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ABSTRACT 
The capability of high order methods to solve the 
population balance equation is studied in this work. The 
Least Square Method, the Nyström Method and a low 
order version of the Nyström method, called the Discrete 
Method, are applied to a general population balance 
equation containing breakage terms only. 
In order to perform a rigorous error analysis, analytical 
solutions are used. In general the Least Square Method 
shows a good agreement with the test cases proposed, and 
a better performance than the other two methods. 
 

INTRODUCTION 
 
The behaviour of dispersed systems such as gas-liquid or 
liquid-liquid systems is strongly dependent on the 
hydrodynamic properties of the dispersed phase. The flow 
pattern in such systems is also sensitive to changes in the 
dispersed phase size and shape distributions. Typical two 
fluid models are not able to handle these complex 
phenomena because only one characteristic size of the 
dispersed phase is used. For that reason considerable 
efforts have been made in order to develop polydispersed 
multi-fluid models with an inherent population balance 
equation, PBE. 
By using PBE, the dispersed phase is commonly treated 
using a probability density function, PDF, which gives for 
example the probability that a bubble of a given size is 
presented in some point in the domain. The characteristics 
of the PDF and its evolution are governed by different 
processes such as breakage, coalescence, growth and 
convective transport of the particles. 
On the other hand, the use of PBE increases the 
complexity of the problem, due to the fact that a nonlinear 
partial integro-differential equation, PIDE, needs to be 
solved. Although analytical approximations can 
sometimes be derived for some particular cases, in most 
practical situations it is necessary to use a suitable 
numerical method. 
 
The method of moments represents an efficient method to 
solve the PBE, but it is applicable for some particular 
cases. For example, Frenklach (1985) shows that the 
application of the method of moments to coagulation 
process where the coagulation rate is constant works well, 
since the problem is closed. This means that the value of a 
given moment of the distribution is only related to the 
value of the lower order moments of the distribution. 
 

For the general case, McGraw (1997) proposes to close 
the problem by using numerical quadrature, calling this 
approach the quadrature method of moments, QMOM. 
This eliminates the problem of the coupling between a 
given moment with high order moments by replacing 
integral expressions with a quadrature rule computed 
based on the Product-Difference algorithm, Gordon 
(1968). However, this approach is limited to particular 
problems due to the ill--conditioned behaviour of the 
method. This ill--conditioned behaviour is inherited as a 
consequence of using moments to compute the quadrature 
rules (e.g. Gautshi (1968) and Press (2002) ). 
 
The sectional methods denote a well established group of 
solution techniques in population balance modelling. 
These types of methods require the use of some ad-hoc 
constrains in order to satisfy the conservation of certain 
properties of the distribution, such as mass conservation, 
but with the cost of altering the original problem, 
Ramkrishna (2000). These low order methods present the 
disadvantage of high computational cost, due to the fact 
that in general more than 20 -30 points, pivots, groups, 
classes, etc. are required to obtain reasonable results. It is 
important to note that, although it is common to use 
constraint in order to improve the conservation of the 
pertinent properties, the convergence rate is not modified.  
 
An alternative strategy is to employ projection methods, 
such as finite element methods, FEM, in which the 
solution is approximated as a linear combination of the 
basis functions over a finite number of sub-domains. For 
example, Niemanis and Hounslow  (1998) apply FEM to 
the steady state PBE, finding more accurate solutions than 
using the sectional methods and at the same time using 
less computational power. The low order nature of the 
FEM approach demands also high computational costs 
which could be reduced if a higher order version is 
applied.  
 
Due to the fact that for some applications such as 
chemical reactor simulations the computational costs of 
the solver of the PBE have to be reduced, higher order 
polynomial approximation methods could be an option. 
The global approximation of the solution, compared with 
the local one of FEM or sectional methods, permits us to 
reduce the final computational cost since less points are 
required for achieving the same accuracy. 
 
Higher order methods, such as the Nyström, the Least 
Square and spectral Galerkin methods, are   commonly 
used for solving integral equations like the Fredholm 
equation, (Hackbush, 1995), but they are not normally 
applied to PBEs. One of the few existing examples of this 
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approach applied to PBEs can be found in 
Mantzaris(2001) who discussed a Galerkin, Tau and 
pseudo-spectral methods as a tool for solving multi-
variable cell population balance models which contains 
growth and breakage processes.  
 
