeneous modelurégy5(c)—(j)
show the respective saturation solutions at time 0.48 PVI and Figure 6
shows the corresponding water-cut curves. Table | disgla/aumber of grid
blocks in each coarse grid along with the corresponding ma@aieerrors.

The results shown in Figure 5, in Figure 6, and in Table | gpeagentative
for what type of solution accuracy one gets using the diffetgpes of coarse
grids. The non-uniform coarse grids consistently give laesuracy, as will
be further demonstrated in the following sections. The EFRi8 produces
reasonably accurate solutions for the homogeneous modethich the frac-
ture distribution alone dictates the flow pattern, but lessueate results for
the heterogeneous model where the flow pattern is also $yrorilyenced by
the surrounding heterogeneous structures. Finally, taeseoCartesian grids
give lower accuracy than the two other coarse grids. Thisues t the fact
that the Cartesian grid resolves neither the fractureshflow channels in
the heterogeneous model, and therefore smears out thatsatyprofile.

In the following sections we will make more rigorous and djadive
comparisons between solutions obtained on non-uniformseogrids and
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i ;

(a) Logarithm of permeability in a homoge- (b) Logarithm of horizontal permeability in the
neous model with 100 high permeable fracturesheterogeneous model with 100 fractures.

(h) Saturatiori®-by-22 Cartesian grid.
T

(i) Saturation on fine grid model.

Figure 5. Fractured models and corresponding water saturation esofitt = 0.48 PVI

obtained using the numerical scheme (6) on different gtieéét: Saturation profiles for the
homogeneous model. Right: Saturation profiles for the bgtreous model.
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Water—cut curves for homogeneous model Water—cut curves for heterogeneous model
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Figure 6. Water-cut curves (as functions of PVI) for the simulatiom§igure 5.

Table Il. Mean upscaling factors when varying number oftiees.

Homogeneous background Heterogeneous background
# fractures 30 50 100 150 200y 30 50 100 150 200
EFMS grid 107 73 42 31 24| 104 76 45 33 26
NUC grid 116 74 46 33 26| 109 80 50 35 35
% fracture cells| 7.4 123 229 322 39965 105 206 293 37.6

EFMS grids. To this end, we will for each case generate 2&mdfft fracture
distributions and compute the mean error averaged ovebatkalizations.

5.4, ROBUSTNESS WITH RESPECT TO NUMBER OF FRACTURES

In this section we attempt to assess how well the two coargealgorithms
perform when varying the number of fractures. The numenraderiments
are conducted on models containing 30, 50, 100, 150, andra6tufes.
Table 1l shows how the number of grid blocks in the EFMS gridpehds
on the number of fractures and the fracture distribution.d¥le with many
fractures give grids with more grid blocks than models witbnzall number
of fractures. Thus as the number of fractures increasegjfbkealing factor
decreases. As a consequence it is both difficult to predéanfiscaling factor,
and difficult to retain a high upscaling factor for modelstwitany fractures.
The number of grid blocks in the grids generated using the uroform
coarsening algorithm, on the other hand, is relativelylstalihen the param-
etersVmin andGnax are fixed. This makes it much easier to tune the upscaling
factor with the non-uniform coarsening algorithm than wERMS. In the
current section the parameters are tuned to give a slighdlyeln upscaling
factor than the average EFMS upscaling factor. The upsgédictor is there-
fore moderate for the cases with 150 and 200 fractures. Wddnlike to
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Mean water—cut errors for homogeneous model Mean water—cut errors for heterogeneous model
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Figure 7. Mean water-cut errors for simulations with different numbéfractures.

note, however, that the non-uniform coarsening algoriterfully capable of
retaining a high upscaling factor, and still produce acuveater-cut curves.

