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ABSTRACT 
This paper discusses the simulation of bubbling gas-solid 
flows by using an Eulerian modeling approach. Two 
closure models, the constant particle viscosity model 
(CPV) and a model based on kinetic theory of granular 
flow (KTGF), are compared in performance to describe 
the time-averaged velocity fields and bed expansion in 
both a circular and rectangular column. The time averaged 
velocity fields and bed expansion obtained in the 
simulations are compared with experimental data obtained 
by Lin et al. (1985) for validation. 
 
In this work an in-house code has been developed based 
on the finite volume and the fractional step approach using 
a staggered grid arrangement. The velocities in both 
phases are obtained by solving the two-dimensional 
Reynolds-averaged Navier/Stokes equations using a 
partial elimination algorithm (PEA) and a coupled solver. 
The k-epsilon turbulence model is used for the continuous 
phase. 
 
Axi-symmetric simulations using the KTGF model gives 
results in fairly well agreement with the experimental 
results, while the CPV model predicts unrealistically high 
solids concentration  along the central axis due to the 
symmetry condition. Applying higher order discretizations 
of the convective terms results in a higher solids void 
fraction as long as the diffusion in the system is 
sufficiently high. 
 
The first step of including a chemical reactive system 
seems to be successful, although validation of the 
chemical process still remains. 
 
Keywords: Bubbling bed reactors; Fluid Mechanics; 
Multiphase flow; Simulation; Viscous flow; CFD; 
 

NOMENCLATURE 
Dea dispersion coefficient 
Mk interfacial momentum transfer term 
e restitution coefficient 
g gravity vector 
g0 radial distribution function 
p pressure 
vk  velocity 
Rj reaction rate 
 
Гd conductivity of solid phase fluctuating energy  
αk void fraction of phase k 
β drag coefficient 

γ collisional energy dissipation 
ζd solid phase bulk viscocity 
θ granular temperature 
µd

dilute dilute viscosity 
ρk intrinsic density of phase k 
µ dynamic viscosity 
τk Stress of phase k 
ωi species mass fraction 
 
 

INTRODUCTION 
The Eulerian modeling approach is probably the most 
commonly used approach for predicting the dynamical 
behavior in fluid-particle systems (for example Enwald et 
al., 1996, van Wachem et al., 1998). This approach 
describes both phases as interpenetrating continua and has 
more potential, compared to an Euler-Lagrangian 
approach, in situations where the dynamics of the system 
is of interest or the mass-loading of the dispersed phase is 
considerable. However, many Euler-Euler models used in 
the literature suffer from uncertainties in prescribing the 
internal momentum transfer in the solid phase (Ding and 
Gidaspow, 1990). Various non-Newtonian models for the 
internal stresses of the solid phase correlated with 
experimental observations have been proposed. In recent 
years, more fundamental closures for these stresses have 
been developed based on the application of the kinetic 
theory for dense gases to particulate assemblies. The work 
of Ding and Gidaspow (1990), Samuelsberg and Hjertager 
(1996) and Laux (1998) among others have shown the 
ability of the Euler-Euler granular temperature approach 
to model, numerically, gas-solid fluidized beds. In this 
work two closure models, the classical constant particle 
viscosity model (CPV) and a more fundamental model 
based on kinetic theory of granular flow (KTGF), are 
compared in performance to describe the time-averaged 
velocity fields and bed expansion in both a circular and 
rectangular column. The former model can be considered 
as a simplification of the latter, where a uniform and 
constant granular temperature in the entire fluidized bed is 
assumed. 
 
The motivation for this work is to describe reactive flows 
in fluidized bed reactors and thereby couple the fluid 
dynamic models with a chemical reaction model 
containing complex reaction kinetics and chemical 
equilibriums. In a first step of this description, the 
chemical system chosen is the synthesis gas process for 
hydrogen production. 
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Hydrogen is an important raw material in chemical and 
petroleum industries. However, the importance of 
hydrogen is believed to increase as it might become a new 
generation of clean energy source for transport, as it can 
be applied in combustion processes as well as in the fuel 
cell technology. In that case, the hydrogen demand is 
expected to increase drastically. Steam reforming is 
currently the major process for large-scale production of 
hydrogen. An alternative cost-effective process for 
hydrogen production is highly desirable as traditional 
steam reforming includes multiple processing steps and 
severe operating conditions, making the hydrogen 
production very costly. 
 