In this work, the capability of high order methods to solve 
the population balance equation is studied. The Least 
Square Method (Dorao and Jakobsen, 2004a), the 
Nyström Method (Dorao and Jakobsen, 2004b) and a low 
order version of the Nyström method, which we refers to 
as the Discrete Method in the rest the work, are applied to  
a general population balance equation containing breakage 
terms only. In order to perform a rigorous error analysis, 
analytical solutions are used, although they have no 
counter part in any physical process. 
 

THE POPULATION BALANCE EQUATION 
The Population Balance Equation describes the evolution 
of the Probability Density Function, PDF, representing the 
behaviour of a population of particles such as bubbles, 
droplets or solid particles. The evolution of this PDF must 
take into account the different processes that control the 
population such as breakage, coalescence, growth and 
convective transport of the particles. In this work, we 
focus on numerical methods for the solution of the pure 
breakage population balance equation. 
 
The breakage operator can be defined as 

( ){ } ( ) ( ) ( ) ( )∫+−=
1

0

, ξξηξξξξ dfkfbfLb    (1) 

where  
( ) ( ) ( )ηξηηξ ,, hbk =        

( )ξf  is the unknown PDF which for instance can 
represent the number of particles per unit volume with the 
property ξξ d+ . The chosen property ξ  depends on 

the particular problem, for example ξ  can represent the 
mass of a population of bubbles or the diameter of a 
population of droplets. 
 
The breakage operator ( ){ }ξfLb  represents the rate of 

change of the individuals with property ξ  in the 

population, i.e. in the PDF ( )ξf . The first term on the 
RHS represents the change in the population due to loss of 
the individuals in the population, for example due to a 
breakage process; in this case ( )ξb  is the breakage rate 

of the particles of typeξ . The second term in the RHS 
gives us the change in the population due to the arrivals of 
new individuals with propertyξ . The breakage of 

particles of type η  will produce particles of type ξ  

according to the breakage yield function ( )ηξ ,h . 
 
The general pure breakage equation can be expressed as 
 

( ){ } ( ) 0=+ ξξ gfLb   ( )1,0∈ξ   (2)  

where ( )ξg  is the source term, which represents a sink 

or source of individuals with propertyξ .  
 

NUMERICAL METHODS  
A simple way to classify numerical methods for the 
solution of PBEs constitutes the methods based on 
quadrature rules and methods based on a projection 
strategy. The former approximates the integral 
expressions using quadrature rules, while the latter 
consists in approximating the solution which lay in a large 
space, using a smaller, more manageable one. 

Methods based on quadrature rules   
Quadrature rule is the generic name given to any 
numerical method approximating an integral, for example 

( ) ( )∫ ∑
=

≈
1

0 1

N

q
qq wgdg ξξξ     

where the set { }N
qqq w

1
,

=
ξ  is referred to as the points and 

weight of the quadrature rule. The quadrature rule can be 
classified as low order methods such as the Trapezoid or 
Simpson's rules or high order methods such as the Gauss 
quadrature rule. Although, the Trapezoid and Simpson's 
rules are familiar and/or trivial quadrature rules to 
program, efficiency is more important in the context of 
computational codes in which we want to solve PBEs. 
Thus, these methods should not be considered in general, 
but rather be replaced by high order quadrature rules. In 
spite of the high computation cost, low order methods are 
normally used for solving PBEs, (e.g. Ramkrishna, 2000). 
For that reason we include the low order quadrature 
approach in this work. 
  
The Nyström method belongs to the high order quadrature 
methods, while the Discrete method belongs to the low 
order quadrature methods. 
 

