

To be sure.

PEMFC Lifetime and Durability an overview

Thessaloniki, September 21 2011 Frank de Bruijn

We are dedicated to designing and producing the best value for money PEM fuel cell stacks in the market.

PEMFC in real life

2007 Passenger vehicle: 2,375 hrs operated on 1 stack

Daimler in DoE programme

2011 City Bus > 10,000 hrs in operation on original stack

UTC AC Transit

2011

Base load > 11,000 hrs in operation on original stack

Nedstack at Akzo Nobel

Technical requirements differ (1/2)

			O electro	Uten Energy Uten Uten Energy Uten Uten Energy Uten Uten Uten Uten Uten Uten Uten Uten
	Automotive	Bus Fleet	Backup power	Power generation
System Cost per kW	\$ 30	\$50 - \$70	\$1000 - \$2000	\$1000 - \$2000
Stack Power density kW/I	2	0,5 – 2	Not relevant	Not relevant
Start up time	5 s at 20°C 30 s at -20°C	300 s at 20°C 300 s at -20°C	Immediate	< 30 min.
Hours in operation	5,000 incl. start/stops	18,000 incl. start/stops	1500 - 4000 incl. start/stops	40,000 - 90,000

Technical requirements differ (2/2)

			electro	WWER NEDSTACK Com
	Automotive	Bus Fleet	Backup power	Power generation
Operating cell voltage	0.5 – 0.7 V	0.6 – 0.7 V	0.6 – 0.65 V	0.7 V
Current density	> 1 A.cm ⁻²	0.6 – 1 A.cm ⁻²	> 1 A.cm ⁻²	< 0.6 A.cm ⁻²
Voltage cycles (OCV – load)	45,000* - 1,200,000	>12,000* - 1,800,000	1000 - 4000	< 100
Cold starts	> 15000	> 4000	1000 - 4000	< 100
Freezing	Yes	Yes	Yes	Exceptional
Fuel Quality	High	High	High	Depends on source

* Assuming optimized hybridization

Gap between present status and commercialization

			Oelectro	REAL CIRCULATION OF CONTRACT O
	Automotive	Bus Fleet	Backup power	Power generation
System Cost per kW	Too high	Too high	ОК	Depends on feed-in tariff (> 10 ct/kWh)
Stack Power density kW/I	ОК	ОК	ОК	ОК
Start up time	OK	ОК	ОК	ОК
Hours in operation	Projections OK for presently used components	Projections OK for presently used components	OK	OK, but economics improve with further extension

Work ahead

Transportation

Reduce costs while maintaining achieved lifetime and durability

Demonstrate lifetime on stack and system level

Stationary

Increase lifetime of stacks to > 40,000 hours without increasing costs

What determines end of life ?

From the laboratory to real life

Laboratory testing

- Well defined load profile
- Well defined gas flows and humidity level
- Well defined temperature
- Clean hydrogen and air, or well controlled added contaminants
- Easy to collect run hours (24/7) —
- "Academic" definition of end-of-life

Real life testing and use

- Varying load profile, user specific
- Limited control of gas flows and humidity level
- Frequent temperature variations
- Hydrogen and air quality vary in Time and are not logged
- Data collection can take many years
- Economic decision for end of life or cell failure

versus

There is no dominant degradation mechanism

Conditions:

load operated at constant current, 800 mA cm⁻² for the entire 26,300 h life test. Cell temperature 70°C.

Air: 2.0 x stoichiometry, ambient pressure, 100% RH.

Hydrogen: 1.2 x stoichiometry, ambient pressure and 100% RH.

Observed MEA changes:

- · Loss of water removal efficiency
- · Detoriation of seals
- Loss of Pt surface area in cathode
- Thinning of membrane
- Increased hydrogen cross-over

PEMFC component durability

Membrane degradation in PEMFC

F.A. de Bruijn, V.A.T. Dam, G.J.M. Janssen, Fuel Cells, 2008, vol8, 3

PEMFC membrane thinning and rupture

Wrinkled non-reinforced PFSA membrane

Scanning Electron Microscope image of a wrinkle in the catalyst coated membrane

Electrode degradation in PEMFC

F.A. de Bruijn, V.A.T. Dam, G.J.M. Janssen, Fuel Cells, 2008, vol8, 3

PEMFC electrode issues

Degradation: Pt

Pt nano-particles (3-4 nm) are not stable

- Coarsening
- dissolution

Loss of active surface area

increased kinetic losses

Accelerating factors:

- elevated potential
- varying potential (oxide growth/dissolution)
- support corrosion

Mitigation:

- low humidity
- large initial particles

Shao-Horn, Top. Catal. 46 (2007) 285

PEMFC electrode issues

Degradation: Carbon

Surface oxidation $C+H_2O \rightarrow CO_{surf} + 2H^+ + 2^e$ E > 0.3 V vs RHEOxidation to CO_2 $CO_{surf} + H_2O \rightarrow CO_2 + 2H^+ + 2^e$ E > 0.8 V vs RHE, Pt catalysed

Sluggish kinetics but accelerated by potential > 1.2 V

- Cathode: During start stop or local fuel starvation
 - H2/air front at anode from air leaching-in or cross-over
- Anode: During fuel starvation (cell reversal)

Monitor: CO2 in exhaust

- Effect: electrode thinning, loss of active area, increased hydrophilicity
- Mitigation: more graphitic carbon \rightarrow less surface area, fewer Pt particles per weight unit C

