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ABSTRACT 
The headbox is a critical component in the papermaking 
system. The rapidly converging section of a paper-
machine headbox carries a dilute concentration of pulp 
fibers to the wire mesh where the fibers are dried to 
become paper.  
A large eddy simulation (LES) is carried out to model the 
flow field in the converging section. A Lagrangian 
tracking scheme capable of simulating the motion of 
flexible or rigid individual fibers been devised and is 
coupled with the LES representation of turbulence in the 
converging section to predict the statistical orientation of 
nylon “fibers”. The numerical results give statistical 
results which are similar to experimental data for the fiber 
orientation. The predicted orientation distributions with 
LES at the exit of the converging section are significantly 
better than those found using the k ε−  model for 
turbulence. 

NOMENCLATURE 

sC   Smagorinsky constant  
G  filter function 
p pressure 
u  velocity 
u′  resolved rms fluctuation in streamwise direction  
v′  resolved rms fluctuation in spanwise direction  
w′  resolved rms fluctuation in normal wall direction  
 
α   orientation angle 
ρ density 
µ dynamic viscosity 

Tν  eddy viscosity 

uχ  relaxation coefficient 

1 INTRODUCTION 
  The headbox is the first component of a paper machine 
in the papermaking system.  The fiber orientation and 
basis weight profiles of the paper depend on the fluid flow 
in the headbox, which makes a headbox critical to a 
successful papermaking system. 
The headbox can be several meters wide in the cross 
machine direction and has a contraction ratio (inlet area to 
outlet area) of 10 or more in a streamwise length of less 
than a meter. A dilute concentration of pulp fibers in water 
flows steadily through the headbox. One of its functions is 
to provide a discharge of stock (fibers and other 

substances in fluid suspension) at its outlet that is uniform 
in both the machine direction (MD) and across the width 
of the paper web (the cross direction). The stock is fed 
onto the forming section through a slice (exit of the 
headbox) opening.  
To achieve good paper formation, there must be no fiber 
flocculation in the jet exiting the headbox. The fibers must 
also have an even distribution in the cross direction of the 
machine. Thus the flow in the headbox should have a 
minimal component of mean velocity in the cross-machine 
direction. At the same time, the maintenance of high 
intensity turbulence within the stock is required in 
headbox designs to prevent fiber flocculation. The 
turbulence that occurs in the converging section does not 
affect the mean flow distribution significantly but it is 
critically important because turbulence prevents unwanted 
fiber flocculation and provides a degree of dispersion for 
the fibers. A detailed understanding of this turbulence is 
therefore essential in order to study the fiber motion and 
to predict the quality of the paper produced. 
Shimizu and Wada (1992) have calculated the flow of 
water in a generic headbox using the k ε− model. They 
calculated the relationship between the varying height in 
the contracting part and the flow velocity distribution at 
the exit. The flow distribution was investigated in two 
dimensions and the jets from the diffuser tubes were 
modelled three-dimensionally. Hämäläinen (1993) used a 
finite element method to model the manifold, the 
turbulence generating section, and the slice in two 
dimensions.  Aidun and Kovacs (1995) have focussed on 
the study of secondary flows in the headbox and their 
effects on non-uniform fiber orientation and mass. A non-
linear k-ε model developed by Speziale (1987) was 
employed. They reported surprisingly large secondary 
flows at the headbox exit. Bandahakavi and Aidun (1999) 
investigated the turbulent flow in the converging section 
of a headbox using the RNG k ε− model and the 
Reynolds Stress Model (RSM). The RNG k ε− model is 
an improved version of the standard k ε− model 
(Chowdhury 1993). They found that the results obtained 
from the RSM model are superior to those of the RNG 
k ε−  model. Parsheh and Dahlkild (1999) compared the 
results of representing the turbulence with different 
models. It was observed that the turbulence energy 
computed by the k ε− linear) model is exaggerated. He et 
al. (1998) and Hua et al. (1999, 2000) have done a 
complete modelling of the manifold along with all the 
individual tubes with the k-ε  model in three dimensions. 
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Shariati, et al. (2000, 2001) and Shariati (2002) studied 
the headbox flow both experimentally and numerically.  
Fiber orientation, both in the plane of the paper and in the 
paper thickness direction, significantly affects the paper 
quality (Loewen 1997).  Here, fiber orientation refers to 
the angular distribution of fibers relative to the paper-
machine direction. Ullmar and Norman (1997) and Ullmar 
(1998) investigated experimentally the effect of the 
headbox contraction ratio on fiber orientation. They found 
that the effect of the contraction ratio is more significant 
on fiber orientation than that of the flow rate. The fibers 
have been found to be more strongly orientated in the 
machine direction for higher contraction ratios. Zhang 
(2001) measured the fiber orientations along the centreline 
of an asymmetric headbox. He also predicted the fiber 
orientation in both symmetric and asymmetric headboxes 
using a fiber model, but only using the mean flow field 
obtained from the εκ −  model. His comparison between 
the measured and predicted results showed that the 
simulated orientations tend to align more with the flow 
than the experimentally observed results because the 
turbulence was not taken into consideration for his 
calculation. Olson (2002) provided an analytic expression 
for the fiber orientation distribution in a headbox flow, 
neglecting the effect of turbulent dispersion. Olson et al. 
(2004) proposed an Eulerian model of a turbulent fiber 
suspension through a one-dimensional headbox to predict 
the fiber orientation distribution. Dong et al. (2002) 
partially considered the turbulence effect with a single 
fixed velocity field found through LES simulation. In this 
paper, the fiber calculation executes one step after which 
the flow is updated with LES. This means the flow 
distribution for fibers is changed at each time step to 
consider more realistic turbulence effects in the 
simulation. 