The Nyström Method 
 
The Nyström method consists in approximating the 
integral term by using a quadrature rule. This method is 
discussed in detail for population balance problems by 
Dorao and Jakobsen (2004b). 
The second term in equation (1) can be approximated like 
 

( ) ( ) ( ) ( )∫ ∑
=

≈
1

0 1
,, j

N

j
jj wfkdfk ξξξξξηξ   (3) 

Thus, the pure breakage equation can be expressed like   

( ) ( ) ( ) ( ) ( ) 0,
1

=++− ∑
=

ξξξξξξ gwfkfb j

N

j
jj  

(4) 
In order to close the problem, we can choose iξξ =   

with Ni ,,1K= . Thus, we get 

( ) ( ) ( ) ( ) ( ) 0,
1

=++− ∑
=

ij

N

j
jjiii gwfkfb ξξξξξξ

 (5) 
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Finally, defining  
( ) ( )

( )
( )ii

ii

jjiijiij

fx
gF

wkbA

ξ
ξ

ξξδξ

=
=

+−= ,
 

 
where 1=ijδ  if ji =  or 0=ijδ  if ji ≠ . We can 

write 

∑
=

=
N

j
ijij FxA

1

      (6) 

or in matrix form 
FAx =  

 
When the solution is obtained, the moment of the PDF can 
computed like  
 

( ) ( )∑∫
=

≈=
N

j
jj

k
j

k
k wfdfQ

1

1

0

ξξξξξ    (7) 

 
An important characteristic of this method is that it 
presents a high convergence rate due to the fact that a high 
order quadrature rule is used. In general, and if the kernels 
functions are analytic functions, the expected convergence 

rate is ( )Ne µ−Ο , i.e. spectral convergence, where 
µ depend on the problem.  
 
The computational cost of this approach is determined by 
the cost used to ensemble the system, i.e. to write the 
matrix A and vector F . This task has an approximated 
cost of  

( )
( )NF
NA

Ο→
Ο→ 2

 

In addition to the previous assembling cost, the 
computational cost for solving it must be added. In the 
general case, the cost for solving it can be approximated 

as ( )3NΟ  if Gauss elimination is used. In consequence 

the dominant computational cost is ( )3NΟ . 
 
 

The Discrete Method 
 
This method corresponds to the low order quadrature 
approximation of the Nyström method. In this case the 
quadrature rule is chosen to be the rectangular or 
Trapezoid quadrature rule.  
 
The computational cost involved is the same for as the 
Nyström method. On the other hand, the convergence rate 

is ( )pN −Ο , i.e. algebraic convergence, where p  
represent the order of the approximation. For example, if 
the Trapezoid rules is used 2=p . In consequence, this 
method presents no advantage compared to the Nyström 
method for a general case.  
 

The Discrite method can be seen as the starting point for 
the low order methods such as the Classes Method or 
Course Grid Method, (e.g. Ramkrishna, 2000), which 
introduce additional constraint rules in order to fulfil the 
conservation of certain moments of the distribution. These 
rules do not improve the convergence rate in general. On 
the other hand, high order methods such as the Nyström 
method do not require any additional rules to be 
conservative. Increasing the number of points, the 
conservation properties are satisfied as part of the 
convergence process.  
 
 

Methods based on projection strategies   
 
These methods consist in approximating the solution 
which lay in a large space, using a smaller, more 
manageable one. Finite element methods, FEM, are an 
example of projection methods, in which the solution is 
approximated as a linear combination of the basis 
functions over a finite number of sub-domains.  
In this work, we focus on the Least Square Method, LSQ, 
which is a particular projection method which is 
commonly applied to integral equations such as the 
Freadholm equation. In this case, we discuss a higher 
order version of the Least Square Finite Element Method, 
(Jiang, 1998). This method is discussed in detail for a 
general population balance problem in Dorao and 
Jakobsen (2004a). 
 

The Least Square Method 
 
The Least Square Method (LSQ) is based on expressing 
the approximate solution, in a similar way as for the 
Method of Weighted Residuals  

( ) ( )∑
∞

=

=
0j

jjaf ξϕξ       (8) 

 
If the approximate solution is substituted into the original 
equation, the left hand side of the equation (2) will not 
generally be identically zero. Therefore, we can write the 
residual equation as  

( )( ) ( ) ( )ξξξ gfLfR b +=      (9) 
 
The basic idea of the LSQ is to determine the coefficients 

ja  by minimizing the integral of the square of the 

residual over the computational domain. Thus, it is 
possible to construct the quadratic functional 

( ) ( ) ( ) ( )[ ]∫ +==
1

0

22 ξξξ dgfLfRfI b  (10) 

for all Vf ∈ , where V is a functional space. 
 