Sorption enhanced reaction process (SERP) is a 
multifunctional reactor concept suitable as an alternative 
to traditional steam reforming. The concept is a 
combination of reaction and separation where a CO2 
acceptor can be installed together with the catalyst to 
remove CO2 from the gas phase. High fractions of 
hydrogen can be obtained as the normal equilibrium limits 
of reforming and shift reaction practically vanish. In 
addition, the process can be operated at much lower 
temperatures which will significantly lower investment 
and operation costs. Lower temperatures and lower 
concentration of CO in addition to higher concentration of 
hydrogen will also reduce the cocking potential, which is 
a serious problem in traditional steam reforming. 
 
As the SERP-concept involves regeneration of the sorbent 
in which CO2 is removed, a fluidized bed might be a 
suitable choice of reactor for this process. The well-known 
advantages of the fluidized bed concept as continuous 
sorbent regeneration, small temperature gradients as well 
as small mass transfer resistance are favorable in SERP.  
 
The SERP-concept will be included in the models 
forthwith as the kinetics of this process is known. 
  

MODEL DESCRIPTION 
In this section the governing and constitutive equations for 
the two-fluid model are presented, along with the 
associated boundary conditions. 
 

Governing equations 
For simulation of the bubbling gas-solid flows an Eulerian 
modeling approach has been applied. The conservation 
equations for mass, momentum, granular energy and 
species composition are given in Table 1. 
 
Continuity equation for phase k (=c, d): 
 

 ( ) ( ) 0k k k k kt
a r a r¶ + Ñ × =

¶
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Momentum equation for phase k (=c, d): 
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Granular temperature: 
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Species composition: 
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Table 1 Governing conservative equations. 

Constitutive equations 
Constitutive equations for modeling interfacial momentum 
transfer are given in Table 2. The drag force is expected to 
be the most dominant interfacial force for particle flows. It 
is here represented by the Ergun equation for the dense 
regime (Ergun; 1952), while a correlation of Wen and Yu 
(1966) is applied for the dilute regime. A linear 
combination of the two drag formulations is applied in the 
transition regimes. 
 
Interfacial force 

( )c d D d cb= - = = -M M F v v             (5) 

 
Interfacial friction coefficient: 
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Dragcoefficient: 
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Table 2 Constitutive equations applied in the two-fluid 
model. 
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Constant particle viscosity model 
As the name implies the CPV model does not contain any 
viscosity model. The stress tensor of the solid phase is 
then given by equation  (10) where the bulk viscosity, ζd, 
is set equal to zero and the shear viscosity of µd =1 kg/ms 
is used. This value is based on data presented by Clift and 
Grace (1985). The solid pressure is expressed in terms of a 
particle-to-particle interaction coefficient referred to as the 
modulus of elasticity. It can be expressed as: 
 

 ( )d c cp G a aÑ = - Ñ  (7) 

 
There are various correlations for G(αc) and the meaning 
and relevance of this modulus has been the subject of 
considerable discussion in the field (Massoudi et al., 
1992). In this work the correlation of Ettehadieh et al. 
(1984) is applied. 

 ( ) 10.46 6.57710 c
dG aa - += -  (8) 

 

Kinetic theory of granular flow 
The kinetic theory of granular flow model is based on the 
analogy between particles and the molecules of dense 
gases (Chapman and Cowling; 1970). An important 
difference is that the molecules in the dense gas are 
considered as elastic whereas the particles are inelastic 
causing kinetic energy dissipating into heat. The first 
models based on kinetic theory were not valid for dilute 
flows, as they did not account for the influence of the 
interstitial gas. This was first accounted for in the early 
90’s. The present model is based on the work of Ding and 
Gidaspow (1990) and Gidaspow (1994). The constitutive 
equations are summarized in Table 3. 
 
Gas phase stress: 

2c cc ca m=τ S                                                       (9) 
 
Solid phase stress: 

( ) 2d dd d d d dp a z a m= - + +τ I S                (10) 

 
Deformation rate: 

( )( ) ( )T1 1
2 3

k k k k= Ñ + Ñ - Ñ ×S v v v I      (11) 

 
Solid phase pressure: 

( ) 01 2 1d d d dp e ga r aé ù= Q + -ë û                   (12) 

 
Solid phase bulk viscosity: 

( )0
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Solid phase shear viscosity: 
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Radial distribution function 
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Conductivity of the granular temperature: 
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Collisional energy dissipation: 
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Table 3 Constitutive equations based on kinetic theory of 
granular flow. 

