

Demonstration of a cost effective medium size Chemical Looping Combustion through packed beds using solid hydrocarbons as fuel for power production with CO₂ capture

(DemoCLOCK)

Dr. Shahriar Amini

Project Coordinator

SINTEF Materials and Chemistry, Norway

Materials and Chemistry

Content

- Chemical Looping Combustion (CLC)
- Packed bed CLC
- Motivation for DemoCLOCK
- Objectives
- Consortium
- Work packages

Chemical Looping Combustion

- Air reactor: Reduced metal is oxidized with air. High temperature N₂ stream produced
- 2. Fuel reactor: Metal oxide (MeO) provides the oxygen for combustion in the fuel reactor. CO₂ is produced
- 3. Reduced metal (Me) is used again in step 1

Materials and Chemistry

Advantages of CLC systems

- Power production with inherent CO₂ separation
- "No" energy penalty for separation of CO₂
- Potential for very high CO₂ capture efficiency
- No NO_x formation (no flame!)
- Direct contact between air and fuel is avoided

Process concepts (circulating fluidized bed)

- CFB system:
 - Recirculation of particles
 - Continuous operation
 - Proven technology
- Disadvantages:
 - Equipment erosion
 - Difficult to transport oxygen carriers
 - ➢ Difficult gas-solid separation (formation of fines → gas turbine)

Packed Bed Chemical Looping Combustion

- An alternative reactor concept in which the recirculation of the particles is avoided
- Packed bed CLC:
 - Stationary solids
 - Periodic switching of gas flows
 - Dynamically operated parallel reactors for continuous operation
 - Proof of concept in laboratory scale by the research group at Technical University of Eindhoven, Netherlands

Advantages of packed bed system

- System is more compact and much easier to scale up on a technological basis
- Separation of gas from particles is intrinsically avoided to greatly simplify the system
- Better utilization of oxygen carrier

FP7 ENERGY - Efficiency Improvement of Oxygen-based combustion

Objective

A sustainable solid hydrocarbon value chain with a focus on efficient and clean coal utilization

Expected impact

- Further development of oxygen-based combustion technologies with a view on the CO₂ capture process
- Demonstration in medium scale demonstration plant
- Focus of the activities: scalability of the results to industrial scale

Motivation for DemoCLOCK

- Fossil fuelled power plants are major emitters of greenhouse gases (GHG)
- Coal accounts for 40% of the electricity generated worldwide, while contributing to nearly 29% of all carbon emissions
- Carbon Capture and Storage (CS) is a way to reduce the CO₂ emissions from fossil based power plants
- The current techniques (i.e. post and pre combustion capture) are hampered with high cost for CO₂ capture
- There is a strong need to develop and demonstrate processes which are cost effective in transforming hydrocarbons into energy integrated with CO₂ capture

DemoCLOCK project

Duration: 1 June 2011 - 1 June 2015

Funding: FP7 ENERGY.2010.6.1-1 Efficiency Improvement of Oxygen-based Combustion Total budget: € 8,193,476

10 partners across Europe

Technical objectives of DemoCLOCK

The main objective: to demonstrate the technical, economic and environmental feasibility for implementing packed bed CLC in large-scale power plants.

- Demonstrate a medium sized packed bed CLC reactor (500 kW) for 3000 hours at IGCC facility at Elcogas (Puertollano, Spain)
- Convert gasified solid hydrocarbons (raw syngas) to energy at high temperature and pressure
- Technological implementation and integration of the process
- Reactor design for medium and large scale
- Selection of suitable minerals as oxygen carrier materials
- Environmental impact assessment and waste management
- Commercialization of the technology

Demonstration site: Elcogas Puertollano, Spain

DemoCLOCK - consortium

.

Materials and Chemistry

Technical work packages	Lead	Partners
WP1: Performance tests and manufacturing of oxygen carrier materials	vision on technology	SINTEF TU/e Technische Universiteit University of Technology
WP2: Reactor Design & optimisation	SINTEF	TU/e Technische Universiteit Eindhoven University of Technology
WP3: Basic engineering & pre-commissioning	Array	
WP4: Commissioning & Demonstration	ECN Hange manufacture of the Restorations	Narray industries
WP5: Technology implementation plan for a large-scale CLC power plant	MLANO	FOSTER WHEELER Engineering for a Better World Engineering for a Better World ELCOGAS
WP6: Environmental impact assessment and waste management	CALDWARE D	VICO SINTEF VICO SINTEF COSTER OVHERLER Regineering for a Better World
WP7: Commercialization		industries () () () () () () () () () () () () ()

Materials and Chemistry

•

. . . .