The necessary condition for Vf ∈  to be a minimizer of 

the functional ( )fI  is that its first variation vanishes at 

f for all admissible function Vv∈ . Thus, we get  
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( )

( ) ( )[ ] ( ) 02

0lim

1

0

0

=−

⇒=+

∫

→

ξξξξ dvLgfL

tvfI
dt
d

bb

t

  

 
Restricting the functional space to VVN ⊂ , and with a 
little of algebra we get  

( ) ( ) ( ) ( ) 0,,
1

=+∑
=

ξϕξξϕξϕ ib

N

j
ibjbj LgLLa

for Nji ,,2,1, L=  
 

where ⋅⋅,  represents the inner product defined like 

( ) ( ) ( ) ( )∫=
1

0

, ξξξξξ dgfgf  

Defining  

( ) ( )
( ) ( )

ii

ibi

ibjbij

ax
LgF

LLA

=

=

=

ξϕξ

ξϕξϕ

,

,

 

 
we can obtain the matrix form like 

FAx =  
 
When the solution is obtained, the moment of the PDF can 
computed like  

( ) ( )

( )∑ ∑

∑ ∫∫

= =

=

≈

==

N

j

N

q
qqj

k
qj

N

j
j

k
j

k
k

wa

dadfQ

1 1

1

1

0

1

0

      ξϕξ

ξξϕξξξξ

 

 
In order to reduce the computational cost the coefficient of 
the matrix A and F can be computed using a Gauss 
quadrature rule like: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )∑

∑

=

=

≈

=

≈

=

N

q
qqibq

ibi

N

q
qqibqjb

ibjbij

wLg

LgF

wLL

LLA

1

1

    

,

      

,

ξϕξ

ξϕξ

ξϕξϕ

ξϕξϕ

 

 
The computational cost of this approach is determined by 
the cost used to ensemble the system, 
 

( )
( )2

3

NF
NA

Ο→

Ο→
 

plus the computational cost involved in solving it. In the 

general case, the cost for solving it is ( )3NΟ  if Gauss 

elimination is used. In consequence the dominant 

computational cost is still ( )3NΟ . The number of points 

used in the approximation of the integral, N , should be 
increased by adding a factor M depending of the 
functional property of the kernels functions ( )ξb  and 

( )ηξ ,h . Therefore, the number of quadrature points 

used should be MN + , and the previous cost should be 
modified to  

( )
( )NMNF

MNNA
+Ο→

+Ο→
2

23

 

In consequence, the original cost is not affected 
significantly though.  
 
This method presents a higher convergence rate due to the 
fact that a higher order expansion is used. In general, and 
if the kernels functions are analytical functions, the 

expected convergence rate is ( )Ne µ−Ο , i.e. spectral 
convergence, where µ depend on the problem. The 
spectral convergence rate can be severely reduced if no 
proper orthogonal polynomials are used. In particular by 
using the Legendre or Chebyshev orthogonal polynomials 
we obtain spectral convergence rates for this problem. 
 

RESULT AND DISCUSIONS 
 
Five test problems are proposed for assessing the ability of 
the different methods to solve the pure breakage equation. 
Each case depends on at most 4 parameters which 
determine the characteristics of the yield 
function, ( )ξη,h , and the source function, ( )ξg , see 
definitions in appendix A. 
 
Case 1, 2 and 3 are used to evaluate the behaviour of the 
solvers with a strong peak in the yield function, while case 
4 and 5 are used to evaluate the effects in the accuracy of 
the solution for different source functions.  
 
In order to obtain the average behaviour of the solvers, a 
numerical experiment is performed to obtain the average 
error and percentual moment error. For each case, 50 
experiments are performed keeping the same order of 
expansion fixed for the cases of the LSQ, and the number 
of discrete points fixed for the cases of the NM and DM. 
The parameters which determine the characteristics of the 
functions in each experiment (see appendix A) are chosen 
randomly from a uniform distribution.  
 
The error with respect to the analytical solution is defined 
like  
 

( ) ( )[ ]
2

1

1 ∑
=

−=
N

k
kNk ff

N
error ξξ  

where kξ  are the points where the numerical and 

analytical solution are compared, and N is the expansion 
order.  
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The Percentual moment error in the first moments is 
defined like  

k

k
N
k

Q

QQ
error

−
= 100%  

where N
kQ is the numerical approximation of the moment 

kQ . 
 