Figure 7 shows the mean water-cut error when varying the rurob
fractures. We see that the non-uniform coarsening alguritbnsistently pro-
duces more accurate solutions than the EFMS algorithm. dfitiad, the
EFMS grids produce substantially less accurate resulth&®heterogeneous
models than for the homogeneous models, whereas the ntorranioarse
grids give roughly the same level of accuracy for both mogpes. These
results therefore indicate that the non-uniform coarsgilgorithm is more
robust with respect to the number of fractures, allows edsieing of the
upscaling factor, and is less sensitive to the heterogenstuctures in the
underlying model.

5.5. ROBUSTNESS WITH RESPECT TO DEGREE OF COARSENING

In this section we will assess robustness with respect toedegf coarsen-
ing while keeping the number of fractures fixed, i.e., we abgshere only
models with 100 fractures. Since the EFMS algorithm is cheiistic, we
can only vary the degree of coarsening by changing the liribarse grid.
For the homogeneous models we use three different Cartgsids 5-by-5,
10-by-10, and 20-by-20. Similarly, for the heterogeneouslels we use a
3-by-11, a 6-by-22, and a 15-by-55 Cartesian grid. The pataraVp, and
Gmax for the non-uniform coarse grids are chosen accordingly.

Figure 8 shows the mean water-cut error for each degree ofeniag.
The mean upscaling factors for both coarsening strategeskown along
the horizontal axes. Again we consistently obtain more \teuwater-cut
curves using the non-uniform coarse grids than with the ERM&s. The
error decays with both coarsening strategies as the griefiised. However,
by starting with grids with acceptable simulation size iea BFMS algorithm,
one obtains limited upscaling factors. This indicates thatEFMS strategy is
only useful when a coarse grid with a large upscaling facéor lee provided.
The non-uniform coarsening approach does not have thigredmis
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Mean water—cut errors for homogeneous model Mean water—cut errors for heterogeneous model
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Figure 8. Mean water-cut errors for simulations with different dezg@f coarsening.

5.6. ROBUSTNESS WITH RESPECT TO ALTERING WELL LOCATIONS

In this section we perform experiments to assess robustmigisgespect to
choice of source and sink locations. In reservoir simuregjadhe sources and
sinks stem from injection and production wells, respedyivé/e will there-
fore refer to each setup of source and sink locations as acaefiguration.

During the life-cycle of an oil reservoir, the well configticn changes.
Old wells may be shut down when they are no longer profitabie, rrew
wells are drilled to produce from different parts of the me& or to im-
prove drainage in flooded areas. In addition, individualkeso(devices that
allow petroleum engineers to control inflow and outflow of Mpelrforations)
may be closed, opened or partly closed, as part of resenarragement. By
modifying well configurations or altering choke settingeaiso changes the
reservoir flow patterns.

The grid generated using the EFMS algorithm is independétiitecflow,
but the non-uniform coarsened grids depend on the initiliciy field, and
therefore implicitly on the well configuration. Thus, it islevant to ask if one
needs to regenerate the grid when well configurations chdige reservoir
flow patterns also change dynamically due to mobility changed gravity
effects, but generally not as “dramatic” as when well conijons change).
Here we make an effort to show that this is not the case, hat,the non-
uniform coarse grid generated with respect to one given waifiguration
can be used to run simulations on models with other well carditpns.

We consider the four well configurations depicted in Figuraénceforth
referred to as well patterns A, B, C, and D. Injection wellsuige locations)
are labeled | and production wells (sink locations) are liedbé>. All of the
non-uniform coarse grid simulations are conducted usieggtid generated
from a velocity field corresponding to well pattern A.

Figure 10 shows the mean water-cut error for simulation$ wéch well
pattern. For all cases, the non-uniform coarsening stygbegduces smaller
errors than the EFMS strategy. The EFMS gridding strateggsginore or less
consistent error for the homogeneous model and the heteeoge model,
respectively. The non-uniform coarsening strategy givétle larger errors
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(a) Well pattern A. (b) Well pattern B. (c) Well pattern C. (dYell pattern D.

Figure 9. Well configurations used to assess robustness with resgdigblacement.

