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ABSTRACT 
Closures for the drag, virtual mass and lift forces acting on 
a single air bubble or toluene droplet in water have been 
studied using a 3D Front Tracking model. The numerical 
implementation of the FT model was improved to allow 
simulations of very small air bubbles rising in water (~1 
mm) using realistic physical properties. For this system 
the surface tension force, density ratio and the Reynolds 
number all are very high. The computed drag force 
coefficient for air bubbles in water (1-5 mm diameter) 
compare reasonably well with experimental data obtained 
results using ultra pure water. Similar drag coefficients 
were computed for toluene droplets rising in water, as 
expected since these two systems possess comparable 
Morton numbers. For the virtual mass coefficient a value 
of 0.53 was found on a 80x80x80 grid for air bubbles in 
water, which compares very well with the theoretical 
value of 0.50. Finally, the lift force coefficient was 
computed for a 4 mm air bubble rising in water. A value 
of 0.5 was computed, which is slightly higher than 
reported experimentally at somewhat lower Reynolds 
numbers.  

NOMENCLATURE 
CD drag force coefficient [-] 
CL lift force coefficient [-] 
CVM virtual mass coefficient [-] 
D distribution function [-] 
F phase fraction [-] 
Fσ surface tension force density [N·m-3] 
G phase fraction gradient [-] 
g gravity constant [m·s-2] 
M Morton number [-] 
n normal vector [-] 
p pressure [N·m-2] 
Re Reynolds number [-] 
s surface [m2] 
t time [s] 
tm tangential unit vector [-] 
tm,l tangential vector along edge l [m] 
u  velocity [m·s-1] 
ul liquid velocity [m·s-1] 
wb bubble velocity [m·s-1] 
 
ρ density [kg·m-3] 
µ dynamic viscosity [kg·m-1·s-1] 
σ surface tension [N·m-1] 
∆x, ∆y, ∆z grid dimensions [m] 

 

INTRODUCTION 
Multiphase gas/liquid and gas/liquid/liquid flows are 
widely encountered, in natural phenomena as well as in 
industry. For instance, the oil industry has to deal with 
complex flows consisting of oil droplets and gas bubbles 
dispersed in water. More examples include Fischer-
Tropsch and other important chemical processes. Because 
of the wide range of length and time scales, it is virtually 
impossible to capture all the details of the flow field with 
currently available computational resources. Therefore a 
succesful description of multi-phase flows therefore has to 
be based on a sound multi-level modelling approach (van 
Sint Annaland et al., 2003): 
 

 
Figure 1: Multi-level modelling approach for multi-phase 
dispersed gas-liquid flow. The exchange of information is 
indicated by arrows. 
 
At the smallest time and length scale a Direct Numerical 
Simulation (DNS) is used to study the behaviour of a 
single or a few gas bubbles or liquid droplets. These 
simulations backed up by dedicated detailed experiments 
can be used to derive closures for the bubble-liquid 
interaction, which can then be used in higher level models. 
One step up, the Euler-Lagrange model can be used to 
study the interactions between a large number of bubbles 
and the influence of these interactions on the macroscopic 
flow structure. In this model each bubble is represented in 
a discrete fashion and the forces on each bubble are 
computed from closure equations. In this approach a large 
number of bubbles (~100,000) can be simulated with 
acceptable computation time. However, in industrial 
applications multi-phase flows with even a much higher 
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number of dispersed elements are encountered, which 
requires a continuum approach. At this highest level of 
modelling the Euler-Euler or multi-fluid continuum 
models, bubbles lose their discrete identity, which enables 
the simulation of very large systems and study large-scale 
heterogeneous structures in the flow. 
 
It has proven to be a daunting task to accurately describe 
the behaviour of gas-liquid or liquid-liquid systems with 
the higher level models, because detailed knowledge on 
the behaviour of single bubbles or droplets in complex 
flow fields is lacking. For example, even the behaviour of 
a single air bubble rising in quiescent water is not yet 
completely understood: not only physical properties like 
the density, viscosity and surface tension affect the 
behaviour of the bubbles, but also small amounts of 
surface active impurities (Grace et al., 1976). More 
recently, Wu and Gharib (2002) and Tomiyama et al. 
(2002a) independently pointed out that the initial shape of 
the bubble can affect its terminal rise velocity. This 
illustrates the intrinsic complexities in performing 
dedicated experiments. 
 