The LSQ method was based on the Legendre polynomials 
and the evaluation of the integral terms were performed by 
Gauss-Legendre quadrature rules. Due to the fact that 
from this method we obtain a continuous solution, the 
error is evaluated using N  points distributed according 
to Gauss-Legendre points, shown as dots in the figures 1 
to 5, where N correspond to the expansion order used. 
 
The Nyström method is based on Gauss-Legendre 
quadrature rule, while the Discrete method is based on an 
uniform rectangular quadrature rule.  
 

Error in the Probability Density Function  
In figure 1 to 5 the solution for cases 1 to 5 with the LSQ, 
Nyström and Discrete Method are presented. These 
figures represent one run of the 50 experiments used to 
compute the average behaviour. In general, the LSQ 
shows a better agreement with the analytical solution than 
the NM and DM. In order to get a better understanding of 
the performance of the different methods, the effects in 
the error depending on the number of points or expansions 
are analysed in the next section.   
 

 
Figure 1: Solution Example Case 1 

 

 
Figure 2: Solution Example Case 2 

 
 

 
Figure 3: Solution Example Case 3 

 

 
Figure 4: Solution Example Case 4 
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Figure 5: Solution Example Case 5 

 

Average Error  
The average errors of performing 50 numerical runs per 
case are shown in figure 6 to 8 corresponding to case 1 to 
5.   
The average error corresponding to use the Discrete 
method is presented in figure 6, as expected algebraic 
convergence is observed. In figure 7, the spectral 
convergence of the Nyström method is presented. Spectral 
convergence is also observed for the LSQ method, figure 
8.  
For few points, i.e. N around 4 to 12  the Nyström and 
Discrete methods behave in a similar way. On the other 
hand, if N is increased due to the spectral convergence, 
the Nyström method performs better than the Discrete 
Method.  
Due to the fact that the computational cost of the Discrete 
and Nyström methods are practically the same, and the 
DM has algebraic convergence while the NM has spectral 
one, there is no apparent reason to use the DM. In 
consequence the NM could be replacing the commonly 
used low order schemes for the solution of the population 
balance equations containing pure breakage only. 
 
On the other hand, the LSQ method shows a better 
behaviour compared with the Nyström method, except for 
the case 4 for which the behaviour is quite similar. This 
effect can be attributed to the complex source term, which 
requires a high order polynomial representation.  
The computational cost of the assembling process for the 

LSQ method is around ( )3NΟ , while for the Nyström 

method it is around ( )2NΟ . In spite of this, in general 
we can recommend the use of the LSQ method over the 
Nyström method. Apparently an expansion order N=12 
for the LSQ method is equivalent to about 30 points for 
the Nyström method. 
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Figure 6: Average error for the Discrete Method.  
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Figure 7: Average error for the Nyström Method. 
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Figure 8: Average error for the Least Square Method. 

Percentual Moment Average Error  
In the previous section, the error in the computation of the 
PDF was presented. In this part, the effects of the 
computation of the moments of the distribution are 
discussed. In particular, only case 1 (figure 9 to 11) and 
case 4 (figure 12 to 14) are shown. Case 1 shows a 
representative behaviour, while case 4 is considered 
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because the convergence rate of LSQ is reduced for this 
case.  
As expected for the case 1, the Discrete method presents a 
poor behaviour, see figure 9, compared with the spectral 
convergence of the Nyström method, figure 10. On the 
other hand, the LSQ method shows an excellent 
behaviour, figure 11. With an expansion order of N=8 the 
percentual error in the computation of the moments is 
around 0.001%. For the same percentual error the 
Nyström requires around 20 points, while for the Discrete 
case, if possible, around 500 points.  
 
On the other hand, for a small number of points, i.e. N 
around 8, for the case 4 the Discrete method, figure 12, 
shows a similar or better behaviour than the Nyström, 
figure 13, and LSQ method, figure 14. 
Increasing the number of points the Nyström and LSQ 
method become superior to the Discrete method again.  
In particular, for this case the Nyström method shows 
better behaviour than the LSQ method.  
Summing up, the LSQ methods presents a good behaviour 
for handling pure breakage problems compared with the 
Nyström and Discrete methods. The LSQ method allows 
us to obtain the first moments with accuracy lower then 
0.001% with an order of expansion N=8 for the general 
case. In the less favourable case 4, LSQ can demands at 
most N=20 in order to obtain the moments with accuracy 
around 1%. It is important to note that case 4, containing a 
source term with a high order polynomial behaviour, do 
not appear normally in the PBEs.  
  
