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ABSTRACT 
A Multi-Fluid Model (MFM) for the description of 
particle mixing and segregation in multi-disperse gas-solid 
fluidised beds was developed based on the kinetic theory 
of granular flow for multi-component systems. Several 
authors have derived or used a MFM assuming the particle 
velocities to be (at least close to) Maxwellian distributed 
around different mean velocities and with different 
granular temperatures for all particle species involved. 
However, this appears to be inconsistent with the first 
(equilibrium) approximation obtained from the Chapman-
Enskog procedure. Therefore, a new set of closure 
equations for the rheologic properties of multi-component 
mixtures of slightly inelastic spherical particles has been 
derived using the Chapman-Enskog solution procedure of 
successive approximations, expanding the work of López 
de Haro et al. (1983) and Jenkins and Mancini (1989). In 
this theory the particle velocity distributions of all particle 
species are assumed to be (close to) Maxwellian 
distributed around the particle mixture velocity with the 
particle mixture granular temperature. Hence, particle 
segregation and differences in granular temperatures 
between different particle phases result from the first order 
perturbation function.  
The new MFM closures have been implemented in an in-
house numerical code. Segregation rates for a binary 
particle mixture in a freely bubbling gas-solid fluidised 
bed computed with the new MFM have been compared 
with experimental data obtained by Goldschmidt (2001). 
The computed degree of segregation as a function of time 
compare well with the experimental observations. 
However, the new MFM seems to underestimate the 
segregation rates at longer times (in strong contrast to 
other MFMs that strongly overestimate the segregation 
rates). This is most probably related to the neglect of 
frictional stresses associated with long-term, multiple 
particle-particle contacts resulting in an overestimation of 
the mobility of the emulsion phase. 

NOMENCLATURE 
a   Sonine coefficient 
b   Sonine coefficient 
c   particle velocity, m/s 

C   peculiar velocity, m/s 

!   dimensionless peculiar velocity, - 
d   Sonine coefficient 

d   diffusion force, N 
e   normal restitution coefficient, - 

f   particle velocity distribution, s6/m3  

F   external force, N/m3 
g   radial distribution function, - 

g   gravity, m/s2 

h   Sonine coefficient; vertical position, m 

I   identity matrix 

J   diffusion mass flux, kg/(m2 s) 
m   particle mass, kg 
n   number density, 1/m3 

pN  number of particle species, - 

p   pressure, Pa 

q   granular energy flux, kg/(m s) 

r   position, m 
s   relative segregation, - 
S   Sonine polynomial; actual segregation, - 
t   time, s 
u   ensemble averaged velocity, m/s 
v   diffusion velocity, m/s 
x   mass fraction, - 

 
Greek symbols 
β   gas-particle drag, kg/(m3 s) 
γ   rate of granular energy dissipation  
  due to particle-particle interactions, kg/(m s3) 
δ   Kronecker delta 
ε   volume fraction, - 
θ   granular temperature, kg m2/s2 
λ   bulk viscosity, kg/(m s) 
µ   chemical potential, J; shear viscosity, kg/(m s) 
ρ   density, kg/m3 
σ   particle diameter, m 

τ   stress tensor, Pa 
φ   particle quantity 
 
 
subscripts 
g  gas phase 
max  maximum 
n, p  particle phase n, p 
s  solids phase, particle mixture 
 
superscripts 
ex  excess 
(0),(1) zero, first order Enskog approximation 



 
 

2  

INTRODUCTION 
In many industrial dense gas-fluidised bed processes, like 
gas-phase polymerisation processes and granulation 
processes, mixtures of particles differing in size and/or 
density are encountered. In these processes, particle 
mixing and segregation phenomena play a very important 
role and determine the product quality to a large extent. 
Moreover, the continuous change in the particle size 
(and/or density) distribution due to granulation, affects the 
fluidisation behaviour of the bed. Bubbles are known to 
play an intricate and ambiguous role (Rowe and Nienow, 
1976). On the one hand, rising bubbles can increase the 
particle segregation rates by carrying a mixture of particles 
to the top of the bed disturbing the local packing state of 
the bed, which might result in segregation of the larger or 
heavier particles. On the other hand, bubbles induce large 
scale mixing in the bed equalising the particle size/density 
distribution. Accurate prediction of segregation is required 
to improve the design, operation and scale-up of gas-
fluidised bed granulation processes. With better 
understanding and a quantitative description of particle 
mixing and segregation phenomena, the growth rate and 
segregation dynamics can be better tuned to improve the 
product quality. 
 