Pt dissolution / re-deposition

SEM in back scatter mode: Cross section of MEA; Visible is the band of light Pt spots near the cathode catalyst layer, as confirmed with EDX analysis

Pt dissolution / re-deposition upon voltage cycling

0 x

10000 x

Pt particle coarsening

d 0 2.4 nm - SA loss 0% d10000 3.8 nm - 38% d30000 5.8 nm - 55%

F. A. de Bruijn, V.A.T. Dam, G.J. M. Janssen, R. C. Makkus, 216th ECS meeting, Vienna, Oct 2009.

Contaminants - anode

Large scale production of $H_{2:}$ quality can be best controlled; Gas will be dry, low CO content, but there is a relation between purity and cost per kg H_2 (including infrastructure cost)

Local production of $H_{2:}$ quality is less controlled; Gas will contain CO, NH_3 , aromatics in the ppm range CO_2 , N_2 , CH_4 on %-level

Local production of H_2 with electrolyzers: primary product is saturated with water. Other contaminants that can be present: NH_3 , Formaldehyde, Formic acid, Sulfur

 $SO_2 \rightarrow can be tolerated to \sim 10 ppb$ $H_2S \rightarrow can be tolerated to \sim 8 ppb$ HCHO \rightarrow can be tolerated to $\sim 0.6 ppm$ $CH_4 \rightarrow can be tolerated to > 1000 ppm$

Composite Data Products, http://www.nrel.gov/hydrogen/cdp_topic.html#performance

Contaminants - cathode

 $CO \rightarrow oxidised by O_2$; can be tolerated to ~ 250 ppm $NO_2 \rightarrow partially oxidised by O_2$; can be tolerated to ~ 3 ppm $SO_2 \rightarrow partially oxidised by O_2$; can be tolerated to ~ 2 ppm $NH_3 \rightarrow oxidised by O_2$; tolerance level unclear

Narusawa, K, Myong, K, Murooka, K, & Kamiya, Y (2007) A Study Regarding Effects of Proton Exchange Membrane Fuel Cell poisoning due to impurities on fuel cell performance, SAE Technical Paper Series, pp. 2007-01-0698

Gas Diffusion Media are extremely important for the performance of the PEMFC

Loss of hydrophobicity can have a large impact on water management

Carbon oxidation in microporous layer similar to in electrodes

- oxidation
- corrosion

Conditions:

- elevated potential
- fuel starvation (anode & cathode)

Seal degradation in PEMFC

- Seals prevent external and internal leakage
- Set compression force on MEA
- Materials choice is crucial for preventing seal degradation
- Processibility is more important than materials costs

PEMFC cell plate issues

Carbon composite plates

- Mostly applied in fuel cells for long life applications where power density is not crucial
- Under most fuel cell conditions, no relevant degradation issues (plates are more durable than GDM and electrodes)

Metal plates

- Applied by automotive OEM's for obtaining very high stack power density (~ 2 kW/l)
- Under fuel cell conditions, only a very limited number of materials are suitable

Flow plate degradation in PEMFC

Before fuel cell operation

After fuel cell operation

316 L

Driving the cost down can jeopardize achieved durability and lifetime

Durability is especially dependent on the MEA

	Main degradation mechanism	Direct Effect	Most stressing Icondition ²
Electrode	Loss of Pt surface area Carbon corrosion	Lower output over full I range	High cell voltage Contamination Starvation
GDL	Loss of hydrophobicity	Increased flooding, lower output at high I Instability	High cell voltage Starvation
Membrane	Membrane thinning, rupture, pinholes	Gas crossover, external leaks: lower output at low l	Low RH High T RH cycles
Seal	Loss of compression characteristics	Internal and external leakage Poisoning of MEA	Direct contact with electrolyte

Flow
platesComposites:
CorrosionFlow field detoriation, leading
to instabilityExtreme oxidative potentialsMetal based:
Corrosion (anode)
Passivation (cathode)Membrane resistance
Contact resistanceHigh cell voltage
High cell voltage

Our PEM Power Plant at AkzoNobel Delfzijl has proven durability in practice

23,000 hours on the grid:

- Up time since Jan 2011 > 90%
- Low maintenance costs
- Stacks has proven lifetime > 11,000 hrs

Since start-up: 99 stacks 7425 MEAs

Nedstack has proven stack lifetime of 10,000 hours

Actual measurements at AkzoNobel Delfzijl

Current decay rates suggest Nedstack's stacks will survive over 20,000 hours

Extrapolation of actual measurements at AkzoNobel Delfzijl PEM Power Plant

Cell – cell variation does not increase, proving predictable degradation

Hourly averaged cell voltage at 80 A

	Average cell voltage	Highest cell voltage	Lowest cell voltage
Beginning of Life	739 ± 15 mV	771 mV	703 mV
At 10,500 hrs	710 ± 11 mV	725 mV	663 mV

Nedstack offers fit for purpose stacks

Conclusions

- 1. There are many ways to damage PEMFC components
- 2. Proper selection and integration of materials can lead to MEAs and stacks that show low decay rates and long life, but might conflict with cost targets
- 3. The way that MEAs and stacks are operated are determining factors for decay and lifetime (see conclusion 1)
- 4. Contaminants are a complicating factor with a long term effect that is not well understood/investigated
- 5. The translation from the component to the stack to the system level is crucial for creation of end-user acceptance

Acknowledgements

The FCH-JU is greatfully acknowledged for financial support through the STAYERS project – FCH JU 256721