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ABSTRACT 
This paper develops models and constitutive equations 
that are intended for the calculation of granular flows 
down inclined channels. The flows are assumed to involve 
fairly large particles at high concentrations. Furthermore, 
it is assumed that the flows are rapid, and that the particle 
velocity fluctuations are vigorous. We make use of results 
derived from the kinetic theories of granular flows to 
develop simplified expressions that can be used to 
determine stresses, and velocity and density profiles in 
channelized flows. The paper focuses on the particle 
collisional stress contributions, but the effects of the 
‘frictional’ stresses that come from the enduring 
interparticle contacts are also considered. A solution for 
steady uniform flow is also presented. The results are 
verified through comparisons to a few available 
experimental measurements. The comparisons indicate 
that predicted velocities and flow rates are close to the 
experimental measurements.  

NOMENCLATURE 
a, b coefficients in Equation (10) 
ac average boundary area per particle 
C velocity fluctuations  
c instantaneous velocity 
dp particle diameter 
e coefficient of restitution 
g gravitational acceleration 
g0 radial distribution function 
h flow depth 
k1  function of  solids volume fraction 
k2  function of  solids volume fraction 
Nf quasi-static normal stress at the boundary 
R parameter (Savage-Jeffrey number) 
Sf quasi-static shear stress at the boundary 
T granular temperature 
s distance between centre of a particle and the 

boundary 
u velocity vector 
u,v components of the velocity vector 
usl slip velocity at the boundary  
uwall velocity of the boundary 
α coefficient in Equation (10) 
δ  angle of friction between the boundary and the bulk 

particles 
η parameter in Equation (1) 
ϕd dynamic angle of internal friction 
ϕf quasi-static angle of internal friction 
ϕ′ specularity coefficient 
ν solids volume fraction 
νmax maximum solids volume fraction 

νmin minimum solids volume fraction 
ρ bulk density 
ρp particle density 
σ stress tensor 
σij components of the stress tensor 
i,j indices of the stress tensor components  
x,y indices indicating x and y directions 

INTRODUCTION 
The focus of this paper is on dense granular flows down 
chutes. In particular, we consider two-dimensional flows 
with the main component of the velocity along the 
streamwise direction, and with small transverse velocity 
components by comparison. Our goal is to develop simple 
expressions for the stresses that can be used in future 
numerical solutions of more complex flow conditions. The 
aim is make approximations to achieve simplicity and 
ease of programming, at the expense of what are hoped to 
be minor losses of accuracy and generality. 
 
In the flow regime of present interest, a velocity profile 
develops within the granular material, with a possible slip 
velocity at the frictional base of the chute. Importantly, 
those flows can reach steady fully developed states for a 
range of slopes. Johnson et al. (1990) considered such 
flow regimes to be governed by both frictional and 
collisional interactions between the particles. The 
frictional stresses were considered to be rate independent.  
The collisional stresses represented the rate-dependent and 
can be modelled by kinetic theories (Lun et al., 1984). 
Johnson et al. (1990) employed a simple superposition of 
the two types of stresses to obtain a solution of the fully 
developed flow, which successfully reproduced expected 
flow patterns.  
 
The introduction of kinetic theories or dynamic stresses 
requires the determination of the granular temperature, 
which is a measure of the energy associated with velocity 
fluctuations. This, in turn, is usually based on solving an 
energy balance equation that describes the evolution of 
granular temperature. In the following sections of the 
paper, we develop a simple expression for the dynamic 
stresses. Consequently, solving the complex granular 
temperature equation can be avoided. We then develop a 
solution for the flow down a chute based on the new 
simplification.   

STRESSES DEVISED FROM GRANULAR FLOW 
KINETIC THEORIES 
In dealing with granular flows, it is common to separate 
the contributions to the stresses into three parts. The first 
is the so-called kinetic contribution that in a shear flow 
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results from the transport of momentum as particles move 
from one shear layer to an adjacent one. This is the 
mechanism that gives rise to viscosity in a dilute gas. The 
second contribution to the stresses comes from the 
interparticle collisions; at high concentrations and rapid 
shear rates this makes up a major part of the total stresses. 
Finally, there is a so-called quasistatic contribution that 
arises from particles involved in enduring contacts 
overriding one another. 
 
We shall develop simple expressions for the stresses based 
on (i) granular flow kinetic theories, and (ii), assumptions 
about the connection between shear rates and the granular 
temperature that is proportional to the mean square of the 
particle velocity fluctuations. By this means we can avoid 
the explicit use of the granular temperature evolution 
equation that is an equation for the development of kinetic 
energy of the velocity fluctuations. These results are not 
appropriate for general flow fields, but should be regarded 
as approximations that may be used for essentially 
uniaxial flows down chutes. 