2 MODEL DESCRIPTION 

2.1 LARGE EDDY SIMULATION 
The incompressible Navier-Stokes equations for constant 
viscosity ν can be written in the following form 

                  0        i

i

u
x
∂

=
∂

                                                    (1)                                               

                 
21  i ji i

j i i j

uuu p u
t x x x x

ν
ρ

∂∂ ∂ ∂
+ =− +

∂ ∂ ∂ ∂ ∂
                    (2) 

where the indices , 1,2,3i j =  refer to ,x y  and .z  

Einstein’s summation convention is applied, and iu  is the 

velocity in i - direction. 
In LES, a filtering operation is performed on the Navier-
Stokes equations to remove the small spatial scales. The 
resulting equations that describe the space-time evolution 
of the “large eddies” contain the subgrid scale stress 
tensor that describes the effect of the unresolved small 
scales on the resolved larger scales. The filtering 
procedure is applied to the flow-filed variables according 
to 
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where ∆  is filter width, G is a filter function with 
property: 
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After applying the above box-filter to equations (1) and 
(2), we can get the filtered Navier-Stokes equations: 
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where the subgrid-scale (SGS) Reynolds stress tensor is 
written as 

                        
______

i jij i ju u u uτ = −                                    (5) 
In order to solve the equations (3) and (4), the SGS 
Reynolds stress must be represented with a subgrid scale 
model.     

2.1.1 SUBGRID MODEL 
The most commonly used SGS model is the Smagorinsky 
model (1963). The model assumes the SGS stress follows 
a gradient-diffusion process, similar to molecular motion. 
Consequently, ijτ  is given by 

        21 2 | |
3ij kk ij sC Sτ τ δ− = − ∆ ijS = 2 Tν− ijS                (6) 

where  Tν  is the eddy viscosity related only to the smaller 

scale motions, 1 ( )
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strain tensor,  | | 2 ij ijS S S=  is the magnitude of the strain 

tensor and SC  is the Smagorinsky constant 
(0.1 0.24sC≤ ≤ , Rogallo and Moin (1984)). Here 
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1 2 3( )x x x∆ = ∆ ∗∆ ∗∆  is the filter width, ( 1,2,3)ix i∆ =  is 
i −  direction grid spacing. In the region close to the wall, 
the eddy viscosity has to be reduced, which is usually 
achieved by using a Driest damping function: 
                Tν

/ 25 2[(1 ) ] | |y
sC e S

+−= − − ∆                        (7) 
Several alternative models for the subgrid scale turbulence 
have been proposed: Yakhot et al. (1989) proposed a 
subgrid-scale model based on renormalization group 
(RNG) theory for the study of channel flow. Lesieur and 
Metais (1996) showed that Kraichnan’s spectral eddy 
viscosity can be implemented in physical space, yielding 
the so-called structure-function model. 
A more flexible model for the subgrid turbulence has been 
devised by Germano et al. (1991), the Dynamic SGS 
model. Their formulation begins with the Smagorinsky 
eddy-viscosity approximation. However, rather a fixed 
value of sC  a priori, they permit it to be computed as the 
LES proceeds.  
For the finite volume method, a box-filter is considered 
for ‘implicit’ filtering of the Navier-Stokes equations. This 
approach has the advantage that it does not need to define 
a filter function. There are no explicit filter operations. 
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In contrast, a filter is defined when explicit filtering is 
used. The flow is divided into resolved and subfilter-scale 
(SFS) motions. The SFS motions can be further divided 
into resolved SFS (RSFS) and unresolved SFS (USFS) 
(Zhou et al. 2001, Carati et al. 2001). The USFS is 
commonly called SGS. The RSFS motions can be 
reconstructed from the resolved motions. The SGS 
(USFS) can not be represented directly and must be 
modeled.  
Stolz et al. (2001) used *u  to approximate the unfiltered 
solution u . The approximate deconvolution *u  is 
computed by applying the deconvolution operator NQ  to 
the filter quantity u  