In order to gain more insight in how the operating 
conditions influence the particle mixing and segregation 
rates and to elucidate the role of the bubbles, fundamental 
hydrodynamic models are required. To enable a 
quantitative description of particle mixing and segregation 
phenomena, it is essential that the bubbles and the bubble 
behaviour (bubble break-up and bubble coalescence) is 
resolved with sufficient accuracy. This entails that a 
sufficiently large part of the fluidised bed is modelled in 
order to capture the macro-scale particle motion in the 
fluidised bed, while still completely resolving the 
phenomena occurring at the scale of a single bubble. Due 
to the required size of the computational domain to study 
particle mixing and segregation phenomena, a continuum 
modelling approach is needed. Smaller systems could be 
simulated with more detailed discrete particle models, 
which can (or even should) be used to validate 
assumptions required in the continuum approach (see a.o. 
Hoomans et al., 1998, 2000; Goldschmidt et al., 2002; 
Bokkers et al., 2004b). However, for systems at 
engineering scale that capture the macro-scale circulation 
patterns, the required number of particles and the 
corresponding calculation times would definitely become 
prohibitive. With discrete particle simulations the 
importance of particle-particle collision parameters on the 
bubble dynamics and consequent segregation rates has 
been demonstrated. 
 
In the continuum approach both the gas and particulate 
phases are described as interpenetrating continua. In the 
continuum approach only the ensemble averaged 
behaviour is considered of a group of particles, which 
should be sufficiently large in number to allow for a 
statistical description of the particle-particle interactions, 
but also sufficiently small to still resolve all the prevailing 
local phenomena. Poly-disperse particle mixtures can be 
described with multi-fluid continuum models, which 
divide the particle mixture in a discrete number of classes, 
for which different physical properties may be specified. 
The conservation equations employed are a generalisation 
of the Navier-Stokes equations for interpenetrating 

continua. Owing to the continuum representation of the 
particle mixture, multi-fluid continuum models require 
additional closure laws for the description of the rheology 
of the particulate suspension. Since accurate modelling of 
bubble dynamics is of crucial importance to capture 
segregation dynamics and bubble behaviour strongly 
depends on the amount of energy dissipated in particle-
particle collisions, the closure laws should account for the 
effect of energy dissipation due to non-ideal particle-
particle encounters. Closure laws derived from the Kinetic 
Theory of Granular Flow (KTGF) have significantly 
improved the description of the rheology of mono-disperse 
gas-fluidised beds (see for a critical comparison Patil et 
al., 2005a, 2005b).  
 
Several authors (a.o. Manger, 1996; Mathiesen, 1997; 
Huilin et al., 2001; Ramahan et al., 2003) have recently 
worked on the derivation of constitutive relations for 
binary and multi-component particle mixtures, basically 
extending the classical kinetic theory for multi-component 
dense gas mixtures. In these derivations it is assumed that 
the particle velocities are (approximately) Maxwellian 
distributed around different mean velocities and with a 
different granular temperature for each particle species. 
However, according to the Chapman-Enskog solution 
procedure (Chapman and Cowling, 1970) the first 
approximation to the particle velocity distribution for each 
species should indeed satisfy a Maxwellian distribution, 
but the mean velocity and granular temperature in the first 
(equilibrium) approximation should be the same for all the 
particle species (see also Jenkins and Mancini, 1989). It 
was believed that this assumption in the theory might (to a 
large extent) have caused the far too high segregation rates 
predicted by the continuum models (see Goldschmidt, 
2001). Therefore, a novel set of closure relations for multi-
component mixtures of slightly inelastic granular materials 
was derived, extending the classical kinetic theory for 
dense gas multi-component mixtures to account for non-
ideal particle-particle collisions as well as for gas-particle 
drag. The Chapman-Enskog solution method of successive 
approximations was used (Chapman and Cowling, 1970), 
following the work by López de Haro et al. (1983) and 
Jenkins and Mancini (1987, 1989). 
 