Dynamic Stresses 
We develop, in this section, simple expressions for the 
dynamic (kinetic and collisional) stresses. We begin by 
defining the sign convention that will be used for the 
stresses. As shown in Figure 1, normal compressive 
stresses are considered positive. Directions of the positive 
shear stresses are also shown in the sketch. 

 
Figure 1: Sign convention for normal and shear stresses. 
 
Consider a two-dimensional granular flow in which the 
primary velocity is the u-component oriented in the 
streamwise x-direction. The velocity component v, that is 
oriented in the y-direction, perpendicular to the bed, is 
assumed to be small, i.e., v << u. We also assume that the 
velocity gradients in the y-direction are much greater than 
those in the streamwise x-direction. Thus, of the six 
gradients of the velocity components, ∂ui/∂xj, where i =1,2 
and j=1,2, the dominant component is ∂u/∂y. 
 
Making use of the granular kinetic theory results of Lun et 
al. (1984), the total normal stresses, consisting of the sum 
of kinetic and collisional stresses, are approximated by    

( )Tgzzyyxx 041 νηρσσσ +≈≈≈   (1) 

where ρ= ρp ν is the bulk particle density, ρp is the mass 
density of the individual particles, ν is the solids fraction, 
η =(1 + e)/2 ≈ 1, e is the coefficient of restitution, and g0 is 
the Carnahan & Starling radial distribution function given 
in Lun, et al. (1984) as 
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( )30 12
2

ν
ν
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−
=g      (2) 

and 3T/2=<C2>/2 is the specific translational kinetic 
energy, T is the granular temperature and C = c −u where 
c is the instantaneous velocity of the particle and u =< c > 
is the mean or bulk velocity. We note that there are 
alternative expressions for the radial distribution function. 
For example, Lun and Savage (1986) proposed the 
following expression for shearing flows 

( ) max5.2
max0 1 ννν −−=g    (3) 

where νmax is the maximum solids fraction that will allow 
shearing motion to occur. Note that when ν → νm then g0, 
and hence, the expressions for the stresses will diverge, 
corresponding to a locked system of particles. Another 
expression also used by Lun and Savage (1987)  

( )[ ]31
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0
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1

νν−
=g    (4) 

Values of g0 given by Equations (3) and (4) are not very 
different except when ν → νm. Those equations are 
probably preferable to the Carnahan and Starling 
expression (Equation 2). 
 
In certain examples of granular shearing flows, it is found 
that R, the parameter called the Savage-Jeffrey number 
(Savage & Jeffrey, 1981), is approximately constant and 
of order unity, i.e. 
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where dp is the particle diameter and ∂u/∂y is the shear 
rate. Making the approximation that R ≈ constant for the 
present work on inclined chute flows permits us to 
dispense with the particle fluctuation energy equation 
when solving for the granular flow field. Let us make 
some physical observations about the assumption of R ≈ 
constant. If we neglect the fluctuation energy flux 
divergence in the kinetic theory granular temperature 
evolution equation (Lun, et al., 1984; Johnson, et al., 
1990), then for a steady, fully developed chute flow, we 
find that there is a balance between the shear work and the 
collisional energy dissipation. Under these assumptions, 
we find that R ≈ constant (Lun, et al., 1984). The value of 
R depends on the dissipative properties of the particles, 
and very weakly on the solids volume fraction. A similar 
approximation has been proposed by Syamlal et al. 
(1993), and more recently by van Wachem et al. (2001). 
 
If the fluctuation energy flux divergence is not zero, then 
the balance between the shear work and the collisional 
energy dissipation is not achieved and departures from a 
fixed value of R might be expected. An example of such a 
case is a chute flow in which there occurs a significant slip 
velocity at the bed, possibly generating a high granular 
temperature at the bed which gives rise to a flux of energy 
into the granular material above the bed. 
 
Returning to the relationship between shear rate and 
granular temperature, we can re-arrange Equation (5) to 
yield an expression for the granular temperature, i.e., 
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Assuming that ( ) 121 ≈+= eη , we can express Equation 
(1) as 

( )
2
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The theory of Lun et al. (1984) shows that ratio of shear to 
normal dynamic stresses is roughly constant. We can, 
therefore, relate the shear stress σxy to the normal stress 
σyy through the use of a dynamic friction angle ϕd as 
follows, i.e., 
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 (8) 
Equations (1) and (8) can thus be used in the granular flow 
momentum equations to determine the profiles of mean 
velocity and solids fraction. 