WP1 - Performance tests & manufacturing of oxygen carrier materials

- Goal: selection and development of suitable oxygen carrier for operation in medium sized fixed bed CLC reactor (500kW)
- Criteria: O₂ transfer capacity, reactivity and kinetics, shape, pressure drop and packing density, mechanical strength, lifetime >20,000h, and sulphur poisoning resistance
- Deliverables and milestones: selection of materials (SINTEF, TU/e), production of oxygen carriers (CTI), testing and evaluation in TGA and labscale reactors (Sintef, TU/e), sulphur tolerance (ECN), physicochemical characterization including mechanical performance (VITO)
- The development of new oxygen carrier materials for fixed bed CLC operation is coming to an end in the project, and **has resulted in materials that can do the job**. The required amount of oxygen carrier material for the demo scale operation will be produced by CTI.

WP2 - Reactor design and optimization (SINTEF, TU/e)

Objectives:

- Establish design criteria for a fixed-bed CLC reactor
 - Reactor geometry and size
 - Catalyst size and shape
 - Establish operating conditions and cycle times
- Establish necessary simulation models of the reactors
 - ID reactor models for the actual design/operation simulations
 - Multiphase flow models for simulation of details → Input to 1Dmodel

WP2 - 1D reactor model

- Dynamic model of fixed-bed reactor based on Finite Volumes
- Simulates total operation sequence, including:
 - Oxidation
 - Reduction
 - Purging
- Predicts
 - Temperature in gas, temperature profile through catalyst particle
 - Gas composition (both in gas phase and inside catalyst)
 - Pressure drop

WP2 – Simulation-based engineering

cells

WP3 Basic and Engineering design (Array, ECN)

Scope: Design, manufacture and commissioning of Demonstration plant

Design parameters

- pressure 26 bar (Elcogas syngas 19.8) Reactor operating pressure 19 bar
- Reactor temperature: 1100° C

Demonstration Reactor (outside Diameter 1m, height 4m)

General layout of Democlock plant (L6, w 2.4, H 6m)

WP4 - Commissioning and Demonstration (ECN, Array, Elcogas)

Objectives

- Commissioning tests: testing outputs and reactor conditions during operation of the 0,5 MW demonstrator (*Site Acceptance Test*)
- Operating tests: optimization of operating conditions of the CLC reactor (*Determination of Operational Window*)
- Long term tests: Operation of CLC packed bed system to prove feasibility with 3,000 operating hours (~3 months) (*Data Acquisition*)
 - Validation and improvement of system models: data input to WP2 (reactor design and scale up)
 - Provide input parameters for scale up of the process to industrial scale: data input to WP5

WP4 - Commissioning and Demonstration

- Activities:
 - Transport of containerized Democlock reactor from Array (NL) to Elcogas (ES)
 - Assemble at Elcogas and connect to Elcogas infrastructure
 - Tests (pressure, temperature, connections (gas/electricity) etc) to see wether everything is safety proof
 - Fill reactor with oxygen carrier (pre- or in-situ activated)
 - Test for operating window, cycle time, etc.
 - Determine optimal conditions and do a continuous test for 3 months.
 - Logged data will be used to refine models developed in WP2 that will be used to design a full scale (GW) system in WP5

Materials and Chemistry

WP5 - Technology implementation plan for a large scale CLC-based power plant (Polimi, FWI, ECN)

Objective: Assessment of the potential of packed bed reactor (PBR) CLC configurations in the frame of coal fired, zero CO_2 emission power plants.

Achievements:

- Integrated Gasification Combined Cycle considered to exploit a PBR-CLC system for power generation
- Operating cycle of the PBR-CLC reactors
 - high temperature heat to a gas turbine based combined cycle
 - fully convert syngas to a pure CO₂ stream for storage
- Complete power plant mass/energy balance:
 - efficiency improvement of 4 to 5 % points can be achieved over comparable IGCCs with pre-combustion CO₂ capture based on commercial solvent absorption
- A tentative design of the large scale PBR-CLC:
 - string of 14 reactors, 5.5 m in diameters and 11 m long, is required to serve in a 350 electric MW power plant

WP6 - Environmental Impact Assessment and Waste Management (IEIA, VITO, Elcogas, FWI, Polimi, SINTEF)

Goal

 Assessment of safety and environmental impacts of packed bed CLC technology with special emphasis on wastes management

Objectives

- Assessment of the health, safety and environmental issues inherent in medium size demonstration scale CLC technology
- Assessment of the health, safety risks and environmental impacts of commercial scale CLC technology

WP7 – Commercialization (FWI, Polimi (PDM), all other partners)

Task		Partners involved
7.1	Industrial feedback workshops	IEIA, all
7.2	Cost of electricity (COE) evaluation and comparison with alternative technologies	FWI, PDM, all
7.3.	Business plan	Array, SINTEF, all
7.4	Risk and mitigation	FWI, PDM, all
7.5	Overall feasibility study and evaluation of a full- scale packed bed CLC power plant with a view to the potential commercialization	FWI, PDM, all

- -

. . . .

WP7 - Financial modeling and sensitivity analysis

Example of the results

Thank you

http://www.sintef.no/Projectweb/DemoClock/

Materials and Chemistry

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1