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Outline

This thesis is divided into two parts. The main focus of Part I is the theory behind
the transport equations, and the discretisation principles used in the work together
with a presentation of main methods and ideas. Many details have been left out
in the papers presented in Part II, so the first part serves as a summary and gives
background material to accompany published and submitted papers. Description
of the developed and implemented methods, together with numerical results, are
given in the research papers included in Part II. The main focus of these papers
is on issues related to transport in unfractured and fractured porous media. In
particular, we present a discontinuous Galerkin scheme, which combined with a
numerical flux function, gives a fast, accurate and robust solution of advection
dominated transport equations.



Part I

Chapter 1 gives an introduction to motivate the development of fast solvers for
transport in unfractured and fractured porous media. Chapter 2 gives a brief
overview of the physics and mathematics behind flow in porous media. In par-
ticular, the fundamental definitions needed for the mathematical model developed
in Chapter 3 are explained. The numerical schemes for this mathematical model
are derived in Chapter 4. In Chapter 5, the numerical scheme is applied to realistic
examples for groundwater protection that are not presented in the included papers.
Finally, in Chapter 6, we give a summary of the papers included in Part II.

Part II

The research papers included in Part II are:

Paper A: An Efficient Discontinous Galerkin Method for Advective Transport
in Porous Media. J. R. Natvig, K.-A. Lie, B. Eikemo and I. Berre. Ad-
vances in Water Resources, Volume 30, Issue 12, pages 2424-2438, De-
cember 2007.

Paper B: Fast solvers for flow in porous media based on discontinuous Galerkin
methods and optimal reordering. J. R. Natvig, K.-A. Lie and B. Eikemo. In
Proceedings of the XVI International Conference on Computational Meth-
ods in Water Resources, Copenhagen, June 2006. Eds., P.J. Binning et al.

Paper C: A discontinuous Galerkin method for computing time-of-flight in
discrete-fracture models. B. Eikemo, I. Berre, H. K. Dahle, K.-A. Lie
and J. R. Natvig. In Proceedings of the XVI International Conference on
Computational Methods in Water Resources, Copenhagen, June 2006. Eds.,
P.J. Binning et al.

Paper D: A discontinuous Galerkin method for transport in fractured media us-
ing unstructured triangular grids. B. Eikemo, K.-A. Lie, G. T. Eigestad
and H. K. Dahle. Submitted.

As all the papers are results of cooperation, some remarks about my contribu-
tions are necessary.

In Papers A and B, we introduce an efficient discontinuous Galerkin (dG)
method for advective transport in porous media. My contributions to the papers
include parts of the method development and implementation of the dG schemes
for time-of-flight and stationary tracer transport, mainly the last mentioned. I also
took part in the convergence study in Paper A.



Paper C presents a discontinuous Galerkin method for computing time-of-
flight in discrete-fracture models on Cartesian grids. My contributions to the paper
include the implementation and investigation of different approaches for the dG
discretisation in fractured regions.

In Paper D we continue the ideas from Paper C by extending the methodology
to unstructured triangular grids such that more complicated grids may be han-
dled. My contributions to the paper include the implementation of the dG scheme
in combination with an optimal reordering of the elements on unstructured tri-
angular grids. Additional to the convergence study of different perturbed grids,
I investigated various approaches for the dG discretisation for discrete-fracture
models.
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Chapter 1

Introduction

1.1 Reservoir Simulation

A reservoir is a trap in the subsurface where fluids, such as hydrocarbons (oil and
gas) and water, have accumulated over millions of years. The reservoir rock is
typically sedimentary in nature and consists of an interconnected porous network
where fluids may flow, subject to forces such as fluid pressure, capillarity and
gravity.

It should be clear that modelling reservoir flow is highly complex, involving
different nonlinear physical effects and complex geometry. However, an under-
standing is necessary so that different production scenarios and reservoir inter-
pretations may be tested. To some degree, this can be done in laboratory experi-
ments. But these can only be performed on small scale samples of the reservoir
(core plugs), and the experiments tend to be expensive to conduct. Instead, the
use of mathematical models has become progressively more prominent in reser-
voir engineering. Using simple mathematical models with analytical solutions,
engineers can provide basic performance predictions. However, for the more ad-
vanced models, analytical answers are not available. Instead, numerical methods
for simulating the models have become popular, especially with the advent of fast
computers.

Reservoir simulation is the study of how fluids flow and behave in a reser-
voir under different conditions. Unfortunately, obtaining an accurate prediction of
reservoir flow scenarios is a difficult task. One of the reasons is that we can never
get a complete and accurate characterisation of the rock parameters that influence
the flow pattern down to the pore scale. And even if we did, we would not be able
to run simulations that exploit all available information, since this would require
a tremendous amount of computer resources that exceed by far the capabilities of
modern multi-processor computers.
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Moreover, reservoir modelling has become very advanced over the past
decades. Advanced drilling techniques and enhanced seismic and geological char-
acterisation of reservoirs have emerged and has resulted in more accurate geolog-
ical information. Consequently, there is a substantial research activity that aims
toward faster, more robust, and more accurate reservoir simulators. In this work
we seek fast numerical schemes combined with suitable mathematical models for
the reservoir.

1.2 Applications

It is of great importance to determine the flow characteristics of hydrocarbons in
oil and gas reservoirs and groundwater in aquifers. Reservoir simulation has been
an integrated part of oil-reservoir management for nearly half a century. A reser-
voir simulator can be used to decide the optimal operating policy, or it can be
used to forecast future production. But such a tool can also be used within envi-
ronmental studies, for instance by predicting impact of contaminant, performing
groundwater management, or remediation of polluted soil.

1.2.1 Oil Recovery

A petroleum reservoir is a porous medium where hydrocarbons exist in the pore
space. To recover the oil and gas, wells are drilled into the reservoir, some which
produce oil and gas, and others which inject water and gas to provide pressure
support. Since it is costly to drill and operate wells, it is desirable to optimise
their number, placement and operation in the reservoir. For this to be done, a
good understanding of the fluid dynamics in the reservoir is necessary.

In the oil industry, the goal is to determine how hydrocarbons and water be-
have in a reservoir under different conditions, and how local reservoir heterogeni-
ties affects the oil and gas recovery in reservoirs. Reservoir simulators are widely
used to aid the planning and implementation of enhanced oil recovery strategies.
The simulators can estimate production characteristics, calibrate reservoir para-
meters, visualise reservoir flow patterns, etc. The main purpose is to provide an
information database supporting oil companies in positioning and managing wells
to maximise the oil and gas recovery. See [2, 3] for details of petroleum reservoir
simulation.