In this paper, the multi-fluid model equations are shortly 
presented. Subsequently, simulation results on the 
segregation rates in a bi-disperse freely bubbling fluidised 
bed computed with the multi-fluid model using the new 
closure relations are compared with dedicated 
experimental results obtained by Goldschmidt (2001) and 
with simulation results using the closure relations derived 
by Manger (1996). 
 

MULTI-FLUID MODEL  

Model equations 
The kinetic theory of granular flow of multi-component 
mixtures describes the mean and fluctuating motion of 
particles of all species (1.. Np) based on the assumption 
that the velocity distribution ( , , )n nf c r t  of individual 

particles of species n, among a large number nn dr of 

particles within an ensemble of volume dr , can be 
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represented by the distribution of their velocity points nc  
in the velocity space. The number of particles of species n 
per unit volume and the ensemble average of a particle 
quantity nφ  are respectively defined by: 

( , , )n n n nn f c r t dc= ∫         (1) 

1 ( , , )n n n n n
n

f c r t dc
n

φ φ< >= ∫         (2) 

Defining the mean velocity nu  of particle species n as 

nc< > , the mass average mixture velocity su  is given 
by: 

1

1 pN

s n n n
ns s

u uε ρ
ε ρ =

= ∑         (3) 

where the particle number density sn , total solids volume 

fraction sε  and the mixture density sρ  are defined as 

1

pN

s n
n

n n
=

=∑        (4) 

1

pN

s n
n

ε ε
=

=∑  with  
3

6
n

n nn πσε =         (5) 

1

1 pN

s n n
ns

ρ ε ρ
ε =

= ∑  with 3

6
n n

n

mρ
πσ

=      (6) 

 
The actual particle velocity nc  is decomposed into the 

local mass average mixture velocity su  and the peculiar 

velocity nC : 

n s nc u C= +         (7) 
 
Associated with the random motion of the particles, the 
granular temperature and the diffusion velocity of species 
n are defined as: 

21
3n n nm Cθ = < >        (8) 

n n n sv C u u=< >= −         (9) 
 
from which the mixture granular temperature is obtained 
by 

1

1 pN

s n n
ns

n
n

θ θ
=

= ∑         (10) 

and the diffusion velocities naturally satisfies  

1

0
pN

n n n
n

vε ρ
=

=∑         (11) 

 
The kinetic theory accounts for two different transport 
mechanisms of particle properties. On the one hand 
particles can transport a property by carrying it during free 
flight between collisions (kinetic transport); on the other 
hand particle quantities can be transferred during a 
collision (collisional transport). Modelling these transport 
mechanisms for a particulate mixture results in a set of 
coupled integral-differential equations for the particle 
velocity distributions of each particle species, referred to 
as the generalised Boltzmann equation. Based on the 
generalised Boltzmann equation the ensemble average 
transport equation for a particle property, referred to as the 
Maxwell transport equation, can be derived, with which 
the conservation equations for mass, momentum and 
granular energy can eventually be obtained (see Table 1).  
 
