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Why simulations?

B Not subject to any physical
limitations
B Change any design/operating
variable

B Simulate real scales and
operating conditions

B Extract any flow variable from
anywhere in space/time

M |deal for:

B Process optimization and scale-
up studies

B Prototyping of novel concepts

B Troubleshooting of existing
reactors
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Why simulate CO, capture systems?

B Relatively small amount of funding available
B Large number of candidate technologies
B Limited time to traverse the technology risk peak

CO, geological sequestration and monitoring @ 'echnologies required for first
in aquifer demonstration projects

O Technologies in the making

CO, geological sequestration and
monitoring in oil and gas fields

2™ Generation separation technologies

1* generation membranes (for CO,/CH, separation at
(solvents, sorbents, membranes)

wellheads)
1# generation sorbents (for coal-to-liquid plants)

1% generation solvents (for gas processing
nts)

CO; injection for EOR

Atmospheriears s CO, pipelines for EOR

Technological
‘Valley of Death’
Large/Commercial-scale projects

Lab work Bench scale Pilot Scaie with ongoing optimization Widely-deployed commercial scale projects

Air separation unit

Capital requirement * Technology risk

Research  Development Demonstration Deployment Mature Technology

A

Maturity
http://cdn.globalccsinstitute.com/publications/factbook-bringing-carbon-capture-and-storage-market
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Classical process development

B Chemical engineers have used models for a very long time
B Model is a vehicle to condense state of the art knowledge
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Johnsen et al. Energy Procedia 2009:1
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Accelerated process development-
potentials for low risk - high return

B More trustworthy model = larger scale-up steps
B Potential to greatly accelerate and optimize
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Accelerated development: Big picture
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Accelerated development: Big picture
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Model development: Fluidized beds

M Challenge: Good accuracy
required at low computational
costs

B The use of super computers
M Current works on large scale
models:

B Dense Discrete Phase Model
(DDPM)

B Filtered Two Fluid Model (fTFM)
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Model development: Packed beds

B Simpler flow problem

B More sensitive to accurate material and
kinetic data

B Large temperature variations

B Large chemical composition changes

B Diffusion resistance within larger pellets
must be accurately modelled

B 1D models well developed — ready for
industrial applications (DemoCLOCK)

W Further development required:

B Multi-dimensional models for special cases
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Accelerated development: Big picture
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Model validation: Principle

B Model generality must be explicitly
demonstrated

m Will inevitably be used far from
validation conditions

B Will be used as a basis for multi-scale
modelling
M Dedicated experimental campaigns
required

B Collect data over a wide range of flow
variables

B Collect detailed local measurements

B Separate hydrodynamics, species
transfer, heat transfer and reactions

SINTEF
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Model validation: Hydrodynamics

M In collaboration with Eindhoven University of Technology

Particle size: Particle size: Particle size: Particle size:
150 pm 350 um 150 pm 350 um
Fluidization velocity: Fluidization velocity: Fluidization velocity: Fluidization velocity:
0.4 m/s 0.4 m/s 0.8 m/s 0.8 m/s
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Model validation: Reaction Kkinetics

M In collaboration with Eindhoven University of Technology
B Appear to be on the right track, but more work needed
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B Two variables in this case: temperature and fluidization
velocity

B Simulations averaged over 30 seconds
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Accelerated development: Big picture
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Simulation based reactor design:
Principle

B Develop methods on the assumption of high model fidelity

M Allows for full utilization of the fundamental advantages of
simulation based reactor design:

B Detailed process behaviour under any operating conditions

B |deal for optimization over a wide range of operating and design
parameters

B Complete creative freedom for developing novel reactor concepts

B Models will eventually live up to these expectations
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Process behaviour: Fluidized bed

M Bubbling bed CLC with periodic gas switching

FeO H2 CoO H20 CO2 02
©-001) | ©0-021) | (©-061)] (©-1) | (0-061) | (0-021)
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Process behaviour: Packed bed

B Packed bed CLC with periodic gas switching

]
'\
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|_
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Optimization: Lowest cost operation

B Simplified example for
finding lowest cost
reactorP & T

B Challenge: Highly
dependent on accurate
cost estimates as a
function of all
independent variables

T.. . =900+200T
Pacryai‘ - 5 X Z'SP
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Conclusions & future work

B Simulation-based reactor design shows great promise especially
for application to second generation CO, capture processes

B Dedicated experimental validation is key

B Model development and more widespread utilization will
follow swiftly from such campaigns

B On the horizon for future work:
M Reactive model validation
B Reactive filtering for large scale simulations
B Representative cost-functions for optimization studies
B Increased application to real engineering problems
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