1.2.2 Groundwater Protection

Groundwater is an essential element of the hydrological cycle. A portion of the
water that falls as precipitation infiltrates into the ground and becomes ground-
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water. The water may stay in the groundwater reservoir for days or thousands of
years. About 30% of freshwater on Earth is trapped in the sub-surface. Groundwa-
ter is the most important contribution to drinking water supply in many countries
all around the world. Understanding how groundwater moves is important for
predicting how quickly underground aquifers will be replenished when water is
drawn up from wells drilled down from the surface. Sometimes, groundwater can
become tainted with salt water, or even toxic compounds seeping from a contami-
nated source. In reality, impermeable rock and fractures can form pathways for the
migration of contaminants. In these cases it is especially important to understand
groundwater movement, in order to contain the spread and prevent contamination
of aquifers used for drinking water or irrigation. See Figure 1.1 for a sketch of a
groundwater case.

Groundwater discharges into lakes, ponds, streams, and wetlands. This usually
occurs as underground seepage. It is important to understand that groundwater
and surface water are connected, and what happens to one can affect the other.
Pollution of groundwater resources can therefore seriously endanger lives. Thus,
it is important to determine flow and transport paths in the subsurface. Since the
material in the subsurface consists of porous media, mathematical and numerical
models as used for oil reservoir simulation may also be used within groundwater
flow.

Figure 1.1: Sketch of a groundwater case. Courtesy of R.Helmig, Universität Stuttgart.

1.3 Naturally Fractured Medium

Modelling fractured reservoirs is an important issue in reservoir simulation. A
naturally fractured reservoir can be defined as a reservoir containing planar dis-
continuities created by natural processes like diastrophism and volume shrinkage,
see Figure 1.2 for illustrations of fractured media.
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Figure 1.2: Illustrations of a fractured media. Courtesy of R.Helmig, Universität
Stuttgart.

Fractured reservoirs are complex geological structures, where fractures have
higher permeability and porosity than the surrounding rock (matrix). Although
the aperture of fractures is very small compared to the dimensions of the reser-
voir, the fracture network often forms the primary pathway for fluid flow and
mass transfer, and has a significant impact on the flow characteristics of the porous
medium. Even though the porosity of the rock matrix is very small, the storage
capacity of the rock matrix is higher than the storage capacity of the fracture sys-
tem. This is due to the fact that the total volume of the rock matrix is in general
much higher than the total volume of the fracture system. In summary, a fractured
porous medium represents a system, principally consisting of two components
with contrary properties; the fracture system has high permeability, high porosity
(if one can assume porosity to open fractures), low total volume, and low storage
capacity; the rock matrix has low permeability, low porosity, high total volume,
and high storage capacity. Because of these significant differences, the require-
ments for a model of the fracture system are absolutely different from those for a
model of the rock matrix. The discontinuities of the rock matrix resulting from the
fractures can be regarded as a special case of heterogeneities, where the fractures
have totally different properties than the rock matrix. Due to the complex geome-
tries and potentially large variations in parameter values, fractures impact the flow
pattern, and accurate representation of naturally fractured reservoirs represents a
challenge for the characterisation, modelling, and simulation of petroleum and
groundwater reservoirs, see [17, 45, 15, 39, 50].

Fracture-matrix models are in general described by a discrete or a multi-
continua model (often denoted a multi-porosity model), see [45, 24, 49, 18, 19].
In a discrete model, the fractures are considered as discrete structures integrated
in the surrounding rock matrix. With such a model, we have the possibility to
model single- and multi-phase flow and transport processes very similar to nature.
The fractures can be modelled equidimensionally (2D fractures in 2D space), or
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as lower-dimensional elements (1D fractures in 2D space). Using multi-continua
models, an representative elementary volume cannot only be obtained for porous
medium, but also for the fractured system. The sub-domains is homogenised
based on averaged parameters for rock matrix and fracture system. Thus, differ-
ent flow and transport models can be used for the different continua. In these ap-
proaches, single-continuum, double-continua and multi-continua approaches are
distinguished. The continua are coupled by exchange parameters. Exchange terms
describing the interaction between the matrix system and the fracture system are
very important using multi-continua models, see e.g.[38].

1.4 Fast Simulation of Transport in Porous Media

Reservoir simulation is based on mathematical models in the form of a coupled
system of partial differential equations relating the dynamics of the trapped fluids
and physical properties of the reservoir.

To compute the transport of fluids in a porous medium one, has to use nu-
merical methods to solve the differential equations with corresponding boundary
conditions for fluid pressure and velocity, and the equations for the transport of
each fluid phase. Numerical solutions of the transport equations are often a bot-
tleneck in current reservoir simulators. With the advances in numerical methods
and computer technology, it is a continuous need of faster, more robust and more
accurate reservoir simulators.

In this thesis we study a particular solution technique for a class of hyperbolic
transport equations to approach the solution of incompressible flow of fluids in
heterogeneous, unfractured, and fractured, porous media. Most of the work focus
on advective transport in a porous medium completely filled with fluids of a single
phase to describe quantities like time-of-flight, tracer concentration, contaminants
concentration, etc. The velocity is given, time-independent and divergence free.
We apply a higher order discontinuous Galerkin (dG), method combined with a
prior optimal reordering, to the time-of-flight equation and the stationary tracer
equation on different computational grids. Our motivation for studying these
equations comes from transport in porous media, where equations of this form
are used as simple transport models, or arise as the result of a semi-discretisation
of a more complex transport equation. Accurate solution of these equations may
predict the flow pattern in a reservoir and is therefore of great importance in areas
such as oil recovery and groundwater hydrology.

Since the porous media considered in reservoir simulation commonly are
strongly heterogeneous (and often fractured), the discontinuous Galerkin method
is well suited to capture the discontinuities in the solution. The discontinuous
Galerkin methods were introduced in 1973 by Reed and Hill [44] as a technique
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to solve neutron transport problems. The methods quickly found use in a wide
variety of applications; see e.g., [12, 25, 26, 10, 4, 46]. The first numerical analy-
sis of the method for a linear advection equation was presented by Lesaint [30],
while Lin and Zhou [31] provided convergence of the method for nonsmooth so-
lutions. Cockburn and Shu [13, 14] analysed and extend the original dG method
to systems of hyperbolic conservation laws and convection dominated problems.
Recently, the technique has become popular as a method for solving fluid dynam-
ics or electromagnetic problems. A general overview of the method is available in
[11].