The problem in the description of the motion of a single 
bubble or droplet arises from the complex interaction 
between the bubble shape dynamics and the flow field in 
its vicinity. This is particularly difficult at high Reynolds 
numbers, which are encountered in the industrially 
important case of dispersed elements in water. With the 
advances that have been made in CFD during the last 
decades, now the shape and interface dynamics can be 
studied in great detail. In this study a DNS has been used 
to study the behaviour of air bubbles and toluene droplets 
rising in water.  
 
When it comes to DNS several models have been 
proposed and used in the literature, where it is important 
to realise that every model has its own strong and weak 
points (van Sint Annaland et al., 2005a). By far the most 
popular model is the Volume Of Fluid (VOF) model, 
which typically involves reconstruction of the interface 
using the spatial distribution of the volume fraction of the 
phases. The major advantage of this model is that it is 
relatively easy to implement and the volume of the 
dispersed elements is very well conserved. However these 
advantages come at a high cost: the interface is not 
explicitly tracked, but has to be reconstructed from the 
phase fractions. First of all this causes problems when 
calculating the surface tension force, which is a singular 
force acting on the interface. Secondly a poor interface 
reconstruction combined with a large density ratio may 
cause the numerical method to become unstable. Also 
parasitic currents in the vicinity of the interface may 
develop. These drawbacks of the VOF method are 
especially limiting for small air bubbles (~ 1 mm) in 
water, where a high density ratio and a high surface 
tension force are combined. 
 
In this work a full 3D Front Tracking (FT) model is used, 
based on the work of Unverdi and Tryggvason (1992). 
The advantage of this model is that the interface is 
explicitly tracked by interconnected points which form 
triangular markers. In sharp contrast with VOF this makes 
it possible to describe the shape and location of the 
interface with a very high accuracy. The first benefit is 
that the accuracy of the surface tension force calculation 

can be improved (Popinet and Zaleski, 1998). Secondly 
because there is no interface reconstruction, parasitic 
currents are greatly reduced. However, this comes at a 
price: the volume of the dispersed phases is not 
intrinsically conserved and because of deformation, 
marker points have to be periodically added and removed 
(surface remeshing). For a detailed comparison of 
different DNS methods the interested reader is referred to 
Scardovelli and Zaleski (1999). 
 
3D Front Tracking was used in this work to calculate the 
drag, virtual mass and lift forces directly, without the need 
for any kind of closures. The results of the numerical 
simulations are compared with experimental data. In all of 
our simulations realistic physical properties were used, for 
instance a density ratio of 800 for air bubbles in water. 
Before this was possible, some modifications had to be 
made to the original model, in order to improve mass 
conservation for small air bubbles in water. These 
modifications were extensively verified using standard 
test cases as reported by van Sint Annaland et al. (2005b). 

FRONT TRACKING MODEL 

Governing equations 
In the FT model the Navier-Stokes equations are solved 
together with the continuity equation for incompressible 
media: 
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where the density ρ and the viscosity µ are locally 
averaged over all the phases present, based on the phase 
fraction Fi. The surface tension force is included as a 
volumetric force density Fσ acting only in the vicinity of 
the interface.  
 
The Navier Stokes equations are solved on a staggered 
Cartesian mesh with a finite volume technique using an 
implicit treatment of the pressure gradient and an explicit 
treatment of the convection and diffusion terms. For the 
convection term a second order flux delimited Barton 
scheme is used (Centrella and Wilson, 1984) and for the 
diffusion term a standard second order finite difference 
scheme is used. To be able to simulate large density ratios, 
the Navier-Stokes equations are rewritten in their non-
conservative form using the continuity equation (Van Sint 
Annaland et al., 2003): 
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A two step projection-correction method is used to solve 
the two equations: first the velocity is calculated using all 
the explicit terms in the Navier-Stokes equations and 
secondly a robust ICCG method is used to calculate the 
pressure correction to satisfy the incompressibility 
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constraint. A higher order discretisation scheme was 
applied for the divergence operator. 
 

Average fluid properties 
For the local density linear weighing of all the phase 
fractions is used: 
 

1
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where Fi represents the fraction of phase i. Usually the 
viscosity is also linearly averaged, but here a more 
fundamental approach is used based on harmonic 
averaging of the kinematic viscosities (Prosperetti, 2001): 
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Surface tension 
Making direct use of the triangulation of the interface, the 
surface tension force acting on marker m is calculated via 
a contour integral over the tensile forces (see Fig. 2): 
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where tm is the counter clockwise unit tangent vector 
along the edges of the marker m and l is the length of 
these tangent vectors (the perimeter of the marker).  
 