 
 

Initial and boundary conditions 
Initial conditions (t=0): Initially the bed is at rest and 
there is no gas flow in the reactor. The particle void 
fraction is slightly below maximum packing. When not 
assuming axi-symmetry, heterogeneity was introduced 
into the bed by creating a void area at the bottom of the 
bed towards the right boundary. This was done by setting 
the gas void fraction to unity. The effect of this void area 
has minor effects on the statistical behaviour of the fluid 
flow. The turbulent energy and dissipation rates as well as 
the granular temperature are low but non-zero. 
Boundary conditions (t>0): The normal velocity 
component for both phases is set to zero at both 
boundaries. The wall boundary condition for the gas is 
based on the wall function approach consistent with the 
single-phase k-  model. Assuming that the gas velocity 
profile near the wall is similar to that of single-phase flow, 
the skin friction coefficient can be obtained from the 
logarithmic part of the "law of the wall". The solids were 
allowed to slip along the wall, following the boundary 
conditions used by Ding and Gidaspow (1990): 

 1
3

,
, | |p d z

d z w w
d

d v
v

ra
¶

= -
¶

 (18) 

 
 
Uniform plug flow is assumed at the inlet. A prescribed 
pressure is specified at the outlet. The particles are not 
allowed to leave the reactor. For scalar variables, except 
for the pressure, Dirichlet boundary conditions are used at 
the inlet, whereas Neumann conditions are used at the 
other boundaries. 
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Chemical process 
The chemical process implemented is the conversion of 
natural gas into synthesis gas. The kinetics is based on 
methane steam reforming with Ni/MgAl2O3 as the 
catalyst, where the most important reactions are: 
 
CH4 + H2O = CO + 3H2       (19) 
 
CO + H2O = CO2 + H2       (20) 
 
CH4 + 2H2O = CO2 + 4H2      (21) 
 
The kinetics and correlations needed are taken from 
Froment and Bischoff (1990), De Groote and Froment 
(1995) and Xu and Froment (1989a,b). The operating 
conditions and boundary conditions used in the 
simulations as well as the data for the gas phase are given 
by Jakobsen et al. (2002). The inlet temperature and the 
temperature in the reactor are assumed constant and set to 
1100 K.  
 

NUMERICAL SOLUTION ALGORITHM 
The algorithm applied in this work is based on the 
algorithm applied by Jakobsen et al. (2005). The 
governing two-fluid equations are discretized by a finite-
volume algorithm. A staggered grid arrangement is used. 
A fractional-step scheme similar to those used by 
Tomiyama and Shimada (2001) and Lathouwers (1999) is 
developed on the basis of the single-phase algorithm 
reported by Jakobsen et al. (2002), Lindborg et al. (2004) 
and Jakobsen et al. (2005). The fractional steps defining 
the algorithm are sketched in the following discussion.  
 
 
1. Velocity prediction 

Temporary velocity estimates are found by solving 
the momentum balances using implicit discretizations 
of the velocity variables: 
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The equations are solved by using a Partial 
Elimination Algorithm (PEA) in a coupled manner, 
though separately for each velocity direction. 
 
 
 
 
 
 
  

2. Void fraction prediction 
Temporary void fractions are found by solving the 
dispersed phase continuity equation:  
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3. Granular temperature prediction 

In intermediate granular temperature is computed by 
use of temporary void fractions and velocity fields: 
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Since the source terms are all functions of the 
granular temperature, negative temperatures can be 
avoided by using positive source terms only on the 
right hand side of the discretized equation, while 
negative source terms are added to the center-
coefficient. The particle pressure is then calculated 
based on the intermediate values of the void fractions 
and the granular temperature. 