 
Table 1. Conservation equations 
 
Species continuity equations: 

( ) 0n n n n n sJ u
t

ε ρ ε ρ∂  + ∇ ⋅ + = ∂
  

            (n = 1, 2, ..., Np) 
 
Mixture continuity equation: 

( ) ( ) 0s s s s su
t

ε ρ ε ρ∂ + ∇ ⋅ =
∂

 

 
Mixture momentum equations: 

1

( ) ( )

( )
p

s s s s s s s s g s

N

s ng g n s s
n

u u u p p
t

u u g

ε ρ ε ρ ε

τ β ε ρ
=

∂ + ∇ ⋅ = − ∇ − ∇
∂

− ∇ ⋅ + − +∑
 

 
Mixture granular temperature equation: 

( )

1

( )3 ( ) :
2

3
p

s s
s s s s s s

N
ng

s n s
n n

n
n u p I u

t

q
m

θ θ τ

β
θ γ

=

∂ + ∇ ⋅ = − + ∇ ∂ 

− ∇ ⋅ − −∑
 
 
Solving the generalised Boltzmann equation using the 
Chapman-Enskog solution procedure of successive 
approximations (Chapman and Cowling, 1970) explicit 
expressions for the solids phase rheology (solids phase 
stress tensor) are derived in terms of the mixture velocity 
and the mixture granular temperature (see Table 2 and 3). 
To warrant consistency with irreversible thermodynamics 
the revised Enskog theory by Van Beijeren and Ernst 
(1973) was used, following López de Haro et al. (1983). 
Explicit expressions for the bracket integrals for hard 
spheres up to the third order approximation can be found 
in Ferziger and Kaper (1972) and López de Haro et al. 
(1983). The equations to calculate the radial distribution 
function and the matching equations for the chemical 
potential of a multi-component hard-sphere fluid have 
been listed in Table 4. 
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Table 2. Constitutive equations for the particulate phase n: 
 
Diffusion flux: 

(1) ( ) ( )
,0 0

1
ln

2

pN
nn n

n n s
s

J d d a
n

ε ρ θ
=

 
= − − ∇ 

  
∑ "

"
"

 

 
Solid phase pressure: 

(1) 3

1 1

12
3 2

p pN N
np

s s s n p np np
n p

e
p n n n gπθ σ

= =

 +
= +  

 
∑∑  

 
Solids phase stress tensor: 

( ) ( )(1) (1) (1) (1)2 ( ) ( )
3

T
s s s s s s su I u uτ λ µ µ = − − ∇ ⋅ − ∇ + ∇ 

 
 

 
Solids phase shear viscosity: 

(1) 3 ( ) 4
0

1 1 1 1

1 11 8 41 2
2 15 2 15 2

p p p pN N N N
p np n p npns

s p np np n s n p np np
n p n ps n p n p

m e m m e
n g n b n n g

n m m m m
θ πµ σ πθ σ

= = = =

 + +
= + +  + + 

∑ ∑ ∑∑
 
Solids phase bulk viscosity: 

(1) 3 ( ) 4
1

1 1 1 1

1 14 4 2
3 2 9 2

p p p pN N N N
p np n p npns

s n p np np s n p np np
n p n ps n p n p

m e m m e
n n g h n n g

n m m m m
θπλ σ πθ σ

= = = =

+ +
= +

+ +∑∑ ∑∑  

 
Granular energy dissipation: 

( )
1
2

(1) 3 2

1 1

( )41
2

p pN N
p n p s

s s n p np np np s
n p n p np n p

m m m
n n e g u

m m m m
θ

γ πθ σ
σ π= =

 
 + = − − ∇ ⋅   +    

∑∑  

Granular energy flux: 

(1) 3 ( ) ( )
1 ,12

1 1 1

1
2

4

1 1

3

15 241 ln
4 15 ( ) 2

2 14 ln
3 2

12
3

p p p

p p

N N N
n p np n is

s p np np n s n i
n p is n p

N N
s n p n p np

s np np s
n p n p n p

n p
s p np

n p

m m e
q n g n a d d

n m m

m m n n e
g

m m m m

m m
n

m m

θ π σ θ

πθ
θ σ θ

πθ σ

= = =

= =

   +
= − + ∇ −    +   

  +
− ∇  + + 

 − +
+   + 

∑ ∑ ∑

∑∑
(1) (1)

3

1 1 1 1

15 21
2 2 3 2

p p p pN N N N
np npn n

np s p np np
n p n pn n

e eJ Jg n g
m m

πθ σ
= = = =

 +
+ + 

 
∑∑ ∑ ∑

 

 
Diffusion force: 