Frictional (Quasi-static) Stresses 
The final contribution to the overall stresses is due to 
enduring contacts between the particles as they override 
each other at high concentrations. We simply add these 
quasistatic contributions to the dynamic stresses to obtain 
an expression for the total stresses. Johnson et al. (1990) 
and Anderson and Jackson (1992) have proposed a simple 
relation for the quasistatic stresses that is essentially a 
Coulomb type relationship. They relate the shear stress Sf 
on a shear plane to the normal stresses Nf on that plane as 
follows 

( )νϕ fffff NNNS == ,sin    (9) 
where φf is the quasi-static angle of internal friction. In the 
present paper, however, we use Sf = Nf tan φf, for 
algebraic simplicity. The choice of tan φf  or sin φf  is a 
matter of definition of the angle of internal friction. Care 
should be taken in comparing various values of φf quoted 
in the literature.  
 
One might expect Nf to increase without bound when the 
solid fraction approaches its maximum value νmax and 
particle interlocking occurs. Alternatively, when the solids 
fraction approaches some minimum value νmin, the 
particles essentially lose contact with one another and the 
normal stress ceases to exist. Johnson et al. (1990) have 
proposed the following simple relationship for the ν 
dependence of Nf(ν) 
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where α, a and b are constants. In the present paper we 
choose a= b= 1. From dimensional arguments, the right-
hand-side of Equation (10) should take the form 

( )νρ 1kdg pp , where the function k1(ν) is dimensionless. 

NUMERICAL SOLUTION 
The conservation of mass and momentum equations can 
be expressed as 
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For the case of steady two-dimensional flow in a chute 
inclined an angle ζ to the horizontal (Figure 2), the above 
two equations reduce to  
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Equations (7) to (10) lead to the following expressions of 
the shear and normal stresses, 
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The velocity gradient (cf. Figure 2) is positive in the 
present case, and hence the modulus in Equation (8) is not 
needed in Equation (18). The functions k1(ν) and k2(ν) are 
given by  
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and 
( ) ( ) 2

02 41 Rgk ννν +=   (21) 
 

 
Figure 2: Sketch of flow down an inclined chute. 
 
Equations (18) and (19) are substituted in Equations (16) 
and (17) to give two expressions for the unknown 
velocity, u and solids fraction, ν. After some 
manipulation, the following ordinary differential equation 
for the velocity is obtained 
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Another algebraic equation is obtained for the solids 
fraction as, 
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Solution of Equation (23) was carried out using numerical 
integration along with an iteration scheme. Initially a 
mean value of the solids fraction is introduced to estimate 
the integral in the right-hand-side. Calculations are carried 
out starting at the surface, y=h, with the minimum value 
of the solids fraction, ν = νmin. The integration proceeds 
downwards until the bed is reached, y = 0. At each step, 
an initial estimate is made of the value of ν in order to 
evaluate the integral on the right-hand-side of Equation 
(23). This procedure is repeated until changes in the 
profile of ν become negligible. Convergence always 
occurred relatively rapidly. The integration was carried 
out using a trapezoidal rule.  
 
The values of ν were next used in the integration of Eq. 
(22) to determine the velocity distribution. Integration 
started from the bed (y=0) and proceeded upwards to the 
surface (y=h). Again, a trapezoidal rule was used in the 
integration. Several step sizes were also used to ensure 
satisfactory accuracy; step size of 01.0/ =∆ hy  was 
usually adequate.   
 
The present solution considers two cases for the velocity 
at the bed. The first is a no-slip boundary condition (i.e. u 
= 0). This case would be appropriate for a rough bed 
surface. The second case corresponds to a non-zero slip 
velocity at the bed, as discussed in the following section. 

Slip Velocity Boundary Conditions 
An expression for the slip velocity is presented here by 
making use of the analysis of Johnson and Jackson (1987) 
and the present simplified model of the stresses. Johnson 
and Jackson determined the boundary condition involving 
the slip velocity between the granular material and the 
bounding surface by equating the tangential force per unit 
area exerted by the particles on the boundary surface to 
the corresponding stress within the granular material that 
is close to the boundary. The force per unit area on the 
boundary is made up of the frictional and collisional 
contributions. By making use of Coulomb’s law we can 
express the tangential frictional component of stress as Nf 
tan δ, where Nf is the normal rate independent component 
of stress and δ is the angle of friction between the surface 
and the granular material. The rate of momentum transfer 
to the unit area of the surface by collisions is the product 
of the collision frequency per particle (3T)1/2/s, the 
average tangential momentum transferred per 