Mean water—cut errors for homogeneous model Mean water—cut errors for heterogeneous model
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Figure 10. Mean water-cut errors for simulations with different weditferns. The non-uni-
form coarse grid generated with well pattern A is also usedutothe simulations with well
patterns B, C and D.

for well patterns B, C, and D than for well pattern A, but thetféhat this

algorithm still performs better than the EFMS algorithnudtrates that it is
not very sensitive to what flow conditions are utilized whemputing the

velocity field used to generate the coarse grid. This suppbsg conclusion
from (Aarnes et al., 2007a) that it is not necessary to rageadhe coarse
grid during simulations with changing well configurationsbmundary con-
ditions. This property reflects that for any given well configtion, or set
of boundary conditions, the high flow regions correspondig l[permeable
regions of good connectivity.

For the homogeneous fracture models this is true to a les$entethan
for the heterogeneous fracture models. As a result we obshat when the
flow conditions change substantially, e.g., by switchirgrfrwell pattern A
to well pattern B so that the main direction of flow is perpeundir to the
main direction of flow in the velocity field used to generate tion-uniform
coarse grid, then there is less difference in accuracy lesiilee non-uniform
coarsening strategy and the EFMS strategy.

5.7. ROBUSTNESS WITH RESPECT TO VISCOSITY RATIO

The purpose of this section is to investigate robustnedsresipect to the type
of displacement process, here quantified by the ratio betwhee displacing
fluid (water) and the displaced fluid (oil). Thus, we introdute viscosity
ratio, defined by, = u,,/uo. Conditions withu, > 1 give rise to a so-called
stable displacement process where the propagating frottieoflisplacing
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fluid is quite sharp and well defined. This is due to the fact the total
mobility is lower ahead of the front than behind the front.the opposite
case withy, < 1 the mobility is higher ahead of the front than behind the
front. This causes the displacing fluid to enter easily inthaoded areas, and
one may observe a phenomenon called viscous fingering. ¥sitogering
resembles the way that a wave floods a rocky shore with smaléfs”
shooting out in different directions. For unstable displaent flows there

is usually a rather slow and smooth incline in saturatiomfribe front and
backwards along the flowlines.

Mean water—cut errors for homogeneous model Mean water—cut errors for heterogeneous model
0.2 0.5
Merms | ES
0ast [Inuc 04 [Inuc
2 203
(7] [
= 0.1 H
(] (]
= = 02
0.05 0.1
L ] [] A = ] [ ]
0.1 1 5 0.1 1 5
Viscosity ratio. Viscosity ratio.

Figure 11. Mean water-cut errors for simulations with different visityg ratios.
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(a) Water-cut curves for simulations wighy = 0.1, 4y = 1, andur = 5 on a homogeneous model.

Viscosity ratio 0.1. Viscosity ratio 1. Viscosity ratio 5.
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(b) Water-cut curves for simulations withy = 0.1, ur = 1, andur = 5 on a heterogeneous model.
Figure 12. Water-cut curves for simulations with different viscosiatios.

We perform simulations with three different viscosity oy, = 0.1,
ur =1, andu, =5, i.e., we consider both stable and unstable displacement
flows. The histograms in Figure 11 compare water-cut errbtained with
the two different grid coarsening strategies. Once agaiseegthat the errors
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produced using the non-uniform coarse grids are subslignsiaaller than

the errors produced using the EFMS coarsening strategydtbralgorithms

we see that the errors increase with increasing viscosity. réhis is to be

expected, since high viscosity ratio flows give sharp frahtg are difficult

to capture accurately on a coarse grid. Nevertheless, &itishows that the
water-cut curves corresponding to the non-uniform coargis gnatches the
reference water-cut curve very well. In contrast, the watdrcurves for the
EFMS simulations are systematically below the referenceecu

5.8. ROBUSTNESS WITH RESPECT TO PRESENCE OF LOW PERMEABLE
FRACTURES

The purpose of this section is to study how the accuracy eiratdn so-
lutions obtained using the different coarsening strateggeaffected by the
presence of low permeable fractures. To this end we genearatkels with
20 low permeable fractures and 100 high permeable fractiites high per-
meable fractures provide preferential flow paths whereadadw permeable
fractures act as flow barriers.