,,(0)

1

3

1 1 ,

4 ln
3

p

p p

s k p

N
u pu nn n

n s n n p p
ps s s s n p

N N
n n n n

np p np np s p
p ps n p s s p n

FF
d p

n m m

n m nn g n
n m m n n

θ

ε ρ ε ρ ε ρ
ε ρ θ

µπδ σ θ
θ

≠

=

= =

  
= − ∇ + −      

   ∂+ + ∇ + ∇    + ∂    

∑

∑ ∑
 

 

External forces based on averaged velocities:    First order approximation for the particulate phase pressure: 

( ),
1 ng

u n g g n
n n n

F g p u u
n m
β

ρ
= − ∇ + −     (0) 3

1 1

2
3

p pN N

s s s n p np np
n p

p n n n gπθ σ
= =

 
= +  

 
∑∑  
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Table 3. Sonine coefficients  
 

3
2

1

81
5 ( )

pN
n p

n p np np
p n p

m m
K n g

m m
π σ

=
= +

+∑      3

1

81
15

pN
p

n p np np
p n p

m
K n g

m m
π σ

=

′ = +
+∑  

(0)
3

1

41
3

pN
p s

n p np np
p n p s s

m pK n g
m m n

π σ
θ=

′′ = + −
+∑  

 

( ) 2 ( ) 2 ( ) 2 ( ) 2
3 / 2 3 / 2 3 / 2 3 / 22 2

1

8 ( ) , ( ) ( ) , ( )
75

pN
n p n pqr q r q rn

np np np n n n n n n n nn np
s s s

m m n nn ng S S S S
n n

δ
θ =

  ′ ′′   Λ = +     
∑ "

""
! ! ! ! ! ! ! !  

0 0 0 0
( ) 2 ( ) 2 ( ) 2 ( ) 2
5 / 2 5 / 2 5 / 2 5 / 22 2

1

2 ( ) , ( ) ( ) , ( )
5

pN
n pqr q r q rn

np np np n n n n n n n n n n n nn np
s s s

n nn nH g S S S S
n n

δ
θ =

     ′ ′′= +    
    

∑ "

""
! !! ! !! ! !! ! !!

( ) 2 ( ) 2 ( ) 2 ( ) 2
1/ 2 1/ 2 1/ 2 1/ 22 2

1
( ), ( ) ( ), ( )

pN
n pqr q r q rn

np np np n n n nn np
s s

n nn ng S S S S
n n

δ
=

  ′ ′′   Γ = +     
∑ "

""
! ! ! !  

( ) 2 ( ) 2 ( ) 2 ( ) 2
3 / 2 3 / 2 3 / 2 3 / 22 2

1
( ) , ( ) ( ) , ( )

pN
n p n pqr q r q rn

np np np n n n n n n n nn np
s s s

m m n nn ng S S S S
n n

δ
θ =

  ′ ′′   ∆ = +     
∑ "

""
! ! ! ! ! ! ! !  

where the Sonine polynomials have been defined as: ( )
( )( )

0
( )

!( )!

n
p n pn

m
p

m n
S x x

p n p
−

=

+
= −

−∑ , and qr  denotes the product of 

the q factors r, 1r − , …, 1r q− + , having used the dimensionless peculiar velocity: 
2

n
n n

s

m C!
θ

=  

Sonine coefficients ( )n
ra : 

1
( )

1
1 0

4
5

pN N
qr p n
np r n q

p r s

na K
n

δ
−

= =
Λ =∑∑         (n = 1, 2, ..., Np; q = 0, 1, ..., N-1) 

( )
0

1
0

pN
nn n

n s s

aε ρ
ε ρ=

=∑            (n = 1; q = 0) 

 

Sonine coefficients ( )n
rb : 

1
( )

0
1 0

2pN N
qr p n
np r n q

p r s s

nH b K
n

δ
θ

−

= =

′=∑∑         (n = 1, 2, ..., Np; q = 0, 1, ..., N-1) 

 

Sonine coefficients ( )n
rh : 

1
( )