collision 6/3
sludsρπφ′ , and the number of particles 

adjacent to a unit area of surface 1/ac. In these expressions 
s represents the average distance between the boundary 
and the surface of an adjacent particle, ac is the average 
boundary area per particle, ρp is the mass density of the 
particle, usl = u− uwall is the wall slip velocity and uwall is 
the wall velocity. The value of the wall specularity 
coeffcient ϕ′ depends on the large scale roughness of the 
wall and varies from zero for perfectly smooth walls and 

specular collisions to unity for perfectly diffuse collisions 
and rough walls. We can express s and ac as 
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Equating the sum of the frictional and collisional stresses 
at the boundary to the component of the interior bulk 
stress in the direction of usl yields 
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For the present case of two-dimensional flow, and using 
Equation (6) to eliminate T, Equation (26) leads to the 
following expression for the slip velocity 
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where values in the right hand side of Equation (27) are 
evaluated at y=0, and Nf is the quasi-static normal stress. 
Note that when ν → νmax , the slip velocity usl → 0. 
According to Johnson and Jackson (1987), the value of the 
specularity coefficient is ϕ′ ≈ 0.6 for a rough bed. 

RESULTS 
Some typical numerical calculations are presented here for 
the following parameter values s: 
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The choice of those values is guided, in a general sense, 
by previous analyses and experimental studies, such as 
those of Savage (1979), Johnson and Jackson (1987), 
Vallance (1994), and Hanes and Walton (2000). 
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Figure 3a: Profiles of solids volume fraction for different 
slopes. 
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The role of the slope is illustrated by conducting runs for 
three values for the angle ζ of 170, 190 and 210. The 
resulting distributions of solids volume fraction and 
velocities are shown in Figures 3a and 3b. 
 
The distributions of the solids volume fraction start with 
the minimum value at the surface and increase 
downwards. As expected, the values of solids fraction 
decrease with increasing slope.  The results, shown in 
Figure 3b, correspond to a no-slip condition at the bottom 
boundary. The values of the velocities increase with 
increasing slope. Moreover, the resulting shapes of the 
velocity distributions are convex; i.e. they display higher 
gradients near the bottom. That shape of the velocity 
distribution may be the result of the formulation of the 
dynamic component of the stress, particularly its 
dependence on solids volume fraction.  Therefore, runs 
were carried out with a modified form of the function 
k2(ν), different from that given by Equation (21). The 
following expression was used 

( )3max
2

002.0
νν −

=k     (28) 

Equation (28) implies that the dependence of k2(ν) on ν is 
stronger than that according to Equation (21). The 
resulting distributions of solids volume fraction are not 
affected by the new formula. The shapes of the velocity 
profiles, however, show inflection points, particularly for 
the smaller slopes (see Fig. 4). 
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Figure 3b: Velocity profiles for different slopes. 
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Figure 4: Velocity distributions obtained using a modified 
expression for k2(ν), given by Equation (28). 
 
At present, there is no definite experimental evidence to 
determine the appropriate shape of velocity distributions. 
However, some experiments (e.g. Hanes and Walton 

2000) indicate that velocity distributions may have 
inflection points (with maximum gradients near mid-
height of the flow). Such measurements by necessity are 
done at sidewalls, which may affect the velocity 
distributions. The present results, however, show that the 
velocity distributions can be adjusted through the choice 
of the expression for k2(ν), which may be adjusted as new 
experimental evidence becomes available. 
 
Slip velocities at the bottom boundary are included in the 
computation using Equation (27). Computations are done 
for a slope of 210, and using values for the friction angle δ 
of 200, 150, and 100. The corresponding values of the 
specularity coefficient ϕ′ for the three slopes are 0.6, 0.1, 
and 0.05, respectively. Those values are of the same order 
used by Johnson and Jackson (1987). There are no specific 
data, however, to make more precise choices. The 
resulting velocity distributions are shown in Figure 5. The 
results display a plausible trend of increasing slip velocity 
as the friction angle decreases. 
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Figure 5: Velocity profiles showing slip velocity at the 
boundary. 
 
The present analysis is largely based on the assumption of 
a constant value for the parameter R. Larcher (2002) 
measured values ranging from 0.4 to unity, although the 
experiments were done using particles submerged in 
water. At present, Particle-Image-Velocimetry (PIV) 
measurements are underway (N. Jesuthasan, personal 
communication). Preliminary results from those 
measurements suggest that the value of R is roughly one. 
According to the present analysis the value of R affects 
the velocity profile, but has no influence on that of the 
solids volume fraction. Figure 6 shows the velocity 
profiles for a range of values of R. The results show that 
the value of R affects the magnitude of the velocity. We 
note that the parameter R accounts for the dissipative 
properties of the material, which depend on factors such as 
particle sizes, shapes, and the restitution coefficient. The 
value of R can thus be used as an empirical parameter to 
tune the model to the particular type of flow under 
consideration. 
 