Figure 13. Homogeneous and heterogeneous model with 20 low permeadieirfes (dark
color) and 100 high permeable fractures (light color).

Mean water—cut errors for homogeneous model Mean water—cut errors for heterogeneous model
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Figure 14. Mean water-cut errors for simulations on models with 20 |@wpeable and 100
high permeable fractures.

Mean error
Mean error

Figure 13 displays a fracture distribution for each moded &igure 14
shows the mean water-cut errors for both coarsening algost The results
confirm the trend that we have observed throughout this @gctie., that
the non-uniform coarsening algorithm gives more accuragellts for both
models, that the results are substantially more accuratbdéceterogeneous

paper.tex; 5/04/2008; 16:02; p.20



21

model, and that the upscaling factor for the EFMS algoritatimiited if there
are many fractures, or if the initial coarse grid is not sigiintly coarse.

6. Inclusion of effects from gravity and capillary pressure

The mathematical model presented in Section 2, the digat&in schemes in
Section 4, and the corresponding numerical results predentSection 5 all
disregard gravity and capillary pressure. Although grasitd capillary pres-
sure are often “second order effects” for large scale sitiaurla, e.g., most
field-scale reservoir flow regimes are primarily pressutigedr, gravity and
capillary forces should not be neglected. Indeed, gravisy iine important
during a transition period with gravity segregation andikaqy pressure has
alocal diffusive effect that tends to smooth the saturdftiont. It is especially
important to account for capillary pressure effects inrsgtg heterogeneous
systems for which the capillary forces pull flow into low perable regions.

The purpose of this section is to describe how to extend themrsimula-
tion methodology to account for gravity and capillary fasc&he associated
pressure equation can still be solved with the same digat&in method, e.qg.,
a mimetic finite difference method on the fine grid (F. Brezai &hashkov,
2005; F. Brezzi and Simoncini, 2005) or a multiscale methathdgast,
2000; Jenny et al., 2003; Aarnes, 2004) on a coarse grid.&jevewill only
focus on the discretization of the saturation equation, @e how to extend
the discretization scheme (6) to account for gravity andlieay forces.

6.1. MATHEMATICAL FORMULATION
With gravity included Darcy’s law becomes:
vj =—4;(Vpj +9pjV2), j =0,w, (7)

whereg is the magnitude of acceleration of gravipy, is the density of phase
|, andz is the vertical coordinate, i.ez,= X - n, wheren, is the unit normal

in the vertical direction pointing upwards. Upon perforgisimple algebraic
calculations, and introducing the capillary presspgg, = pPo — Pw, We get

Dy = fw (l) + }LOV pCOw + iog(Po - pw)vz) . (8)
Inserting this expression into (1) we obtain the followirsgusation equation
0S
¢§ + V. [fw (l) + }LOV pCOw + iog(po - pw)vz)] = quw (9)

Itis common to calV - (f,0) the viscous termV - (f,1,9(po — p)V2) the
gravity term, andVv - (f,,AoV peaw) the diffusion term. The viscous term usu-
ally dominates in field-scale reservoir simulation, whertee diffusion term
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dominates in small scale simulations. The gravity term cam@minant in
large scale simulations with very low flow velocity, e.g.,evimodeling what
happens to C@atfter it has been injected into an aquifer. We target prilyari
applications where the viscous term is dominant. In padrowe assume that
capillary pressure effects are adequately modeled thropghator splitting,
i.e., instead of discretizing (9) we discretize the follogisystem:

0S
¢_ +V. (fwv + f j~Og(p0 Pw)VZ) = Ouw, (10)
apCOw
— 4+ V. {f,A \Y = 0. 11
$oe - (fura G2evs) = 0 )

We have used the capillary pressure function (Espedal andéta 2000):