If the source term, case 4, presents a high order 
polynomial behaviour the performance of the LSQ can be 
reduced, but still LSQ will perform in a competitive way 
with the Nyström method.  
The LSQ method presents the disadvantage that it can be 
more complex to understand, although the complexity of 
the implementation is about the same as for the Nyström 
or Discrete Method.  
On the other hand, if we compare the Nyström and 
Discrete Methods in terms of the computational cost 
(which is the same) and error convergence (algebraic vs 
spectral convergence), the Nyström method is strongly 
recommended compared to the Discrete method. 
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Figure 9: Average Percentual Error for the Discrete 
Method. 
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Figure 10: Average Percentual Error for the Nyström 
Method. 
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Figure 11: Average Percentual Error for the Least Square 
Method. 

 

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Discrete  − Case 4

A
ve

ra
ge

 P
er

ce
nt

ua
l E

rr
or

 

N − Number of discrete points 

Error above 10−3 %

0th Moment
1st Moment
2nd Moment
3rd Moment
4th Moment

 
Figure 12: Average Percentual Error for the Discrete 
Method. 
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Figure 13: Average Percentual Error for the Nyström 
Method. 
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Figure 14: Average Percentual Error for the Least Square 
Method. 

 

CONCLUSION 
In this work, the capability of higher order methods to 
solve the population balance equation was studied. The 
Least Square Method, the Nyström Method and a low 
order version of the Nyström method, called the Discrete 
Method, were applied to a general population balance 
equation containing breakage terms only. In order to 
perform a rigorous error analysis, analytical solutions 
were used. 
 
The Discrete method shows algebraic convergence 
behaviour while the Nyström method shows a spectral 
one. Considering that the computational costs for both 
methods are practically the same, the NM seems to be 
advantageous compared to the commonly used low order 
schemes for the treatment of population balance equations 
containing breakage only. 
 
The LSQ method shows good behaviour compared with 
the Nyström method, except for the case 4 for which the 
behaviour is quite similar. This effect can be attributed to 
the complex source term, which requires a higher order 
polynomial representation.  

Although, the computational costs of the assembling 
process of the LSQ method are higher than for the 
Nyström method, the LSQ method can be recommended 
due to the better convergence rate for most cases.  
 
The use of high order methods allows us to reduce the 
number of points or equivalently the expansion order 
considered for a given accuracy. In particular, the LSQ 
method allows us to obtain the first moments with 
accuracy lower then 0.001% with an order of expansion 
N=8 in the general case. In the less favourable case 4, the 
LSQ method can require at most N=20 in order to obtain 
the moments with accuracy around 1%. It is important to 
note that case 4, containing a source term with a higher 
order polynomial behaviour, does not appear in a typical 
PBE case.  
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APPENDIX A 
In this section the definitions of the analytical expressions 
used to define the problem cases are presented.  
The parameters 321 ,, ppp and 4p  are chosen randomly 

from a uniform distribution in the interval [ ]1,0 , for each 
run. In figure 16 to 25, the breakage yield and source 
functions  for the different cases are shown.  
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where 1.0=c , 1=b  and 0=a  
 

 
Figure 15: Breakage yield Case 1 

 

 
Figure 16: Source Case 1 

Case 2  
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where 1.0=c , 1=b  and 0=a  

 
Figure 17: Breakage yield Case 2 

 
Figure 18: Source Case 2 
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Case 3  
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where 1.0=c , 1=b , 0=a  and  
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Figure 19: Breakage yield Case 3 

 

 
Figure 20: Source Case 3 

Case 4  
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where 1.0=c , 1=b  and 0=a  
 

 
Figure 21: Breakage yield Case 4 

 

 
Figure 22: Source Case 4 

Case 5  
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Figure 23: Breakage yield Case 5 

 

 
Figure 24: Case 5 

 