The experimental data of Hanes and Walton (2000) give 
values of mean velocities and solids volume fraction that 
can be compared to the present calculations. They 
presented such values for slopes of 23.40 and 21.20.  They 
also found that steady uniform flow could be achieved 
between slopes of 160 and 240. Therefore, those values are 
used for the frictional and dynamic angles of internal 
friction in the model, φf and φd, respectively. The results of 
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the model are compared to the experimental values in 
Table 1. 
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Figure 6: Velocity profiles for different values of the 
parameter R. 
 
 

Slope 23.40  
Experiments Model 

Mean velocity, 

pdgu  
3.83 3.71 

Mean solids volume 

fraction, ν  
0.4 0.48 

Slope 21.20  
Experiments Model 

Mean velocity, 

pdgu  

3.08 3.00 

Mean solids volume 

fraction, ν  
0.48 0.49 

 
Table 1: Comparison of model predictions with the 
experiments of Hanes and Walton (2000). 
 
The above comparison shows very good agreement for 
mean velocities, and somewhat of a less degree for the 
solids fraction values.  The good agreement in Table 1, 
however, might be fortuitous and have resulted from the 
particular choice of parameters. For example, changing 
the value of the parameter, α from 2.0 to 1.0 gives the 
following results. For slope of 23.40, the mean velocity 
and solids volume fraction were 4.85 and 0.47, 
respectively. For slope of 21.20, the corresponding values 
were 2.52 and 0.48. The corresponding flow depth to 
particle diameter ratios, h/dp were 11.3 and 9.7. 
 
Comparisons with the experimental data presented by 
Vallance (1994) are also done here. The data were adapted 
from measurements of Johnson (1987) and presented as 
mean velocities versus flow depth. Figure 7 shows model 
results superimposed on the data points. Calculations were 
done using the following values for the angles of friction: 
ϕf=150, ϕd=230, and δ=150. The value of the specularity 
coefficient ϕ′ was 0.1. The comparison indicates that 
model predictions are of the same order as the 
measurements. The model also displays similar trends to 
the experiments of increasing velocity with increasing 

flow height and slope. The experiments, however, show a 
maximum value of mean velocity at a particular flow 
depth for each slope. With increasing flow depth, after 
that point, the mean velocity decreases. A possible reason 
for that behaviour is the effect of sidewall friction. As 
flow depth increases, the ratio of flow depth to channel 
width increases, and the role of that friction is likely to be 
more pronounced. The present two-dimensional analysis 
cannot capture that effect. Three-dimensional simulations 
are needed to clarify that issue. 
 

 
Figure 7: Numerical results of mean velocity versus flow 
height compared to data presented by Vallance (1994). 
 

CONCLUSION 
The present paper has focused on the development and 
compilation of simple forms for constitutive equations that 
can be used for the calculation of granular flows. These 
constitutive equations are intended to be used for the 
prediction of flows down inclined chutes. Various 
approximations and simplifications based on the 
geometric restrictions and the particular characteristics 
associated with such channelized flows have been made. 
A major part of the paper is concerned with the various 
contributions to the stresses, the dynamic contributions 
made up of the kinetic and the collisional parts, and the 
quasistatic contribution arising from the enduring contacts 
generated as particles override one another. 
 
The dynamic stress contributions are based on previous 
granular flow kinetic theory results and simplifications 
that result from the assumption that the Savage-Jeffrey 
parameter R is a constant (R is proportional to the shear 
rate divided by the square root of the granular 
temperature). The assumption that R ≈ constant, seems 
plausible for certain chute flows and furthermore 
eliminates the need to make use of the particle fluctuation 
energy equation (sometimes called the pseudo-thermal 
energy equation). The assumption of a constant R 
probably breaks down when there is a significant pseudo-
thermal energy flux divergence over the depth of the flow. 
Such a breakdown might arise when there is significant 
pseudo-thermal flux introduced or removed at a boundary 
such as the bed. Expressions for stresses in both two-
dimensional and three-dimensional flow fields are 
presented. Bed boundary conditions and bed slip 
velocities are discussed. 
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A solution for steady uniform flow was next obtained. The 
results were verified through comparisons to a few 
available experimental measurements. The comparisons 
indicate that predicted velocities and flow rates are of the 
same order as the experiments. Also trends concerning the 
role of various factors, such as slope of the chute and 
friction of the bed, were in agreement with the 
experiments.  
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