1-5S
N

Heree is a parameter that can be used to adjust the amount of diffusi

Peow = €0. 9¢_09K 03 (12)

6.2. DISCRETIZATION

To discretize (10) on coarse grids where each block consfstsconnected
collection of cells in an underlying fine grid with interfacg; we employ
the following scheme:

+
NI

=St T fB {/%(S“ ydx = (Vi (S + G (S‘ﬂ))}

Vij CoBm
HereV;; (S) is defined as in Section 4 and

Aw(SH)A0(S7)
4w (S*) + 40(S7)

Gij (S) = d(po — pu)l7ij | Vz.nj,

wheren;; is the unit normal ory;; pointing fromT, to T;, and

S" =maxSlysj, —SIt;s;} and ST =maxSy;sj, —SItS; ),
wheres; = sign(p, — p,)Sign(n;; - n;). Hence,i, and 4,, are upstream
weighted with respect to the gravity driven flow of oil and emtespectively.

This is the standard way to discretize the gravity term ieresir simulators.
The diffusion equation (11) takes the following form:

¢Z_ts =V-d(SVS, (13)
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whered(S) = — fwioarc?g" is a non-negative function. This is a parabolic
equation with a degenerate diffusion term. For the timerdistation we

employ a semi-implicit backward Euler method:

¢Sn+l — ¢Sn+l/2 + ALV - d(Sl’H—l/Z)Vs’H-l'

For the spatial discretization we use a Galerkin projection

6.2.1. Galerkin projection of capillary diffusion

Let D be a symmetric and semi-positive definite matrix that steros) fa
cell centered finite-difference discretization of the setliptic operatorL =
—V - dV. Then, to modifyS™¥/2 to account for capillary diffusion we may
solve the following symmetric and positive definite system:

(® + AtD) S™H = S1/2, (14)

where® = diag(¢). However, since the viscous and gravity terms are dis-
cretized on the coarse grid it is undesirable to have to smfuge grid system
for the diffusion term. Moreover, for grids with complex drgeometries

it is not possible to apply standard methods for discregidin Devising a
numerical method tailored for discretizirlg on coarse grids with complex
block geometries is not within the scope here. Instead wedstrate that the
capillary diffusion can be modeled on coarse grids with ae@ah projection.

To this end, leR = rj; where

| 1 ifcelli in the fine grid is contained in blockin the coarse grid
"7 1 0 otherwise

Hence, ifS represents saturation on the coarse grid, tBen= RS is the
corresponding interpolated saturation on the fine grid. édwer, if S+ is
the solution of (14) withS™*Y/2 = RS2, then the Galerkin projection of
S*+1 onto the space of piecewise constant functions on the cgaicsés the
solution §** of the following system:

[@c + AtD] T = D FH2 (15)

whereD.; = R'DR and®; = R'®R.
The current Galerkin projection is an orthogonal projectigith respect
to the norm||S||la = (S, AS)Y/2, whereA = ® + AtD. In other words,

IR — S|4 = arg miniRS — S a,

whereS™! is the solution of (14) witl§"+%/2 = RS2,
To discretize the semi-elliptic operataron the fine grid to obtaid =
d;; (S) we employ a two-point flux-approximation finite volume scheerfihus,
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since we consider Cartesian grids, we have

S-S
X — x|’

d; (S = —/ d(SVS-ny ds~ [y 1d(S, S) (16)
Yij

wherex; andx; are the cell centers i, andT;, respectively, andi(S, S)
is a suitable average di(§) andd(S;).