 
Figure 2: Schematic illustration of the direct surface 
tension force calculation. 
 
This method avoids the computation of the numerically 
inaccurate curvature and can be used for surfaces with a 
very high curvature with less numerical instability and 
better accuracy (Gunsing, 2004). The surface tension force 
is mapped on to the Eulerian grid using a summation over 
all the markers m and their edges l: 
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where tm,l is the tangential vector and D is the distribution 
kernel, for which in this work density weighing (Deen et 

al., 2004) is used. Density weighing avoids mapping the 
surface tension force to a cell with a low mass, which can 
cause large distortions of the velocity field near the 
interface. Tryggvason et al. (2001) use a polynomial fit to 
obtain the normal and tangential vectors, but with our 
method the surface tension force is calculated directly 
from the discrete triangulation. 
  

Calculation of the phase fractions 
In the FT model the phase fractions are calculated by a 
method proposed by Unverdi and Tryggvason (1992): 
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where nm is the outwards pointing normal and ∆sm is the 
surface of the marker. First the gradient G is calculated 
from the interface markers, after which an ICCG method 
is used to solve this Poisson equation. 
 

Updating the interface 
Once the flow field has been found on the Eulerian grid, 
each marker point of the interface triangulation is moved 
with the local flow field. After some time the surface grid 
will become deformed. Some markers will become too 
large or too stretched, while others become too small. To 
maintain an adequate resolution, points will have to be 
added at some places and removed at other places. In this 
work a similar approach as described by Unverdi and 
Tryggvason (1992) is followed. 
 

DERIVATION OF INTERFACE FORCES 
In order to provide closures for discrete elements models, 
where the bubbles or droplets are considered to be 
spherical, the drag, virtual mass and lift coefficients are 
also derived assuming spherical entities. The effects of the 
shape of the bubble are thus implicitly lumped in the 
coefficients. 
  

Drag force 
Both the drag and virtual mass forces can be obtained 
from a simulation where initially the fluid is at rest and the 
bubble or droplet is released as a perfect sphere. 
 
The drag force coefficient CD can be computed from the 
terminal rise velocity of the dispersed element via a 
simple stationary force balance in the z-direction: 
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where wb is the bubble rise velocity and de the equivalent 
sphere diameter.  
 

Virtual mass force 
Virtual or added mass is the additional mass that has to be 
accelerated apart from the dispersed element itself, caused 
by the fact that the surrounding liquid has to be moved 
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away from the bubble to let it rise. For a perfect sphere the 
analytical value is ½ (Lamb, 1932), meaning that the 
equivalent of half the bubble volume of liquid is added to 
the mass of the dispersed element when it accelerates. 
 
The virtual mass force coefficient CVM can be computed 
from an instationary force balance in the z-direction, 
yielding the following expression: 
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It can be seen that for low pressure gas bubbles (ρl >> ρg) 
the equation reduces to: 
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Lift force 
When a linear shear field is applied to a small dispersed 
element it will move towards the lower velocity, while 
larger bubbles or droplets will move towards the higher 
velocity. Tomiyama et al. (2002b) found experimentally 
for different viscous systems (M>10-5.5) that this transition 
occurs at an Eötvos number of 6. 
 
Finally the lift force coefficient CL can be found by 
combining force balances in the direction of the velocity 
gradient (x-direction) and the vertical direction. 
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where lu  is the velocity of the liquid. 

SIMULATION SETTINGS 
All the simulations for the air-water system were carried 
out on an 80x80x80 grid with the bubble positioned at 2/3 
height in the centre of the box. For the toluene-water 
system an Eulerian grid of 80x80x200 cells was used with 
the bubble positioned at 70% height of the box. In both 
cases the initially spherical bubble was 20 Eulerian cells 
in diameter. 
 
A moving window concept was used for all the 
simulations to ensure that no computational power is 
wasted and the bubble is always at the same distance from 
the walls. Finally, free-slip boundaries are used for all the 
walls. 
 
Absence of grid dependency was verified by running 
simulations at a lower resolution. The same values were 
found for the steady rise velocities.  
 
With the improvements in the numerical implementation 
of the FT model, it was possible to simulate very small 
bubbles (~1 mm diameter) with realistic properties 

without numerical instabilities or numerically caused 
changes in volume of the disperse elements. 
 
The physical properties of the air, water and toluene used 
are given in Table 1. They are taken at a standard 
temperature of 25 oC and a pressure of 1.0 bar. 
 