1
1 0

pN N
qr p n
np r n q

p r s

nh K
n

δ
−

= =

′′Γ =∑∑          (n = 1, 2, ..., Np; q = 0, 1, ..., N-1) 

( )
1

1
0

pN
nn

n s

n h
n=

=∑             (n = 1; q = 1) 

 

Sonine coefficients ( )
,
i

n rd : 

1
( )

, 0
1 0

3
pN N

qr i n n
np p r ni q

p r s s

d ε ρδ δ
ε ρ

−

= =

 
∆ = − 

 
∑∑       (n = 1, 2, ..., Np; q = 0, 1, ..., N-1; i = 1, 2, ..., Np) 

( )
,0

1
0

pN
in n

n
n s s

dε ρ
ε ρ=

=∑            (n = 1; q = 0; i = 1, 2, ..., Np) 



 
 

6  

Table 4. Radial distribution function and chemical potential for multi-component hard-sphere systems  
 
Radial distribution function for multi-component hard-sphere particle mixtures: 

(2)

0 (3)

1 1
1 1

n p
np

s s np

g g
σ σ σ

ε ε σ σ
< > 

= + − − − < > 
   where  ( )

1

pN
j jn

n
n s

n
n

σ σ
=

< >=∑  and ( )1
2np n pσ σ σ= +  

 
Radial distribution function for a mono-disperse hard-sphere fluid: 

( )

8

0
0

max1

j
j s

j
s ba

s

s

c
g

ε
ε

ε
ε

==
  
 −    

∑
 

 
where in this work the coefficients derived by Song et al. (1988) have been used: 

max
sε = 0.6435, a = 1, b = 0.76, c0 = 1, c1 = 1.3192, c2 = 1.41872, c3 = 0.94208, c4 = 0.1381376, c5 = -0.3659776,  

c6 = -2.336768, c7 = -1.9857408, c8 = -7.5431936.  
 
Chemical potential of species n in a hard-sphere mixture: 

3ln ln ex
n s n s n nnµ θ θ µ= + Λ +  

 
where nΛ  represents the De Broglie wavelength for granular materials. 
 
Excess chemical potential of species n: 

( ) ( )

( ) ( )

( ) ( ) ( )

(3)
1 2 0 1 2

(1) (2) (3) (2) (3)
1 2 0

0

(1) (2) (3) (2) (3)
1 2

1 4 1 2
2 1

1 3 2 4 ( )
2

1 2 3 2 ln 1

s

ex s
n s n s

s

n n n n n s s s

n n n n n s s

y m m g m m

m y y y m y y g d

m y y y m y y

ε

εµ θ ε
ε

θ ε ε

θ ε

 
= + + + − − 

  ′ ′+ + − + − 

 − + + − − − − 

∫  

 

where ( )
( )

j
j n

n jy σ
σ

=
< >

, 
(1) (2)

1 (3)m σ σ
σ

< >< >=
< >

 and 
(2) 3

2 (3) 2m σ
σ

< >=
< >

 

 
 
It is important to note that in the Enskog solution 
procedure the first order approximation corresponds to 
the situation that the particulate suspension is in steady 
state and at equilibrium, i.e. the particles are not 
subjected to external forces, the particles are uniformly 
suspended (no gradients in solids volume fraction and 
velocity and granular energy) and that no kinetic energy 
is dissipated in the particle-particle collisions (enp = 1). 
Thus, the first order approximation requires that the 
particle velocities of all particle species are distributed 
around the same mean velocity (the mixture velocity) 
with the same granular temperature (the mixture 
temperature). This is in contrast with the equations 
derived by Manger (1996), Mathiesen (1997), Huilin et 
al. (2001) and Ramahan et al. (2003), who assumed that 
the first order approximation to the particle velocity 
distribution is Maxwellian distributed around different 
mean velocities and different granular temperatures for 
all particle species involved. Hence, in this work 
differences in the granular temperatures for the different 

particle species and particle segregation are higher order 
effects arising from the first order perturbation function. 
 