Note that ifSis saturation on a coarse grid, then modeling capillaryueliff
sion using (14) or (15) witlb defined by (16) will in general overestimate the
diffusion. This is because the saturation gradient in ($&dmputed at the
fine grid level, whereas the saturation values represergatatations within
the coarse grid blocks. The capillary diffusion thereforales with the ratio
of the size of the coarse grid blocks relative to the size effthe grid cells.
Thus, “on average” the diffusion should be damped by a fa@¥igy N¢)*¢,
whereN, denotes number of blocksl. denotes number of cells, adds the
spatial dimension. This suggests that one can model capiliusion more
correctly by using the following scaled Galerkin projectiapproach:

Nj 1/d
[CDC + At (W) ch| gg+1 _ CDCQ‘H/Z. a7

C

More accurate ways of damping the capillary diffusion, ,eby. estimating
saturation gradients across each coarse grid interfadleyevpursued in fur-
ther research. The main idea here will be to exploit somerin&iion about
the coarse grid geometry. Essentially the current appregghoximates the
saturation gradient between grid bloicknd grid blockj by

_S-5
T AX

VS ,
where Ax is a global constant. In further work the saturation gradieifl
be approximated more accurately by replacixg with the distance between
the centers of block and j, respectively.

6.3. NUMERICAL EXAMPLE

The purpose of this section is to illustrate the effect of elvdy capillary dif-
fusion using the Galerkin projections (15) and (17) relatiy modeling capil-
lary diffusion on the fine grid. To this end we have performedwations on
both a homogeneous fracture model and a heterogeneousréracbdel. We
consider cases with relatively strong capillary diffusioe., more diffusion
than one normally observes in field cases. The sourcedemhich models a
guarter-of-a-five-spot, is chosen so that the balance legtitree viscous term
and the diffusion term is independent of the reservoir disiams.
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Table Ill. Errors for the water-cut curves depicted in Figgid6 and 18.

Homogeneous model Heterogeneous model
fine grid G. proj. scaled G. pro|.fine grid G. proj. scaled G. proj.

0.105 0.121 0.065
0.075 0.121 0.021

EFMS
NUC

0.071 0.077 0.028
0.047 0.055 0.079

Figures 15 and 17 display saturation profiles at 0.2 PVI wabil@ary
diffusion modeled on the fine grid (Figures 15(b)—(d) andb}#(d)), with
the Galerkin projection (Figures 15(e)—(f) and 17(e)+@n)d with the scaled
Galerkin projection (Figures 15(g)—(h) and 17(g)—(h)).eT¢orresponding
water-cut curves are depicted in Figures 16 and 18, and #oziaded water-
cut errors are listed in Table Ill. The EFMS grids used in theutations
contain 256 blocks for the homogeneous model and 228 blankihé het-
erogeneous model. The corresponding NUC grids contain Re&k$ for the
homogeneous model and 205 blocks for the heterogeneoud.mode

Comparing the saturation plots in Figures 15 and 17 with Htaration
plots in Figure 5 (at 0.48 PVI) we clearly see that capillaiffudion has
strongly influenced the flow in the simulations in this settiQualitatively
we see that modeling diffusion on the fine grid and with thee@ah projec-
tion gives qualitatively similar results. As expected, tbgults show evidence
of too much diffusion. For instance, unlike in Figure 12, \ee that the water-
cut curves for the non-uniform coarsening strategy nowesystically lie
below the reference water-cut curve. This indicates thattach water flows
into the low permeable matrix and hence delays its arrivith@producer.

When using the scaled Galerkin projection we see that therveat cur-
ves are shifted to the left. This stems from the fact that iffasion effects
have been damped, giving rise to earlier arrival at the preduThis gives
a significant reduction in the water-cut errors except f@ tfon-uniformly
coarsened homogeneous model for which the water-cut ercoeases. The
rise in water-cut error for this case might reflect that a migjof the flow
here takes place in the fracture web, giving rise to largeligras between
the fracture and the matrix. Hence, if the flow in the fractui® modeled
accurately, then it may be better to model the diffusion anfthe grid. For
the EFMS grids we know from the results in Section 5 that itsgalty gives
delayed arrival times. Thus, for these grids the shift taigaearlier arrival
times serves to correct for other modeling errors.
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%msmun

(a) Homogeneous model with 100 fractures. (b) Referenagisnlwith fine grid diffusion.