The dG method requires only a simple treatment of the boundary conditions to
achieve uniformly high-order accuracy and has several appealing properties. The
method is very well suited to handle complicated geometries and can easily handle
irregular meshes with hanging nodes and approximations that have polynomials of
different degrees in different elements. Hence, the dG methods can easily handle
hp-adaptivity strategies since refinement or coarsening of the grid can be achieved
without taking into account the continuity restrictions typical of conforming finite
element methods.

Since the approximate solution of the dG method does not have to satisfy
any inter-element continuity constraint, it produces mass matrices that are block-
diagonal. This renders the method highly parallelisable. Other important prop-
erties of the dG methods are higher order convergence and local conservation of
mass.

Due to their flexibility, dG methods are popular among the finite element com-
munity and they have been applied to a wide range of computational fluid prob-
lems.

An important distinction between the dG method and the usual finite-element
method is that in the dG method the resulting equations are local to the generating
element. The solution within each element is not reconstructed by looking to
neighbouring elements. Its compact formulation can be applied near boundaries
without special treatment, which greatly increases the robustness and accuracy
of any boundary condition implementation; see [6, 7, 27, 51, 9] for details about
general finite element methods.

A drawback of the method is the presence of small undershoots when solv-
ing problems using higher-order basis functions. The dG method has difficulty to
capture shocks or sharp gradients in the solution without creating spurious oscil-
lations. This problem may be handled by introducing a slope limiter. In our work,
we do this by reducing the order of the basis functions used in the dG scheme
together with grid refinement in the areas where the problems occur.

We restrict our attention to transport problems with positive characteristics,
i.e., models where all waves in the solution travel along (integral curves of) the
velocity field. By using numerical methods with compact stencils and upwind flux
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approximations, the directness of the underlying differential equation is preserved
at the discrete level. The dependency between two neighbouring grid blocks is
directional such that the solution in one grid element can (and must) be com-
puted before the solution in the other elements. By taking advantage of the di-
rectional dependency between elements we may reorder the elements in a suitable
sequence, such that the global system becomes block triangular, see Duff and Reid
[20].

In our numerical model for computing transport in porous media, we com-
bine the dG method with an upwind numerical flux function. The numerical flux
function creates a one-sided dependency by viewing the elements in the inter-
element fluxes as vertices and edges in a directed graph. With topological sort of
the graph, we produce an optimal ordering of the elements, allowing for the dis-
crete global system to be decoupled in a sequence of linear problems. This way,
it is not necessary to assemble the full system, but we may compute the solution
in an element-by-element fashion. The optimal reordering algorithm can reduce
the memory requirements, implementation complexity, and computational costs,
thereby increasing the size of the problems one may solve (on a single computer).

The dG method’s robustness with respect to strongly discontinuous coeffi-
cients renders it very attractive for porous medium flow and transport calculations.
In this work we consider accurate and efficient solvers for computing transport in
unfractured and fractured porous media. The results may predict the flow pattern
in a reservoir. For reservoir simulation, the time-of-flight gives the timelines in
the reservoir, whereas computing the tracer distribution can determine the spatial
regions swept or drained by a fluid from a source or a sink. Within groundwater
applications, the evaluation of the time-of-flight may be a important tool to visual-
ize the spreading of contaminants and to help understanding the different transport
processes.





Chapter 2

Physical Background and
Mathematical Modelling

Simulation of the processes occurring in the reservoir incorporates elements from
all main branches of science: geology, physics, chemistry, biology and mathe-
matics. This work approaches reservoir simulation from a mathematical point of
view, and some physical assumptions must be made to complete the mathematical
approach.

The theory leads to the partial differential equations that describe the fluid flow
in a porous medium. This set of equations is often the starting point for applied
mathematics, and discretisation of the equations is a field that has received a lot
of attention in the past decades. The partial differential equations arise from the
principle of conservation and a physical description of how the velocity depends
on the pressure (Darcy’s law).

In this chapter, we present the principle of conservation, and briefly give the
primary physical and geological parameters influencing fluid flow in porous me-
dia, before we introduce Darcy’s law. With this we provide mathematical models
for immiscible one-phase and multi-phase flow, assuming some common simpli-
fications. Further theory details may be found in, for example, [3, 9, 23, 41].

2.1 Conservation Laws

Consider a conserved quantity u inside a volume V of a porous medium having
the closed surface ∂V and outward normal vector n; see Figure 2.1. The change of
u inside V corresponds to the total flow in and out of V and the amount generated
by sources or removed by sinks within V . On integral form, the conservation of u
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n

V

∂V

Figure 2.1: The volume V has a closed surface, ∂V . The surface normal vector, n, is
directed out of the volume.

is expressed by
∫

V

∂

∂t
u dV +

∫

∂V
f ·n dS =

∫

V
q dV, (2.1)

where f is the flux through V and q corresponds to source or sink terms. Using
Gauss’ divergence theorem, we may convert the boundary flux integral into a
volume integral and obtain the equation,

∫

V

( ∂

∂t
u+∇· f − q

)

dV = 0. (2.2)

Since this must hold for any volume V inside some domain, and the change of
u is assumed to be continuous, we may drop the integrals. Hence, we obtain the
conservation law in differential form

∂

∂t
u+∇· f = q. (2.3)

This equation is denoted the continuity equation.
Starting from the equation (2.3), we can use a conservation law to describe

how the fluids flow in porous medium. In reservoir flow modelling, the conserved
quantity can be the mass density of a phase and we shall in the following chapters
give expressions for u and its flux f.

2.2 Model Parameters

2.2.1 Porosity

Porosity is a measure of the void spaces in a material; the more porous a material
is, the greater amount of void space it contains. The total porosity of a rock volume
is a measure of how much fluid the rock can contain. Porosity of a medium is
defined by

φ =
Vvoid
Vbulk

, (2.4)
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where Vvoid is the total void volume that exists between rock grains in a total or
bulk volume Vbulk of rock.

In reality, the pore space is only partly available for flow due to dead ends
and isolated pores. If Vvoid is the available (effective) pore volume, then (2.4)
describes the effective porosity, that is, the volume fraction of the porous medium
available for flow. Commonly, the term porosity refers to the effective porosity.

2.2.2 Permeability

Just as the porosity of soil affects how much water it can hold, it also affects
how quickly water can flow through the soil. The permeability is a measure of
the ability of a porous medium to transmit fluids. Since porosity measures the
volume available to fluid flow, there is a strong correlation between porosity and
permeability. The permeable regions of a rock correspond to available regions
of pore space. In general, rocks with coarser grain sizes are more permeable
than rocks with finer grains, because they contain larger and more interconnected
pores.