( )* * * * *
01 2 1n
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4. Particle pressure- and velocity correction 

The velocity of the dispersed phase is corrected due 
to change in particle pressure: 

* ** * *n n
d d d d d d

V

d dV V

dv
t

p dv dv

a r a r

d d

æ ö- ÷ç ÷ =ç ÷ç ÷ç Dè ø

- Ñ +

ò

ò ò

v v

M
(26) 

 

where * n
d d dp p pd = -  and  

** *
d d dd = -M M M . The velocity of the 

continuous phase is corrected due to velocity change 
of the dispersed phase velocity through the phase 
interaction term: 
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Solved with respect to the corrected velocity of  the 
continuous phase gives: 
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where * n n
c cD ta r b= + D . Inserting equation 

(28) into equation (26) solved with respect to the 
corrected velocity of the dispersed phase gives: 
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Point 3 and 4 are performed in an iteration procedure 
until the change in void fraction is less than a certain 
criterion. 

 
5. Gas pressure- and velocity correction 

A pressure update is then performed to update the 
pressure- and velocity-fields. 
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where 1n np p pd += - . The equation for this 
update is found by introducing a time-independent 
volume fraction (and density) step. 
Summation of the normalized continuity equations 
over both phases gives: 
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The transient term in the continuity equations cancels 
out as the sum of the volume fractions equals 1. 
Introducing the velocity correction 

1 **n
k k kd += -v v v  into equation (31) results in: 
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The velocity correction can be written in terms of a 
pressure correction. The pressure-velocity 
dependence can be obtained by subtracting a 
prediction step of the momentum equations from the 
semi-implicit discretization: 
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And for the dispersed phase: 
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Substituting the velocity correction in equation (35) 
with equation (34) gives the pressure-velocity 
dependence for the dispersed phase: 
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For the continuous phase this gives: 
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A Poisson equation is obtained after inserting the 
pressure velocity dependence into equation (32): 
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6. Void fraction update 

The void fractions are updated by solving the 
continuity equation for the dispersed phase: 
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7. Granular temperature update 
The granular temperature is updated based on the new 
void fraction and velocity-fields: 
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At the end a particle pressure-update is performed: 
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8. Component mass fraction update 
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Integrate the transport equations for the components 
in the gas phase. This is split into two steps. A 
convection-diffusion step: 
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The final step is the reaction step: 
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9. Density update 
When including compressibility in the gas phase, a 
density update is needed due to any eventual changes 
in temperature and fluid mixture composition. The 
density is then updated by using a suitable equation 
of state (EOS). In the case of an ideal gas: 

1
*

n
m

cV V
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r
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The density at time step n+1 is obtained from the gas 
phase continuity equation: 
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The fractional-step concept applied consists of successive 
applications of the predefined operators determining parts 
of the transport equation. The convective and diffusive 
terms are further split into their components in the various 
coordinate directions. The time-truncation error in the 
splitting scheme is of first order. The convective terms are 
solved using a second-order TVD scheme in space and a 
first-order explicit Euler scheme in time. The TVD 
scheme applied was constructed by combining the central 
difference scheme and the classical upwind scheme by 
adopting the "smoothness monitor" of van Leer (1974) 
and the monotonic centered limiter (van Leer; 1977). 
 
All the linear equation systems are solved with 
preconditioned Krylov methods. A bi-conjugate gradient-
solver (BCG) is applied for the granular temperature and 
the turbulent dissipation energy while a conjugate 
gradient-solver (CG) is used for the other variables. The 
solvers are preconditioned with a Jacobi preconditioner 
which is computationally very cheap and effective. In 
addition, compared to the more robust ILU preconditioner, 
it does not introduce any numerical perturbations. 

Overview of the algorithm 

• Velocity prediction. Solution of the momentum 
equations (22). 

• Void fraction prediction using equation (23). 

• Prediction of granular temperature using 
equation (24). 

• Correction of particle pressure and velocities 
due to particle pressure correction (equations 
(25), (28) and (29). 

• Correction of gas pressure and velocities using 
equation (38). 

• Updating void fractions (equation (39)). 
• Updating granular temperature (equation (40) 

and particle pressure (equation (41)). 
• Calculating species composition (equation (4)). 
• Updating the gas phase density. 

 

SAMPLE RESULTS AND DISCUSSION 
Simulations described in this work were performed for 25 
s with a time step size of ∆t=0.2 ms. Maximum Courant 
number is in the range 0.02 to 0.03. The results reported 
are averaged over the last 20 seconds to avoid influence of 
the start-up phase. 
 