(c) NUC solution: fine grid diffusion. (d) EFMS solution: figeid diffusion.

(f) EFMS solutionafdrkin projection.

(g) NUC solution: scaled Galerkin projection. (h) EFMS giin: scaled Galerkin projection.

Figure 15. Saturation profiles at 0.2 PVI obtained by modeling capjli@iffusion on the fine
grid, using the Galerkin projection, and using the scaleb:(&an projection.

Water—cut curves for homogeneous model Water—cut curves for homogeneous model
1 1
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Figure 16. Water-cut curves for the simulations displayed in Figure 15
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(c) NUC solution: fine grid diffusion.

(g) NUC solution: scaled Galerkin projection. (h) EFMS giin: scaled Galerkin projection.

Figure 17. Saturation profiles at 0.2 PVI obtained by modeling capjli@iffusion on the fine
grid, using the Galerkin projection, and using the scaleb:(&an projection.

Water—cut curves for heterogeneous model Water—cut curves for heterogeneous model
1 1
0.8¢ 0.8
0.6f 0.6
0.4r 0.4¢

0.2 —Reference 0.2 —Reference
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of=——= NUC (scaled G. proj. o—is | EFMS (scaled G. proj.
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 18. Water-cut curves for the simulations displayed in Figure 17
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7. Concluding remarks

In this paper we have presented two strategies for gengratiarse simula-
tion grids. The objective has been to design grids that vedtdw in fractured
porous media more accurately than conventional simulatiodels. The first
strategy, called explicit fracture-matrix separation KEF), generates coarse
grids where the the fracture web is separated from an uridgryoarse grid.
The second strategy is based on the non-uniform coarsefgongtam from
(Aarnes et al., 2007a). Both algorithms produce unstrectwoarse grids.

A series of two-phase flow simulations where the saturattomadeled
on the produced coarse grids are performed. The pressueti@uis solved
on a fine grid in which the fractures are represented as a dadldjacent
cells. Thus, we do not model fractures as lower-dimensiefahents, and
we do not employ dual-porosity dual-continuum conceptsbuRtmess of
the coarsening algorithms is assessed by comparing theigeddvater-cut
curves with a reference solution for cases with differeatfure distributions
and flow parameters. The simulations support the followimigctusions:

— Both coarsening algorithms give more accurate solutioas time ob-
tains by modeling saturation on conventional coarse gild& non-
uniform coarsening approach consistently produces the ammirate
solutions. The EFMS strategy gives poor accuracy when the io
strongly influenced by underlying heterogeneous strusture

— The non-uniform coarsening strategy is quite robust, evigh respect
to number of fractures, degree of coarsening, well locatiafiscosity
ratio, and fracture permeability, and it is easy to tune thexaling factor.
It is difficult to control the upscaling factor with the EFM8ategy. In
particular, the upscaling factor for the EFMS algorithmirisited if there
are many fractures or if the initial coarse grid is not suffitdly coarse.

— The non-uniform coarsening algorithm assumes no prior kedge of
the fractures provided their presence is reflected in théogéxal model.
The EFMS strategy assumes that the “fracture cells” arecpbesi.

— Capillary diffusion can be modeled on unstructured coarsgsgvith
complex block geometries using a damped Galerkin projectio

In summary, the non-uniform coarsening algorithm produbesmost accu-
rate results, and hence seems to provide the best tool foelngdilow in
fractured reservoirs.

Reservoirs with large scale fractures that strongly infagetine flow (e.g.,
carbonate reservoirs) pose a challenge to reservoir emgires simulation
models often fail to be predictive. This is partly becausgant simulation
models are not sufficiently flexible to allow the grid size oddlexibility to
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get adequate resolution of the fractures. The non-unifararsening strategy
presented in this paper offers an alternative by productagse grids that are
tuned to the flow patterns dictated by the fractures and the>ieeterogene-
ity. As such we believe that it provides a tool that can féatié modeling and
simulation of transport phenomena in fractured porous medi
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