     * *Nu Q u=                                            (8) 
The operator NQ  is obtained by expanding the inverse of 
the filter G  as an infinite series and truncating it at 
finite N . This leads to NQ as an approximation of 1G− , 
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where I is the identity operator (Stolz et al. 1999). It is 
found that the deconvolution order 5N =  is sufficient for 

numerical test cases (Stolz et al. 2001). Using (9), *u  can 
be computed by repeated filtering of u  from  

 * ( ) ( 2 ) ...Nu Q u u u u u u u= = + − + − + +                  (10) 

The subgrid-scale Reynolds stress tensor ijτ  in (5) can be 

divided into two terms: SGS and RSFS 
             * * * *( ) ( )ij i j i j i j i ju u u u u u u uτ = − + −                     (11) 
                     SGS(USFS)        RSFS 
To model the transfer of energy to small scales, 
represented by * *

i j i ju u u u− , a relaxation term 

( * ) *u NI Q G uχ −  is added for ADM model. The RSFS 
term in (11) is moved to the left side of the filtered 
Navier-Stokes equation (4). The equation (4) with ADM 
model can be written into  
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Where uχ >0 is a relaxation coefficient. 

The relaxation coefficient uχ can be determined 
dynamically (Stolz et al. 2001).  

2.1.2 NUMERICAL METHODS 
The governing equations (3), (4) (or (12)) are discretized 
by finite volumes using a staggered mesh system. The 
scheme used in this paper is based on a fraction-step 
method (Chorin 1968, Kim and Moin 1987). The pressure 
gradient and the incompressibility constraint are 
integrated implicitly in time. The convective and diffusive 
terms are treated explicitly with the second-order Adams-
Bashforth scheme in time. For finite volume 
discretization, the flux is computed by a second-order 
accurate averaging which is therefore equivalent to 
second-order central difference scheme. The Poisson-like 
pressure equation is solved to satisfy the mass continuity. 
The fast Fourier transform is applied in the direction of 
periodicity, and the Bi-Conjugate Gradient Stabilized (BI-
CGSTAB Van den Vorst 1992) is then used to solve the 
2D Poisson equation. Parallel computing is used for the 

LES.  The domain is decomposed in one direction and the 
data is distributed into multiprocessors. The 
communication occurs only at block boundaries. MPI 
(Message Passing Interface) is used to exchange the data 
among the processors. The implementation of these 
methods is described in more detail in Feng (2005).   

2.2 FIBER MODEL AND WALL MODEL 
The first investigation of the motion of a rigid, neutrally 
buoyant, ellipsoidal particle in a Stokes flow was 
conducted by Jeffery (1922). The Jeffery theory could be 
used to describe the motion of rigid fibers (Anczurowski 
and Mason 1967). However, pulp fibers have high aspect 
ratios and can have considerable flexibility and cannot be 
modelled well by Jeffery’s theory (Mason 1954). A 
flexible fiber model based on Euler-Bernoulli beam 
bending theory was introduced by Lawryshyn (1996). The 
immersed boundary method was used in Stockie and 
Green (1998) to simulate the motion of flexible pulp 
fibers. Their work was restricted to two-dimensional 
simulations. A flexible fiber model was proposed in Ross 
and Klingenberg (1997). It was further developed by   
Dong (2002) to account for fiber-wall interaction.  In this 
model, each fiber consists of N  rigid spheroids connected 
through 1N −  joints (see Figure 1). The fiber can bend 
and twist much like a real fiber because of the rotational 
freedom in each joint. The motion of the fiber is 
determined by solving each spheroid's translation and 
rotation equations that are derived from Newton's second 
Law and the law of the moment of momentum. 
Fibers frequently touch the wall in pulp and paper 
equipment, so that a wall model that can efficiently deal 
with the fiber-wall interaction is needed. For a smooth 
wall, a two-dimensional wall model was developed by 
Olson (1996). The idea is that a reaction force normal to 
the wall is exerted on the fiber to stop the fiber passing 
through the solid wall, and the friction force tangential to 
the wall is proportional to the normal force on the fiber. 
Dong (2002, Dong et al. 2003) extended Olson’s model to 
a three-dimensional universal wall model, which can deal 
with the fiber interaction in any wall geometry. The fiber 
model and the wall model developed by Dong (2002) will 
be used in the following simulations. 
 