The permeability is a property of the porous medium only, not the fluid. In
naturally occurring materials, it ranges over many orders of magnitude. A com-
mon unit for permeability is Darcy, or more commonly milliDarcy (1 Darcy ≈
0.987 ·10−12 m2).

Permeability is a constant if and only if the medium is homogeneous. If per-
meability varies with spatial location, we say that the porous medium is heteroge-
neous. In an isotropic medium the resistance to fluid flow is equal in all directions
and the permeability is described by K = kI, where I is the identity matrix. If the
medium is anisotropic, the resistance to flow may be directional dependent and
the permeability is described by a symmetric tensor K = {kij}.

Permeability is part of the proportionality constant in Darcy’s law (see next
section) which relates flow rate and fluid physical properties (e.g., viscosity), to
a pressure gradient applied to the porous media. The proportionality constant
specifically for the flow of water through a porous media is the hydraulic conduc-
tivity:

k =
Kρg
µ
, (2.5)

where µ is the viscosity, ρ is the density, and g is the gravitational constant.
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2.3 Mathematical Models

2.3.1 Darcy’s law

Darcy’s law describes the flow of a fluid through a porous medium. The law
was formulated by the French engineer Henry Darcy in the 19th century when he
experimented with flow of water through different types of sand. In a range of
experiments with flow vertically through beds of sand, he concluded that the flow
through the sands was proportional to the pressure difference between the top and
bottom pressure. For single phase flow and neglected gravity, the relation says
that the volumetric flow velocity (Darcy velocity) v is proportional to the gradient
of the pressure P , and the law reads

v = −
K
µ
∇P, (2.6)

where K is the permeability tensor and µ the viscosity. The equation states that the
fluid will move from high pressure to regions of lower pressure, and the velocity
is dependent on the medium and phase conductivities.

The extended Darcy’s law including gravity effects is given by

v = −
K
µ

(∇P +ρg∇h), (2.7)

for single phase flow, where ρ is the fluid density, g is the acceleration of gravity,
and h is the reservoir height above some reference plane.

Assumptions needed for the derivation of Darcy’s law are low flow velocities
and significant friction between the fluids and the pore walls. Also, the porous
medium is assumed to be rigid, and not compacted due to fluid flow.

The volumetric flow velocity is the effective flow velocity across a represen-
tative volume, and thus does not describe the pore velocity, which is typically
larger. The pore velocity would be the velocity a passive particle would experi-
ence if carried by the fluid through the domain. The pore velocity is related to the
volumetric flow velocity by the porosity. The velocity is divided by porosity to
account for the fact that only a fraction of the total formation volume is available
for flow. Hence, the pore velocity is expressed by

vp =
v
φ
. (2.8)

2.3.2 One-Phase Flow

Consider any fixed volume V inside a (stationary) porous medium with porosity
φ. For one-phase flow, the conserved density inside volume V is u = ρφ, where



2.3 Mathematical Models 15

ρ is the fluid density. The flux, f, is simply the mass density times the velocity,
f = ρv. In this case we obtain the following continuity equation (2.3) for one-
phase flow:

∂

∂t
(ρφ)+∇· (ρv) = q, (2.9)

where v is the volumetric velocity given by (2.7).
Assume incompressible fluid, and constant ρ and φ. The bulk motion of the

fluid in terms of the common pressure P and the volumetric velocity without
gravity effect may be written

∇·v =
q

ρ
, v = −

K
µ
∇P. (2.10)

When no sources or sinks are present, we obtain the following equations:

∇·v = 0, v = −
K
µ
∇P. (2.11)

2.3.3 Multi-Phase Flow

When several phases (or components) are present in a porous medium, conserva-
tion must be posed for each of the phases (or components).

The efficient pore space is assumed to be filled with fluid at all times. Depend-
ing on the processes, the different phases will compete to occupy this space. The
phase saturation, Si, of phase i is the fraction of effective pore space occupied by
the different fluids (phases):

Si =
Vi
Vvoid

, (2.12)

where Vi is the volume occupied by the specific phase, and Vvoid is the efficient
pore space. Since the pores are always fully saturated, we have

∑

i

Si = 1, (2.13)

where we assume the summation to be over all the phases.
The conserved mass density for each phase is ρiφSi, where ρi is the density

and Si is the saturation of fluid i. The flux can be written f = ρivi, where vi denotes
the volumetric flow velocity for each fluid. For immiscible flow, the conservation
of mass for each phase (fluid) i is

∂

∂t
(ρiφSi)+∇· (ρivi) = qi, (2.14)
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by using (2.3). Each phase may have distinct sources qi and the volumetric flow
velocity for each fluid is given by a generalised Darcy’s law for multi-phase flow:

vi = −Kλi(∇Pi+ρig∇h), (2.15)

where Pi is the pressure of fluid phase i. The relative mobility λi of fluid phase i
is defined by

λi =
kri
µi
, (2.16)

where µi is the fluid viscosity. Since the presence of more than one fluid generally
inhibits flow, the relative permeability kri = kri(Si) accounts for the ability of the
fluid to flow in the presence of the other phases.

For multiphase flow, we have phase pressures that typically are related through
a quantity called the capillary pressure. The capillary pressure is defined as the
difference between the local pressures of the fluids. The capillary pressure reflects
the fact that the pressures at each side of a fluid-fluid interface differ due to inter-
facial tension. When only two phases are present, the capillary pressure is given
by the pressure difference between the non-wetting and the wetting fluid:

Pc(Sw) = Pnw −Pw. (2.17)

For multi-phase flow we get similar relations between the different phases.

2.4 Transport Models

As just presented, the flow of fluid through porous and heterogeneous media can
be modelled as a set of balance laws for the conservation of mass for each fluid
component. For a mixture of m fluid components separated into l phases, we have

∂

∂t
(cαiρiφSi)+∇· (cαiviρi) = cαiqi, α = 1, ...,m, i = 1, ..., l. (2.18)

Here φ is the porosity of the medium, and ρi, Si, vi and qi are respectively, the
density, saturation (volume fraction), phase velocity, and volumetric source term
of the i’th phase. Furthermore,cαi is the mass fraction of component α in phase i.
In this model, gravity and capillary effects have been neglected.
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Hyperbolic Transport Equations

We will mainly focus on advective transport in a porous medium completely filled
with fluids of a single phase, and propose fast procedures for solving a class of hy-
perbolic transport equations. The two equations we investigate are the stationary
tracer equation and the time-of-flight equation. Our motivation for studying these
equations comes from transport in porous media, where equations of this form
are used as simple transport models, or arise as the result of a semi-discretisation
of a more complex transport equation. Accurate solution of these equations may
predict the flow pattern in a reservoir and is therefore of great importance both in
petroleum engineering and groundwater management.