To validate the models, the simulation results have been 
compared with experimental results of Lin et al. (1985), 
who measured particle velocity in a cylindrical bed using 
a radioactive particle tracking method. The bed, 13.8 cm 
in diameter, contained glass Ballotini beads with 
diameters in the range of 0.42-0.60 mm, and a static bed 
height of 11.3 cm. In this work a particle diameter of 0.50 
mm is assumed with a density of 2.5 g/cm3. To compare 
the results with the work of Ding and Gidaspow (1990) 
and Pain et al. (2002) a uniform grid size of ∆r=0.69 cm 
and ∆z=1.13 cm was used. In addition, first order upwind 
discretization of convective terms is applied. Inlet 
superficial velocity of air was set as 64.1 cm/s, and a 
restitution coefficient value of 0.995 was used. The 
simulations are run in serial on an SGI Origin3800 with 
R14000 processors of 600MHz. A typical run on this grid 
size takes approximately 3800 CPU seconds when using 
the CPV model while the KTGF model is more 
computationally expensive with 5100 CPU seconds.  
 
Results by using the KTGF model are shown in Figure 1. 
On average, the particles ascend at the center and descend 
near the wall. A vortex appeares in the upper portion 
between the center and the wall, as seen in the 
experimental results. However, the opposite directed 
vortex of lower velocities in the lower portion between the 
center and the wall seen in the experiments does not 
appear in the simulation results. Neither Ding and 
Gidaspow (1990) nor Pain et al. (2002) obtained these 
vortexes in their work (Figure 2).  
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Figure 1 Computed (left) and experimental (right) solids 
velocities in cylindrical bed. 

 

 
Figure 2 Solids velocities in cylindrical bed obtained by 
Pain et al. (2001 (left) and ) Ding and Gidaspow (1990) 
(right). 

 
On the other hand, the two oppositely directed vortexes 
are predicted by the CPV model, as shown in Figure 3. 
However, this model does not predict the correct particle 
motion at the center, as the particles tend to compact and 
descend quite fast in this region. The same motion is seen 
when applying two-dimensional Cartesian coordinates as 
shown in Figure 4. According to Sun and Gidaspow 
(1999) and Pain et al. (2001) some unrealistic high 
concentration of particles in the central region of the 
reactor can occur when applying axi-symmetrical 
boundary conditions, since the particles are prohibited 
from crossing the central axis. To overcome this problem, 
the symmetrical boundary conditions have to be removed 
and the whole domain has to be simulated where the 
symmetry is broken. It is common to insert some gas 
pockets asymmetrically into the bed initially or slightly 
tilt the gravity vector for a short period of time during 
start-up to break the symmetry. Special attention should 
be paid to the calculation of the coefficients and source 
terms of the equation systems as well as the solvers 
applied for solving them to avoid that the symmetry is 
broken by numerical perturbations originating from 
accuracy restrictions in the machine. The axi-symmetric 
boundary condition does however not always lead to 

unphysical flows. Ding and Gidaspow (1990) show that 
both cases are possible depending on flow rate, bed height 
and geometry. 
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Figure 3 Computed solids void fractions and velocities in 
cylindrical bed obtained by using the CPV model (left) 
and the KTGF model (right). 

 
The bed heights predicted by the two models are 
practically equal, but somewhat lower than observed in 
the experiments. 
 
The solids motion obtained when simulating a rectangular 
axi-symmetric column using Cartesian coordinates does 
not qualitatively differ much from the motion obtained in 
the cylindrical column, although the highest velocities in 
the center are approximately 30% less when using the 
Cartesian coordinates. The ascending motion of the 
particles at the center predicted by the CPV model is not 
as dominant in the rectangular bed. The solids void 
fraction profiles predicted by this model do not change as 
much when changing coordinate system as they do when 
applying the KTGF model. 
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Figure 4 Computed solids void fractions and velocities in 
two-dimensional axi-symmetric bed obtained by using the 
CPV model (left) and the KTGF model (right). 

 
Letting the particles cross the central axis, by removing 
the axi-symmetrical boundary conditions and introducing 
an asymmetric perturbation in the solids void fraction, 
results in profiles shown in Figure 5. Compared to the axi-
symmetric simulations, there are minor changes in solids 
motion predicted by the KTGF model. However, it is 
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slightly asymmetric and the magnitude of the center-
velocities is reduced by approximately 40%. There are 
also minor changes in void fraction profiles. 
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Figure 5 Computed solids void fractions and velocities in 
two-dimensional bed obtained by using the CPV model 
(left) and the KTGF model (right). 