Numerical solution strategy 
The Multi-Fluid model for a multi-disperse suspension 
consists of the total continuity and Navier-Stokes 
equations for the continuous gas phase and the species 
and mixture continuity equations, mixture Navier-Stokes 
equations and the mixture granular temperature equation 
for the solids phase. For the gas-particle drag the well-
known closures by Ergun (1952) and Wen and Yu (1966) 
were used. Standard prescribed pressure, inflow, no slip 
and zero gradient boundary conditions were assumed in 
this work (see also Kuipers et al., 1992), since particle-
wall collisions play a minor role in dense gas-fluidised 
beds. For dilute multi-disperse systems the boundary 
conditions proposed by Sinclair and Jackson (1989) 
could be extended. 
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A numerically advantageous feature of this Multi-Fluid 
model is that only the mixture Navier-Stokes equations 
and mixture granular temperature equation need to be 
solved, since explicit expressions have been derived for all 
the transport properties of the particulate phases in terms 
of the mixture velocity and the mixture granular 
temperature. This is in strong contrast to other Multi-Fluid 
models proposed in the literature (Manger, 1996; 
Mathiesen, 1997; Huilin et al., 2001; Ramahan et al., 
2003), where Navier-Stokes equations and a granular 
temperature equation needs to be solved for every particle 
species present in the particulate mixture. The granular 
temperature and diffusion velocity of particle phase n can 
be directly computed from the mixture granular 
temperature, according to: 
 

( )
( )

(1) 11
n

n s s
s

h u
n

θ θ
 

= − ∇ ⋅ 
 

        (12) 

(1)
n

n n s
n n

Jv u u
ε ρ

= − =         (13) 

 
As a consequence of the first order perturbation function, 
particle phases of different diameter or density will in 
general possess different granular temperatures, which 
corresponds to experimental data by Zhang et al. (1996) 
for dilute gas-solid riser flow. 
 
Due to the tendency of inelastic particles to contract into 
high-density clusters and the strong non-linearity of the 
particle pressure near the maximum packing density, 
special care is required in the numerical implementation of 
the Multi-Fluid model conservation equations.  
 
The implementation is based on a finite difference 
technique employing a staggered grid and the numerical 
algorithm strongly resembles the Semi-Implicit Method 
for Pressure-Linked Equations (SIMPLE) described by 
Patankar and Spalding (1972). A detailed discussion on 
the application of this numerical technique to Two-Fluid 
models (TFM) for gas-solid fluidised beds has been 
presented by Kuipers et al. (1993). Basically, this method 
is a projection-correction method, which involves the 
solution of a Poisson equation for the gas phase pressure 
field to annihilate the mass residuals from the total gas 
phase continuity equation. In principle this numerical 
solution method can be applied straightforwardly to the 
Multi-Fluid model equations. However, due to the strong 
non-linear dependency of the solids phase pressure on the 
solids volume fraction, unacceptably small time steps are 
required in the order of magnitude of 10-5-10-6 s.  
 
Therefore, this numerical algorithm has been extended 
(see Goldschmidt, 2001) to directly take the 
compressibility of the particulate phase into account in the 
calculation of the particle volume fractions. In this 
numerical algorithm, referred to as the p-εs algorithm, an 
additional Poisson equation is solved (sequentially) for the 
total solids volume fraction field to minimise the mass 
residuals from the mixture solids phase continuity 
equation. Due to the enhanced numerical stability larger 
time steps can be handled (10-5-10-4 s) with this method, 
even for strongly dissipative systems. 