 
 
 
 
 
 

Figure 1   A fiber consisting of spheroids connected 
through ball and socket joints (from Ross and Klingenberg 
(1997)). 

3 RESULTS 

3.1 FLOW CALCULATION 
Shariati (2002) has studied the flow in the converging 
section of a headbox both experimentally and numerically. 
The experimental headbox that he used is a laboratory 
scale model of a typical headbox with the size reduced by 
a factor of 5. The experimental set-up used a closed flow 
system, diagrammatically shown in Figure 2. In the flow 
loop, the water is pumped from the reservoir tank to the 

L
1

2
1−N

N
1

2N −

1N −



 
 

4  

headbox through the pipes and rectifier tubes. The rectifier 
tubes (or diffusers) are round at the inlet and rectangular 
at the outlet with slowly increasing cross sectional areas. 
They are used to provide turbulence energy for the flow 
and to generate a fairly uniform velocity profile at the 
converging section inlet. In Shariati’s headbox model, 
there are 40 rectifier tubes, two rows in the vertical or 
height direction and 20 each in the spanwise or horizontal 
direction.  The headbox section starts with a rectangular 
channel, which remains constant in cross section area until 
the length reaches 0.075 m. By means of LDV, Shariati 
(2002) measured the mean velocity and the rms velocity 
along the centreline of the converging section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Flow loop in the experiment (from Shariati 
2002). 

The computational domain is shown in Figure 3. In the 
z direction, no-slip wall boundary conditions are imposed 

along the solid walls. The spanwise direction, y , is 
treated as periodic.  
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Figure 3  Computational domain for the converging 
section. Only a subset of the actual grid is plotted. 

At the inlet plane the unsteady distributions for the 
velocity components generated by a separate LES of the 
fully developed channel flow that is modified with an 
extracting/rescaling technique (Lund et al. 1998) to match 
the measured inflow velocity fluctuation are specified. 

The rescaling value is a common factor, the ratio of the 
computational rms velocity fluctuation u′ and the 
experimental value at the centreline of the converging 
section.  Different inflow conditions (for example a single, 
or alternatively a “two-channel” inflow condition) that 
simulate the turbulence produced by the rectifier tubes are 
discussed by Feng (2005). At the exit plane, the 
convective boundary condition (Kaltenbach 1998, 
Kaltenbach et al.1999)  

                      0i i
c

u uU
t x

∂ ∂
+ =

∂ ∂
                                (13) 

is employed. cU  is set to the mean streamwise velocity at 
the exit plane. The dimensions of the computational 
domains are the same as the dimensions of the 
experimental apparatus except for the width in the 
spanwise direction. The computational domain spanwise 
width is approximately three inlet heights. A 64 64 64× ×  
mesh is used. The meshes are uniform in the streamwise 
direction and in the spanwise direction. A non-uniform 
grid is used in the normal wall direction to resolve the 
near wall region.  
The mean streamwise velocity along the centreline of the 
converging section is shown in Figure 4 using the constant 
Smagorinsky model. Here * /X x Lx=  is the x position 
normalized with the total length of the converging section 

xL . The computed value of the mean velocity agrees 
reasonably well with the measured value. The resolved 
rms fluctuations ,u v′ ′ and w′  normalized by u′ at the inlet 
( '