In the following, we assume that v is known and given in a such way that
the flux v ·n is constant over each element face in a Cartesian or a unstructured
triangular grid.

3.1 The Time-of-Flight Equation

Before introducing the time-of-flight equation, we will define streamlines.
Streamlines are a family of curves s(τ) that are instantaneously tangent to the

velocity vector v at every point, that is,

ds

dτ
= v. (3.1)

Hence, all instantaneous transport occur along streamlines since the motion of the
fluids is aligned with the velocity v; see Figure 3.1. For a steady state velocity
field the streamlines are traced out by a passive particle moving with the flow.

For incompressible flow, streamlines defined at a single instant do not cross
each other. If they were to cross, this would indicate two different velocities at the
same point, which is not physically possible. Hence, any particles of fluid starting
on one streamline will stay on that same streamline.
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Streamline

x

y

ψ (s)

v

Figure 3.1: A streamline, ψ (s), that is everywhere tangent to the flow field.

The time-of-flight τ(x) measures the time a particle needs to travel along the
streamline from its initial position on the inflow boundary ∂Ω− to a given point x.

Isocontours of τ(x) are the time-lines in the porous medium and give infor-
mation about the flow pattern, in particular for single phase flow. In a streamline
setting, the time-of-flight τ(x) is usually given by the integral

τ(x) =
∫

ψ (s)

φ

|v(x)|
ds, (3.2)

evaluated along the streamline ψ (s), where s denotes the distance along the
streamline. The streamline ψ (s) connects x to the inflow boundary ∂Ω−. The
scaling with φ is necessary because the porosity of the medium will speed up the
flow, and hence decrease τ(x).

Alternatively, we take the directional derivative of τ(x) along a streamline in
the direction of the velocity field and obtain

dτ

ds
=

v
|v|

·∇τ =
φ

|v|
. (3.3)

Hence, we get the time-of-flight equation as

v ·∇τ = φ, (3.4)

with boundary condition
τ|∂Ω− = 0,

see e.g., [16].
Hence, a simple model for advective transport in a porous medium completely

filled with fluids of a single phase is the following linear boundary-value problem
for the time-of-flight τ in Ω:

v ·∇τ = φ, τ|x∈∂Ω− = 0, (3.5)

where ∂Ω− denotes the inflow boundary of the computational domain Ω.
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3.2 The Stationary Tracer Equation

For incompressible flow, any streamline connects an injector and a producer, and
we may find which part of the pore volume is connected to which injector and pro-
ducer, and thereby deriving reservoir compartmentalisation. The way one could
obtain the same information in a finite-volume method is by computing the trans-
port of tracers from each injector. When the tracer transport becomes stationary,
one obtains information about well connectivity and affected areas. Determining
the spatial region swept by a fluid source (an inflow boundary), or vice versa, the
spatial region from which fluid is drained by a sink (an outflow boundary), is of
practical importance both in groundwater management and petroleum engineer-
ing.

To derive the stationary tracer equation, let cα denote the volume fraction of the
water phase occupied by the tracer substance α and consider mass conservation.
Assuming single-phase flow (i.e., l = 1 in (2.18)) and incompressible flow outside
sinks and sources, the individual distribution of the various components are given
in terms of the linear (hyperbolic) transport equation,

∂

∂t
(φcα)+∇· (cαv) = cαq. (3.6)

Each tracer is transported according to the volumetric velocity field v. For sim-
plicity, we assume that v = v(x) is given and time-independent, divergence free,
and nearly irrotational. The evaluation of concentration cα of tracer α is then
governed by

∂

∂t
(φcα)+v ·∇cα = 0. (3.7)

To derive the stationary tracer equation, we let ∂(φcα )
∂t = 0, and thus

v ·∇cα = 0. (3.8)

If there are m injectors, the swept volumes of each injector may be revealed
by successively launching tracer substance at each injector. This is accomplished
by setting the tracer concentration to 1 in the particular injector, and 0 in the other
injectors. Thus we get an equation for each injector,

v ·∇cα = 0, cα|∂Ωα = 1, α = 1, ...,m, (3.9)

where ∂Ωα is the injector launched with tracer substance α.
Notice that the stationary tracer equation is a special case of the time-of-flight

equation where φ(x) = 0 everywhere in the reservoir.
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3.3 Semi-Discrete Model of Multiphase Flow

Equation (2.14) and (2.15) are the building blocks in modelling nonlinear trans-
port of l phases or components through a porous medium. By simple arguments
and assuming divergence-free velocity field and incompressible medium, this can
be rewritten as a system of nonlinear conservation laws for the saturation, or vol-
ume fractions, u = (u1, ..., ul−1):

φ
∂

∂t
ui+v ·∇fi(u) = qi, i = 1, ..., l−1. (3.10)

Here fi is the fractional flow function modelling the speed of each phase or com-
ponent i relative to the mean (or total) velocity v.

Using a implicit scheme, a temporal semi-discretised version of (3.10) is ob-
tained

φun+∆tv ·∇f (un−1) = φun−1 +∆tq, (3.11)

where un−1 and un are approximations of u(·, tn−1) and u(·, tn), respectively.
The methodology using implicit discontinuous Galerkin schemes for multi-

phase flow is briefly mentioned in Paper B. See Natvig and Lie [37, 36] for a
thoroughly study of this solution procedure for multiphase flow.



Chapter 4

Numerical Methods

The transport equations presented in Chapter 3 can be written on the general form

v ·∇u =H (u,x), for x ∈Ω
u = h(x, t), for x ∈ ∂Ω−,

(4.1)

where v is a given (divergence-free) vector field and ∂Ω− denotes the inflow
boundary of a porous medium Ω. Solving (4.1) is rather easy for smooth v, but
becomes harder when the vector field has large spatial variations and exhibits fine-
scale details that are important for the global flow pattern.

To obtain a numerical solution of (4.1), we use a higher order discontinuous
Galerkin (dG) method. The dG method is feasible to capture discontinuities in the
solution, which commonly appears due to strong heterogeneous characteristics of
the porous media. Furthermore, the dG method is well suited for handling com-
plicated geometries. In Paper D, we extend the methodology used on rectangular
grids in Papers A, B and C, to unstructured triangular grids.