 
The solids motion predicted by the CPV model with and 
without axi-symmetrical boundary conditions differ a lot 
in the way that it is more similar to the results obtained 
with the KTGF model when the particles are allowed to 
cross the centerline. There is no region of high particle 
concentration at the center. The particles ascend at the 
center and descend near the wall creating two vortexes in 
the upper portion of the bed. In addition, there are no 
longer opposite directed vortexes in the upper and lower 
parts as in the axi-symmetric simulations. The predicted 
particle concentration in the upper half of the bed is 
somewhat lower than the concentration predicted by the 
KTGF model causing a more expanded bed. 
 

 

Increased order on convective terms 
Applying the TVD scheme with the monotonic centered 
limiter when solving the convection terms in the 
cylindrical bed, results in profiles shown in Figure 6. The 
major differences from the results obtained when using 1. 
order differentiation is an increased bed height which is in 
better agreement with the experimental results of Lin et al. 
(1985). The solids motion remains the same although the 
magnitudes of the velocities are higher. The CPV model 
predicts a more compact region along the central axis 
halfway up in the bed. 
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Figure 6 Computed solids void fractions and velocities in 
cylindrical bed obtained by using the CPV model (left) 
and the KTGF model (right). TVD scheme is applied 
when solving the convective terms. 

 
Allowing the particles to cross the central axis gives the 
profiles shown in Figure 7. The solids velocity- and 
concentration profile obtained with the CPV model is 
fairly symmetric with up-flow in the center. The 
corresponding profiles obtained with the KTGF model 
appear to be more chaotic. An increase in discretization 
order of convective terms, and thereby a reduction in 
numerical diffusion seems to destabilize the solution. This 
effect is not seen with the CPV model as the shear 
viscosity is higher. 
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Figure 7 Computed solids void fractions and velocities in 
non-axi symmetric rectangular bed obtained by using the 
CPV model (left) and the KTGF model (right). TVD 
scheme is applied when solving the convective terms. 

 

Synthesis gas production 
The same physical data and fluid dynamic operating 
conditions are applied as for the cold flow simulations 
except for the outlet pressure which is 29 bars. The 
chemical model is turned on after 3 seconds to avoid 
influence of the start-up phase. Simulations of axi-
symmetric columns resulted in heavy down flow of 
particles in the center. However, simulations of the non-
axi symmetric rectangular column predicted ascending 
particles in the center as shown in Figure 8. Both models 
perform quite evenly both in predicting solids velocities 
and void fractions. The bed expansion is higher than in the 
cold flow simulations due to higher operating pressure and 
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different gas mixture. The components mass fractions 
were also predicted quite evenly by the two models. Thus, 
only the results from the KTGF model are shown in 
Figure 9. The mass fraction profile of the inert nitrogen 
gas, which is supposed to be flat, indicates how well the 
gas continuity equation is fulfilled. The discrepancies 
from the initial value of 0.0641 are small enough to avoid 
the error growing.  
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Figure 8 Computed solids void fractions and velocities in 
non-axi symmetric rectangular bed obtained by using the 
CPV model (left) and the KTGF model (right) when 
running the synthesis gas process. 
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Figure 9 Mass fractions predicted when applying the 
KTGF model. 

 

CONCLUSION 
A numerical algorithm has been described for the solution 
of particle flow adopting an Eulerian modeling approach. 
Two closure models, the constant particle viscosity model 
(CPV) and a model based on kinetic theory of granular 
flow (KTGF), are compared in performance to describe 
the time-averaged velocity fields and bed expansion in 
both a circular and rectangular column. Axi-symmetric 
simulations of a cylindrical column using the KTGF 
model gives solids velocity profiles that are in fairly well 
agreement with experimental results obtained by Lin et al. 

(1985), while results obtained by using the CPV model 
give unrealistic high void fraction in the central region due 
to the axi-symmetric boundary conditions. Allowing the 
particles to cross the centerline causes the solids motions 
predicted by the two models to be more even. The 
predicted bed height is somewhat less than observed in the 
experiments. However, applying higher order 
discretizations of convective terms results in an increased 
bed expansion closer to the experimental results as long as 
the total diffusion is sufficiently high. 
 The inclusion of a chemical reacting system seems to 
perform satisfactorily. However, validation of the 
chemical process still remains. 
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