Phase Viscosity 
[kg·m-1·s-1] 

Density 
[kg·m-3] 

Surface tension 
[N·m-1] 

Water 1.0·10-3 1000 0.073 
Toluene 5.9·10-4 860 - 
Air 1.8·10-5 1.25 - 

Table 1: Physical properties of the different materials 
used in the simulations. 

DRAG FORCE 
First the simulation results for the drag force for the air-
water system will be discussed. Subsequently, the results 
for toluene droplets in water will be presented. 
 

Air bubbles in water 
Each bubble in the simulations is initially spherical and 
the fluid is at rest. Therefore initially the bubble velocities 
for bubbles of different diameter will be the same. After 
some time the bubbles take their final shape and they 
reach their terminal rise velocity (Fig. 3). It can be seen 
that the 3, 4 and 5 mm bubbles exhibit a sinusoidal 
oscillation, of which the amplitude increases with the 
bubble size. Simulations for larger bubbles have been 
successfully completed, but the wobbling motion of the 
bubbles becomes highly irregular. In reality these bubbles 
probably break-up. Break-up of bubbles has not been 
implemented in the FT model and therefore the results are 
not included in the graph. 
 

 
Figure 3: Simulated rise velocity as a function of time for 
air bubbles in pure water. 
 
A big advantage of FT is the highly detailed information 
on the bubble interface, which can directly be visualised 
(Fig. 4). It can be seen that small (~ 1 mm) bubbles are 
almost spherical, while the larger bubbles become 
increasingly more deformed. The largest two bubbles keep 
alternating their shape. 
 
Finally, the drag coefficient can be computed from the 
terminal rise velocity of the bubbles. This makes it 
possible to compare different correlations for the drag 
force in dimensionless units (Fig. 5). It can be seen that 
there is some discrepancy between the different 
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experimental relations, especially for small bubbles (1-2 
mm). Overall, the simulations agree reasonably well with 
the experimental correlations. 

 
Figure 4: Bubble interface for different air bubbles rising 
in water, calculated by the FT model. 
 

 
Figure 5: Drag force coefficient as a function of the 
Reynolds number for both experiments from literature and 
FT simulations performed in this work. 
 
The famous relation by Grace et al. (1976) for 
contaminated liquids is included in Fig. 5, because its use 
has become widespread over the years. There is also a 
correlation available for pure water systems, but it is very 
unreliable due to the large scatter in the experimental data.  
 
Tomiyama (1998) derived a drag law for a wide range of 
fluid properties, which is a combination of existing 
empirical relations and relations derived from a force 
balance for a bubble in an infinite liquid. This model was 
validated on basis of a large number of measurements for 
air bubbles in distilled water (Tomiyama, 2004). He found 
that the initial shape deformation during injection 
influences the terminal rise velocity of the bubble and 
therefore his measurements are scattered over the whole 
area surrounded by the indicated lines. This effect was 
separately confirmed by Wu and Gharib (2002).  
 
The measurements by Duineveld (1994) were performed 
in “hyper clean” water, with a very gentle injection 
method. Note that in the simulations contaminants are not 
accounted for and the bubble is released in the most subtle 
way possible, which makes these data the best 
comparison. It can be seen that at a Reynolds number 

above 450 the bubbles in hyper clean water (Duineveld) 
experience less drag than those in distilled water 
(Tomiyama). The FT result for a 2 mm air bubble agrees 
very well with the experimental results by Duineveld. 
Unfortunately Duineveld only measured bubbles with a 
diameter in the range of 0.7 to 2.0 mm. Therefore future 
work will focus on simulating bubbles in the interesting 
region between 1 and 2 mm.  
 

Toluene droplets in water 
The same types of simulations have been carried out for 
toluene droplets in water. It is interesting to compare these 
systems, because the Morton number is almost the same 
(2.9·10-11 for toluene in water versus 2.5·10-11 for air in 
water). However, due to the denser dispersed phase, its 
inertia will be much higher which affects the bubble 
motion. 
 
First of all the rise velocity is given in Figure 6 for toluene 
droplets with an equivalent sphere diameter of 4–12.5 
mm. It can be seen that all the droplets have more or less 
the same velocity equal to 0.14 m/s, which is typical 
behaviour for the inertia dominant regime. Droplets larger 
than 5 mm oscillate in a sinusoidal manner, with higher 
amplitudes for larger droplets. 
 

 
Figure 6: Simulated rise velocity as a function of time for 
toluene droplets in pure water. 
 