Discontinuous Galerkin methods in general lead to globally coupled systems
of equations, which typical requires inversion of large band structured matrixes.
On the other hand, a dG formulation in combination with an upwind flux approx-
imation does not. The upwind flux preserves the directional dependency in the
solution and we may find an optimal reordering of the elements that enables us to
solve the equations locally element by element.

4.1 The Discontinuous Galerkin Formulation

The discretisation in a dG method starts with a variational formulation as in a
standard Galerkin method, but allows for discontinuities over the element edges.
To get a variational formulation of (4.1), we start by partitioning the domain Ω
into a set of non-overlapping elements {K}. In the following, Ω is assumed to
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be partitioned into elements such that a face refers to a line in 2D or a plane in
3D. Faces are either boundary faces or shared by two neighbouring elements
(inter-element faces).

In a dG formulation, one seeks an approximation to the solution in a space
V of elementwise smooth functions that may be discontinuous over inter-element
faces. We say that

V = {ϕ ∈ L2(Ω) : ϕ|K sufficiently smooth}, (4.2)

where L2 is the space of quadratic integrable functions.
To obtain a variational formulation of (4.1), we multiply (4.1) with a test func-

tion ϕ ∈ V and integrate over each element K ∈Ω,
∫

K
(v ·∇u)ϕdx =

∫

K
H (u,x)ϕdx ∀K,∀ϕ ∈ V. (4.3)

Integrating the left-hand side by parts, we obtain

−
∫

K
(uv) ·∇ϕdx+

∫

∂K
(uv) ·nϕds =

∫

K
H (u,x)ϕdx ∀K,∀ϕ ∈ V, (4.4)

where n denotes the unit outward normal on the element faces ∂K. The possible
discontinuities over inter-element boundaries force us to use a consistent and con-
servative numerical flux function f̂ (u,uext,v ·n) to replace the flux term (uv) ·n
(we will come back to this later).

We seek solutions in a finite-dimensional subspace V (n)
h ⊂ V , where V (n)

h is
chosen as the space of piecewise smooth functions of order n that may be dis-
continuous over inter-element faces. We replace the exact solution u and the test
function ϕ by uh ∈ V

(n)
h and ϕh ∈ V

(n)
h , respectively, and obtain a discrete vari-

ational formulation. The approximate solution uh is determined as the unique
solution of the following weak formulation: let

aK (uh,ϕh) = −
∫

K
(uhv) ·∇ϕhdx+

∫

∂K
f̂ (uh, u

ext
h ,v ·n)ϕhds, (4.5)

bK (H (uh),ϕh) =
∫

K
H (uh,x)ϕhdx, (4.6)

and find uh ∈ V
(n)
h such that

aK (uh,ϕh) = bK (H (uh),ϕh) ∀K,∀ϕh ∈ V
(n)
h . (4.7)

Here f̂ is the upwind flux given by
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f̂ (p,pext,v ·n) = pmax(v ·n,0)+pextmin(v ·n,0), (4.8)

where p and pext denote the inner and outer approximations at the element faces,
respectively. The upwind flux preserves the directional dependency in the solu-
tion, which is crucial for our solution procedure. With this flux function, the only
neighbours affecting the solution on each element are the upwind neighbours.

To find a solution of (4.7), letLk = {Lk1 , ...,L
k
m} be some basis for V (n)

h on each
element, where m is the number of degrees-of-freedom on K. The approximate
solution uh on an elementK can be written as a linear expansion of basis functions,

uh(K) =
m
∑

i

uki L
k
i , ∀K, (4.9)

where {uki } are the unknown coefficients of the solution in elementK. We succes-
sively letϕh =L

k
j and substitute the approximate solution (4.9) into the variational

formulation (4.7). We will approximate the resulting integrals with appropriate
quadrature rules and get a set of linear equations for the degrees-of-freedom in
each element K.

Let U denotes the vector of unknown coefficients uki of all elements K in Ω,
and let UK be the vector of unknowns for element K. In element K, we have

AKU = BK , (4.10)

where (AK )ij = a
h
K (Lki ,L

k
j ) and (BK )i = b

h
K (H (Lki ),Lkj ), and ahK and bhK are nu-

merical approximations to the integrals in (4.7) using Gaussian quadrature.
For convenience, we split the coefficient matrix of the unknowns into the el-

ement stiffness matrix RK and the numerical flux integral FK . The flux integral
gives the coupling to the other elements. In element K, we have

AKU = −RKUK +FKU. (4.11)

The coefficient matrix has a block-banded structure, where the size of each block
is given by the number of unknowns in each element. The properties of FK are
in general determined by the choice of numerical flux. We assume that v · n is
constant on all element faces in Ω (i.e., that v ·n does not change sign on element
faces). The boundary integral FK =

∫

∂K f̂ (uh, u
ext
h ,v ·n)ϕhds may be split in an

integral F+
K over the outflow faces ∂F+

K , and an integral F−
K over the inflow faces

∂F−
K according to the definition of the numerical flux function. If v is computed

using a standard low-order discretisation method for (2.11), like the two-point
flux-approximation method (i.e., the five-point method in 2D) or the lowest-order
Raviart-Thomas mixed finite-element method, v ·n will be constant on each ele-
ment face.
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Let U (K) be the set of neighbouring elements on the upwind side of K. For-
mally, U (K) consist of all elements E such that (v ·nK )|∂E∪∂K < 0, where nK is
the outward-pointing normal to K. The upwind flux (4.8) can be written

FKU = F+
KUK +F−

KUU (K), (4.12)

where F+
K denotes the flux out of elementK, F−

K denotes flux into elementK, and
UU (K) is the vector of the degrees-of-freedom for all the neighbouring elements
of K in the upwind direction.