RESULTS 
The particle segregation rates in a freely bubbling bi-
disperse fluidised bed, consisting of a 25 % of 1.5 mm 
diameter (small) and 75 % of 2.5 mm diameter (large) 
glass beads (2526 kg/m3), computed by the Multi-Fluid 
Model, using a 45×120 grid, were compared with Digital 
Image Analysis (DIA) experiments performed by 
Goldschmidt (2001). In Figure 1 the evolution in time of 
the relative segregation is shown. The relative segregation 
s is defined for a binary mixture as: 

max

1
1

Ss
S

−=
−

        (14) 

where 
flotsam

jetsam

h
S

h
< >

=
< >

 and max

2
1

flotsam

flotsam

x
S

x
−

=
−

 

 
where h< >  and x  represent the average vertical 
position and the mass fraction of the flotsam (the 
smaller/lighter particles) and jetsam (the bigger/heavier 
particles). The figure clearly shows that the MFM 
presented in this work no longer overestimates the particle 
segregation rate as was observed with the MFM proposed 
by Manger (1996). Using the MFM with the closures 
derived by Manger almost complete segregation is 
predicted within 15 s, in strong contrast to the 
experimental observations (only 60 % segregation after 
60 s). Also Goldschmidt et al. (2001) and Huilin et al. 
(2003) showed that MFMs using the closure equations by 
Manger overpredicted the particle segregation rates of 
binary particle mixtures in freely bubbling fluidised beds. 
The segregation rates computed with the MFM developed 
in this work compare reasonably well with the 
experimentally observed segregation rates. 
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Figure 1. Relative segregation as a function of time in a 
freely bubbling bi-disperse fluidised bed consisting of 
25% of 1.5 mm diameter and 75% 2.5 mm diameter glass 
beads (fluidization velocity: 1.20 m/s). 
 
Snapshots of the flotsam fraction at different moments in 
time are given in Figure 2. The MFM with the new closure 
relations developed in this work predicts the build-up of a 
layer of flotsam on top of a mixed bed and a layer of 
jetsam at the bottom of the bed, as was also observed in 
the experiments. Remarkably, the MFM with the closure 
equations by Manger (1996) does not predict the 
formation of layer of smaller particles on top of a mixed 
bed; this model predicts that the particle segregation 
proceeds via ‘sedimentation’ of the heavier particles out of 
the particle mixture. 
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 Experiment MFM – This work MFM – Manger (1996) 
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Figure 2. Plots of the flotsam fraction at different moments in time computed with the MFM presented in this work and the 
MFM proposed by Manger (1996) and compared with experimental results obtained by Goldschmidt (2001) for a freely 
bubbling bi-disperse fluidised bed consisting of 25% of 1.5 mm diameter (yellow) and 75% 2.5 mm diameter glass beads 
(red) (fluidization velocity: 1.20 m/s).  
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The MFM developed in this work seems to even 
underpredict the segregation rates, which can most 
probably be attributed to the neglect of frictional stresses 
associated with long-term multiple-particle contacts in the 
current implementation of the MFM. Due to the strong 
overestimation of the emulsion phase mobility, flotsam is 
continuously dragged downwards along the wall and 
jetsam is continuously dragged upwards in the centre of 
the bed due to the macro-scale circulation patterns in the 
fluidised bed induced by the bubbles. In both versions of 
the MFM, the one with Manger’s closures and the one 
with the constitutive equations derived in this work, the 
frictional stresses were ignored and indeed the predicted 
emulsion phase mobility by both models was much too 
high in comparison with the experimental observations.  

CONCLUSION 
A Multi-Fluid Model based on the kinetic theory of 
granular flow for multi-component systems was developed 
using the Enskog solution method of successive 
approximations for the description of particle mixing and 
segregation in multi-disperse gas-solid fluidised beds. In 
this theory particle segregation and unequal granular 
temperatures in multi-disperse systems result from the first 
order perturbation function. Numerical simulations with 
the MFM have been compared with well-defined 
experiments performed by Goldschmidt (2001). The 
particle segregation rates computed with the new MFM 
compare much better with the experimental observations 
and are no longer overestimated, as was the case with 
MFMs presented before in the literature. Moreover, the 
formation of a flotsam and jetsam layer at the top and 
bottom of the bed is predicted correctly. However, due to 
the neglect of frictional stresses associated with long-term 
multiple particle-particle contacts, the emulsion phase 
mobility is strongly overestimated. Further developments 
in the description of frictional stresses are required to 
advance the continuum modelling of multi-disperse 
fluidised beds. 
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