In Fig. 7 the shape for differently sized droplets is 
visualized. The changes in interface shapes for the 
wobbling droplets are more pronounced than those of air 
bubbles in water, which can be attributed to the much 
larger mass of the droplet. 
 
Finally the drag force coefficient is plotted as a function 
of Reynolds number (Fig. 8). It can be seen that the FT 
simulation results correspond reasonably well with the 
experimentally obtained relation by Tomiyama (2004) for 
pure bubbles. Note that this relation was analytically 
derived (Tomiyama, 2002) and is not only valid for 
air/water systems.  
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Figure 7: Bubble interface for different toluene droplets 
rising in water, calculated by the FT model. 
 

 
Figure 8: Drag force coefficients for toluene droplets in 
water, as a function of the Reynolds number. 

VIRTUAL MASS FORCE 
The virtual mass coefficient for a spherical object can be 
calculated from potential flow theory and is equal to 0.5. 
It has been shown by Mouguin and Magnaudet (2002) that 
this value may also be used for a spherical bubble in a 
viscous flow. For a gas bubble this means that the bubble 
will accelerate with almost twice the gravitational 
acceleration. 
 
From the same simulations as for the drag force a value of 
0.53 was found for all the different air bubbles, which 
agrees well with theory, considering that the bubble is 
only 20 grid cells in diameter. A detailed analysis of the 
grid-dependency shows that this value indeed converges 
to the analytical value of 0.50.  

LIFT FORCE 
In order to complete the closures for a discrete element 
model the lift force has to be studied. Because of the 
wobbling motion of the dispersed elements the 
simulations must be run for a few seconds, which takes 
several months real time on a single CPU. Therefore until 
now only 0.5 seconds have been simulated for a 4 mm air 
bubble in water with a linear shear of 5 s-1. Figure 9 shows 
the shape of the bubble during one oscillation cycle. Note 
that the image has not been postprocessed in any way and 
this is exactly how the interface is accounted for in the 
simulation. It can be seen that the shape is very dynamic, 

but the FT model is still able to describe it with great 
detail. 
 

 
Figure 9: The bubble interface at different times during 
one oscillation cycle of a 4 mm air bubble in water with a 
shear rate of 5 s-1. 
 
The position of the bubble as a function of time is given in 
Figure 10. Initially the bubble is spherical and during the 
first 0.25 seconds it deforms until it comes to a more-or-
less stationary oscillatory motion. After this the bubble 
has attained a net movement towards the side with the 
highest velocity (positive horizontal direction).  

 
Figure 10: Bubble trajectory during the first 0.5 seconds 
of the simulation for a 4 mm air bubble in a linear shear 
field. 
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A time-averaged lift coefficient of 0.5 was found, which is 
higher than the value of 0.3 measured by Tomiyama et al. 
(2002b). It should be noted however that his 
measurements were performed at low Reynolds numbers 
(< 50), while in the simulation a Reynolds number in the 
order of 1000 is reached. This explains why the 
experimental bubbles are rising more or less along a 
straight line, while air bubbles in water are meandering 
from left to right. More work needs to be carried out using 
different shear rates and bubble diameters for longer 
simulation times. 

CONCLUSIONS 
A 3D FT model was developed and used to investigate 
closures for the interface forces acting on dispersed 
elements, viz. air bubbles and toluene droplets, in water. 
The improvements of the numerical implementation of the 
FT model allowed the simulation of very small air bubbles 
(~1 mm) in water using realistic physical properties 
without numerical instabilities or significant numerically 
caused volume changes of the air bubble. According to the 
authors’ knowledge this is the first time that simulation 
results for such small air bubbles in water using realistic 
physical properties are reported.  
 
The computed drag coefficients for air bubbles in water 
with a diameter ranging from 1-5 mm compare well with 
experimentally obtained results for ultra pure water. 
Similar drag coefficients were computed for toluene 
droplets in water, as expected for systems with 
comparable Morton numbers. 
 
A virtual mass force coefficient of 0.53 has been found for 
air bubbles in water with an equivalent diameter of 1-5 
mm using an 80x80x80 grid. With a higher grid resolution 
the value indeed converged to the expected theoretical 
value of 0.50. 
 
For a 4 mm air bubble in water a lift force coefficient of 
0.5 was found, which is somewhat higher than was 
reported in the literature at lower Reynolds numbers. In 
the future the lift force coefficient will be studied for 
different bubble sizes, shear rates and longer simulation 
times. 
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