Thus, we may write (4.10) as

AKU = −RKUK +F+
KUK +F−

KUU (K) = BK ∀K. (4.13)

The operators and the matrices are given by

(RK )ij =
∫

K
(Lki v) ·∇Lkj dx, (4.14)

(F+
K )ij =

∫

∂K+
Lki L

k
j v ·nds, (4.15)

(F−
K )j =

∫

∂K−
L
kext
i Lkj v ·nds, (4.16)

(BK )j =
∫

K
H (uki L

k
i ,x)Lkj dx (4.17)

Henceforth, we use dG(n) to denote the discontinuous Galerkin approxima-
tion of polynomial order n. If we want to find a first-order solution, meaning that
uh is element-wise constant and AKU is a linear system of equations, we get a
Ne ×Ne linear equation set, where Ne is the number of elements. Each row of
the linear system corresponds to one unique element and has nonzero entries only
on the diagonal and on the entries that correspond to the upwind neighbours. For
dG(n) methods with a linear A we analogously get a block structured Nem×Nem

system, where m is the number of degrees-of-freedom per element. Hence, V (0)
h

is the space of elementwise constant functions and yields a scheme that is for-
mally first-order accurate, V (1)

h is the space of elementwise linear approximations
(bilinear approximations for Cartesian grid) and yields a scheme that is formally
second-order accurate, etc. The results from Papers A and D show that the error
of a dG(n)-method decays with order n+1 for smooth solutions. On nonsmooth
solutions, slower convergence is to be expected.

If A is triangular, we may solve (4.7) one equation at a time. In the following
section, we describe a procedure to find a column and row permutation of A such
that A is block triangular, and therefore possible to solve in a sequence of smaller
equation systems.
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4.2 The Optimal Reordering

In the following, we consider the time-of-flight equation (3.5), which simplifies
(4.7) to a linear system (since H (u,x) = φ):

aK (uh,ϕh) = bK (φ,ϕh) ∀K,∀ϕh ∈ Vh. (4.18)

Although (4.7) and (4.18) have different structure on a given element K, the
two global systems will have a similar block structure. The ideas presented for
the linear case (4.18) will therefore immediately carry over to the nonlinear case
(4.7).

An efficient solution procedure is obtained by taking advantage of the fact
that (4.1) has one-sided domain of dependence. In other words, both the exact
and the numerical solutions in any element are determined by the solution on the
upstream side(s). Thus, we can construct the solution in a given element once the
solution is known in the element’s immediate upstream neighbours. By careful
inspection, we may therefore construct the solution locally, starting at sources or
inflow boundaries and proceeding downstream. A similar approach was used in
[44] in the context of neutron transport. To our knowledge, Paper A was the first
to apply the idea to transport in porous media.

From a computational point of view, it is more convenient to look at this as
a reordering of unknowns. Observe that we can solve (4.13) element by element
if there is a flux from element Ki to element Kj such that we can determine a
sequence of elements such that i appears before j in the sequence. By processing
the elements in such a sequence, equation (4.13) may be written

−RKUK +F+
KUK = BK −F−

KUU (K), (4.19)

such that the right-hand side of (4.19) is a known quantity in each step. Since the
directions of the fluxes are determined solely by v (and not by U ), this sequence
can be computed as part of a preprocessing step before solving the system (4.19).

The idea of solving boundary-value problems for advective transport sequen-
tially was also used in [5], but with a different spatial discretisation. In that paper,
they used an algorithm to compute a suitable sequence based on physical argu-
ments. The solutions were constructed by marching outwards from the inflow
boundaries or sources. To do so, one needs to keep a list of candidated nodes for
the next update(s). In each step of the algorithm, a suitable candidate node was
sought in the list, the solution at this node was computed based entirely on known
nodal values, and each of the node’s downstream neighbours were added to the
list.

In our work, we choose a different approach. To find the sequence of elements
we let the elements and fluxes together form a directed graph, where the elements
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are the vertices and the fluxes are the directed edges. Hence, if there is a flux from
element i to element j, then there is a directed edge from vertex i to vertex j in
the graph. Furthermore, if the sequence of elements exists, we have a directed
acyclic graph, also called DAG. A directed acyclic graph is a directed graph with
no paths that start and end at the same vertex. Every DAG has a topological sort,
an ordering of the vertices such that each vertex comes before all vertices it has
edges to. Hence, topological sorting is the process of assigning a linear ordering
to the vertices of a DAG so that if there is an path from vertex i to vertex j, then
i appears before j in the linear ordering. In other words, a topological sort is a
permutation P of the vertices of the directed acyclic graph such that an edge (i, j)
implies that vertex i appears before vertex j in P . Every DAG has one or more
topological sorts.

The task of finding this sequence of vertices can be accomplished by a depth-
first traversal of the reversed DAG (see e.g., [48]). A depth-first search (DFS)
is an algorithm for traversing or searching a tree, a tree structure, or a graph.
Intuitively, one starts at the root (e.g., a sink) checking its neighbours (neighbour
is often denoted by child), expanding the first node among the children, checking
if that expanded node is our goal destination or if the node has no children, and
if not, continue exploring more nodes. We explores as far as possible along each
branch before backtracking and then starting off on the next node. When DFS
backtracks from a vertex, all vertices reachable from this vertex have already been
explored.

Running the DFS on the DAG, the output will be the vertices in reverse order
of finishing time. The desired topological sorting is the reverse of these searches.
That is, we can construct the ordering as a list of vertices, by adding each vertex to
the start of the list at the time when the depth-first search is processing that vertex
and has returned from processing all children of that vertex.

An example is presented in Figures 4.1 and 4.2. Figure 4.1 shows the direction
of flow for a domain with a source in Element 1 and a sink in element 5. Topologi-
cal sort can be viewed as placing all the vertices (elements) along a horisontal line
so that all directed edges go from left to right. Figure 4.2 shows horisontal lines
for the ordering of elements before and after reordering using DFS. The directed
edges (arrows) represent the fluxes between the elements. The upper line shows
the ordering before reordering, where the graph does not have a one-sided depen-
dence. Hence, the numerical solution can not be solved in an element-by-element
fashion. The lower line shows the ordering of the elements using the topological
sort, where all directed edges go from left to right. Hence, the numerical solution
in any element is determined by the solution in the upstream elements.

Since each edge and vertex are visited once, the algorithm runs in linear time.
The depth-first traversal takes O(Ne) operations for a graph of Ne vertices (ele-
ments). In most cases, the depth-first traversal will produce a sequence of ver-
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Figure 4.1: Direction of flow for a domain with a source in Element 1 and a sink in
Element 5. The arrows show the fluxes between the elements.
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Figure 4.2: The ordering of elements and the dependency between the elements can
be viewed by placing all the vertices(elements) along a horisontal line. Topological sort
where a one-side dependency is created is viewed by all directed edges going from left to
right, see lower ordering. The upper figure shows a ordering of the elements where the
graph does not have a one-sided dependence.
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tices that allows an elementwise computation of the solution. Reordering the
elements reduces the computational effort needed to solve (4.19) from solving
a large (Nem)× (Nem) system to solving Ne small linear m×m systems, where
Ne is the number of elements, and m is the number of degrees-of-freedom per
element. Thus, reordering is a simple way to obtain highly efficient linear solvers
for large advection problems. See [37, 36] for discussions of how the same prin-
ciple can be applied to decouple the solution of nonlinear systems arising in the
implicit discretisation of multiphase transport equations.