inu ) are presented in Figures 5 –7.   The rms fluctuation 
of the velocity in the x  direction, u′ diminishes towards 
the exit, while w′  increases in the z direction. The trend 
of the calculated results is the same as that of the 
experimental results, but there are some differences 
between them, particularly in the region between the inlet 
of the converging section and the first third of the 
converging section. This can be attributed to the 
difference between the measured and assumed inflow 
conditions. From the experiment, the two rows of tubes 
can generate much higher turbulence than the modified 
channel which is used as the model in the above 
calculations. The turbulence kinetic energy k  
nondimensionalized by k at the inlet of the position 
0.006m after the convergence starts is shown in Figure 8. 
The turbulent kinetic energy predicted by LES and the 
standard k ε−  model in most of regions is close to the 
measured values. But the computed values with standard 
k ε−  model increase rapidly towards the exit. The reason 
is that the k ε−  model fails to predict the turbulence 
kinetic energy where the turbulence is significantly 
anisotropic at the exit of the converging section. Also, the 
standard k ε−  model includes a turbulence generation 
term that depends on /U x∂ ∂ . That term becomes very 
large close to the exit of the converging section and causes 
a break down of the model (Shariati 2002). 
The ADM model with the 64 64 64× ×  mesh is also 
carried out to consider the effect of  the different subgrid 
models for the converging section. The comparison of 
mean streamwise velocity along the centreline of the 
converging section among the different subgrid models is 
shown in Figure 9. The comparisons of resolved rms 
fluctuations u′ normalized by u′ at the inlet ( '

inu ) among 
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the different subgrid coefficients is presented in Figures 
10.  
From the results, there is not much difference for two 
different subgrid models.  The Smagorinsky constant 

0.1sC =  is therefore appropriate for the converging 
section coupling with a fiber model to predict the fiber 
orientation distributions in the next section. 
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Figure 4 Comparison of the mean velocity at the 
centerline of the converging section. 
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Figure 5 Comparison of rms value of the velocity 
fluctuation u′ normalized by inu′ . 
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Figure 6 Comparison of rms value of the velocity 
fluctuation v′ normalized by u′ inlet condition. 
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Figure 7 Comparison of rms value of the velocity 
fluctuation w′normalized by inu′ . 
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Figure 8 Comparison of turbulence kinetic energy 
k nondimensionalized by k at the inlet of the position 
0.006m after the convergence starts. 
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Figure 9  Comparison of the mean velocity at the 
centerline of the converging section with different subgrid 
models. 
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Figure 10 Comparison of rms value of the velocity 
fluctuation u′ normalized by inu′ with different subgrid 
models. 

3.2 FIBER ORIENTATION IN A HEADBOX 
Fiber experiments have been conducted by Zhang (2001) 
to measure the orientation of dyed nylon fibers moving in 
a headbox model. The fibers have a nominal length of 
0.003m and the diameter of 44 µm. The suspension is well 
within the dilute regime, with a consistency of no more 
than 0.001%, which means there is little interaction 
between fibers. In the experiment, video pictures were 
taken of fibers in motion at several locations along the 
center of the converging section.  

3.2.1  INITIAL CONDITIONS 
The fiber’s position can be defined by three variables: 
fiber center ( , ,c c cx y z ), polar angle 0 θ π≤ ≤ , which is 
the angle between the fiber main axis and Z-axis, and the 
azimuthal angle 0 φ π≤ ≤ , which is the angle between the 
Y-axis and the projection of the fiber main axis on XY 
plane (see Figure 11). It is noted that one end of the fiber 
is not distinguishable from the other.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

       Figure 11   A fiber’s initial position. 

 

Eight thousand (8,000) rigid fibers of 0.003m length are 
initially chosen across 0.04 m  region 
( 0.0175 0.0575 m z m≤ ≤ ) in the center of the inlet 
height with random location and random orientation. 
Random orientation is implemented by choosing the fiber 
angles θ  and φ  with random number generators. The 
angles θ  and φ  are not chosen randomly from uniform 
distributions 0,θ π∈⎡ ⎤⎣ ⎦  and 0,φ π∈⎡ ⎤⎣ ⎦ , since the area 

element sind d dθ φ θΩ =  is a function of θ  on the 
surface of a unit sphere. So the angles are selected with 
the following formula (Zhang 2001): 
                 1

1cos (2 1)aθ −= −                           (14) 

                 2aφ π=                                       (15) 

where 1a and 2a  are random variables between 

0,1⎡ ⎤⎣ ⎦ .  

3.2.2  NUMERICAL RESULTS 
 
The projections of the orientation of fibers can be obtained 
in three different planes. The fiber orientation was only 
measured in both the plane of the paper (x-y) and in the 
plane of contraction (x-z) at the central streamline of the 
converging section along the axis of the headbox in Zhang 
(2001). The measurements were taken at several points 
along the headbox as shown in Figure 12. So the 
projections on two of the planes, x-y and x-z planes, are 
considered here. The fiber orientation angle 

α (
2 2
π πα− ≤ ≤ ), either on the x-y or on the x-z 

projection plane, is defined to be the angle between the 
projection of the fiber axis on that plane and the machine 
direction (x axis). Figures 13-14 show the initial fiber 
orientation distributions in the computation. The 
horizontal axis represents the orientation angleα . The 
vertical axis stands for the statistical probability density 

( )p α , such that: 

                
2

2

( )   1p d

π

π

α α
−

=∫                              (16)  

If the fiber orientation is uniform, then ( )p α  = 
1/ ( 0.318)π ≈ . It can be seen that the initial random fiber 
orientation distribution is almost uniform from Figures 13-
14. Figures 14-28 show the fiber orientation distributions 
at different stations. Most of the alignment occurs near the 
end of the converging section, beyond 0.227x m= , where 
the velocity gradient is the highest. The LES results 
predict the fiber orientation reasonably well when 
compared to the experimental data from Zhang (2001). 
From Figures 23-28, the k ε−  simulated fiber 
orientations tend to align more with the flow compared to 
experimental and LES results. At the exit where 

0.31 ,x m=  both k ε−  and LES predict that the fibers are 
highly aligned in the flow direction in x z−  plane as 
shown in Figure 27. But the peak value of the distributions 
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using LES is lower than that using k ε− . Unfortunately 
there is no experimental data of fiber orientation at the 
exit in the x z− plane, because the channel is too narrow 
and the flow speed is too high at that location to get clear 
fiber images (Zhang 2001).  From the Figures 27-28, the 
fiber alignment in the x z− plane is stronger than that in 
the x y− plane. This phenomenon agrees with the 
observation in Zhang (2001) and Olson (2002). 
 

 

 Figure 12  Measurement points along the headbox, unit 
m. 
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Figure 13  Initial fiber orientation distribution in x-z plane 
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 Figure 14  Initial fiber orientation distribution in x-y 
plane 
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Figure 15 Fiber orientation distribution at x = 0.045m in 
x-z plane 
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Figure 16 Fiber orientation distribution at x = 0.045m in 
x-y plane 
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Figure 17 Fiber orientation distribution at x = 0.122m in 
x-z plane 
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Figure 18 Fiber orientation distribution at x = 0.122 m  in 
x-y plane 
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Figure 19 Fiber orientation distribution at x = 0.157m in 
x-z plane 
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Figure 20 Fiber orientation distribution at x = 0.157m in 
x-y plane 
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Figure 21 Fiber orientation distribution at x =0.192m  in 
x-z plane 
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Figure 22 Fiber orientation distribution at x = 0.192m in 
x-y plane 
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Figure 23 Fiber orientation distribution at x = 0.227m in 
x-z plane 



 
 

9  

angle(radians)

pr
ob

ab
ili

ty
de

ns
ity

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

LES

Experiment
k-e

 

Figure 24 Fiber orientation distribution at x = 0.227m in 
x-y plane 
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Figure 25 Fiber orientation distribution at x = 0.262m in 
x-z plane 
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Figure 26 Fiber orientation distribution at x = 0.262m in 
x-y plane 
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Figure 27 Fiber orientation distribution at the converging 
section exit  in x-z plane 
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Figure 28 Fiber orientation distribution at the converging 
section exit in x-y plane 

4 CONCLUSION 
The LES method has been used to simulate the turbulent 
flow through an asymmetric converging section. An 
important feature of this type of flow is that the turbulence 
is extremely non-isotropic near the exit when the 
contraction ratio is 10 or more. The standard k ε−  model 
spectacularly fails to predict the kinetic energy in this 
region. 
The computed values of the mean velocity agree 
reasonably well with the measured values. For rms 
fluctuations, the trend of the calculation results is the same 
as that of the experimental results, but there are some 
differences between the numerical results and the 
measured results over the first third of  the converging 
section length. This is probably caused by the difference 
in the inlet boundary conditions. 
The LES and a fiber motion model have been coupled for 
predicting the orientation of rigid fibers in dilute 
suspensions. The effects of turbulence that would tend to 
randomize the fibers are observed in these simulations of 
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fiber motion. Random initial fiber orientations are set at 
the inlet of the channel. The statistical expressions of the 
orientation of a large number of fibers are evaluated at 
each station by computing the orientation of each single 
fiber along the central streamline. The LES results predict 
the fiber orientation reasonably well when compared to 
the experimental data. The predicted orientation 
distributions with LES are better than the k ε−  simulated 
fiber orientations near the exit of the converging section.  
The numerical results show that the LES calculation 
scheme can provide a useful method for the simulation of 
the interaction between fibers and complex fluid flow 
patterns. 
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