If the velocity field v has a nonzero circulation, there are one or more strongly
connected components in the graph, and the sequence of elements does not exist.
Strongly connected components are groups of elements that are interdependent,
and for these groups we need to compute the solution simultaneously. This is
discussed in the next subsection. However, strongly connected components of di-
rected graphs can be found by one additional depth-first traversal. This means that
finding a reordering and locating possibly connected components is altogether an
O(Ne) operation. We assume that a topological sort can always be performed or
that the solution algorithm is capable of solving elements simultaneously when-
ever connected elements are encountered.

4.2.1 Strongly Connected Groups of Elements

Search algorithms like DFS normally mark vertices they have already visited and
do not visit them again. If they fail to do this, they may never terminate because
they follow a cycle of edges forever. Each such cycle corresponds to strongly
connected components, which is a subgraph where all vertices in the subgraph
are reachable by all other vertices in the subgraph. Reachability between nodes
is established by the existence of a path between nodes. A directed graph can be
decomposed into strongly connected components by one extra depth-first traversal
of the graph.

In the grid, cycles are groups of elements that are made mutually dependent
by a nonzero circulation in the velocity field v. The mutual dependence makes
a topological sort impossible. For the discrete equations, this implies that the
solution in such a collection of elements must be computed simultaneously.

By grouping elements corresponding to a strongly connected components in
the dependency graph into a single vertex, we obtain an acyclic graph where each
vertex corresponds to either a single element, or a single strongly connected com-
ponent (i.e., a group of elements that form an irreducible block of degrees-of-
freedoms). Thus, if our solver can compute the solution in groups of elements, we
can still apply the sequential procedure.

A possible distribution of fluxes is depicted in Figure 4.3, where a small group
of elements are strongly connected. In this situation, our reordering strategy still
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Figure 4.3: Direction of flow for a domain with a source in the lower left element and
a sink in Element 5. A small group of elements are strongly connected and must be
computed simultaneously.

works and gives one larger linear system associated with the six blocks of inter-
connected elements in addition to the usual four linear systems associated with
single elements.

In general, the appearance of cycles in the dependency graph depends on both
the modelling and on the numerical solver used to compute the velocity field v.
In most relevant cases of incompressible flow, the exact velocity field has zero
circulation. Moreover, blocks of interconnected elements do not appear if one
uses a two-point flux-approximation for the pressure equation (2.11). On the other
hand, a mixed finite-element solution may produce velocity fields with nonzero
circulation. In our experience, cycles that appear in velocity fields computed by
mixed finite-element method are small and sparse for incompressible and weakly
compressible flows.

The same idea can be applied when v is computed by a higher-order method
and it may occur that the flux changes sign at element faces. This is a reflection
of the fact that although streamlines do not cross, they may pass through a grid
cell more than once. Consider a face with neighbouring elements K1 and K2. If
v · n takes both signs on ∂K1 ∩ ∂K2, then the solutions in the two neighbouring
elements depend on each other and must be computed simultaneously. A direct
mapping of the corresponding fluxes to a graph results in a not acyclic graph
with two-way edges, each two-way edges must be replaced with two one-way
edges. The corresponding cycle can be automatically detected as before, and the
neighbouring elements can easily be treated as on a cycle and be lumped together.
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4.3 Representation of Computational Domains

An essential decision is how to represent the geometry (the shape of the region).
Creating a mesh is the first step in a wide range of applications. To find an un-
structured simplex mesh we need a choice of meshpoints (vertex nodes) and a
partition of the computational domain Ω; see [40] for a simple mesh generator.
The standard way of representing a mesh is by the node positions and the element
indices. ANn-by-dmatrixX gives the coordinates of the nodes, and aNe-by-Nne

matrix G specifies an element by its nodes with references to the rows in X. Here
d is the spatial dimension, Nn is the total number of nodes, Ne is the number of
elements and Nne is the number of nodes per element. Two elements of space
dimension d are neighbours if they have d nodes in common.

For implementation of the optimal ordering strategy for the partition of the
computational domain Ω, the neighbouring relations between the elements are
crucial. This information may be extracted from the matrixes X and G.

Papers A, B and C present a dG method for a regular Cartesian grid, while in
Paper D, we extend the methodology to unstructured triangular grids. To simplify
the integral evaluation using triangular grids, we use a linear mapping to unit
triangles.

4.3.1 Cartesian Grid

For the case where the elementsK are rectangles in a regular Cartesian grid, a con-
venient basis is the tensor product of Legendre polynomials Lk(x,y) = lr(x)ls(y)
for r,s = 0, ...,n. This basis functions are orthogonal to each other by nature and
will simplifies the mass matrix structure. We assume for simplicity of presentation
that Ω ⊂ R2, and let Qn = span{xpyq : 0 ≤ p,q ≤ n} be the space of polynomials
of degree at most n in x and at most n in y, and let V (n)

h = {ϕ : ϕ|K ∈ Qn}. The
approximate solution on an element Ki can then be written as

uh(x,y) =
n2
∑

k=0

uikLk

(2(x−xi)
∆xi

,
2(y−yi)

∆yi

)

, (4.20)

where (xi,yi) is the centre of element K i. By applying this basis functions for
a Cartesian grid, the degrees of freedom per element in a dG(n)-methods is m =
(n+1)d in d spatial dimensions.

4.3.2 Triangular Grid

We now extend the strategy to unstructured triangular grids that adapt complicated
geometries. We let Qn = span{xpyq : 0≤ p+q ≤ n} be the space of polynomials of



4.4 Linear Transformation 31

degree at most n, and let V (n)
h = {ϕ : ϕ|K ∈ Qn}. Using this space of polynomials

for triangular grid, the degrees of freedom per element in a dG(n)-methods is
m = (n+1)(n+2)

2 in two spatial dimensions.

4.4 Linear Transformation

For general triangular grids, we evaluate the complicated integrals by transform-
ing them into simpler ones using a linear transformation; see Figure 4.4. In the

Physical space,P Reference space, R

x

y

x̂

ŷ

0 1

1

T

T̂

x1

x2

x3

x̂1 x̂2

x̂3
x̂ = x̂(x,y)

x = x(x̂, ŷ)

Figure 4.4: Triangles are mapped to a unit triangle through a linear transformation.

evaluation of the integrals, we use the change of variable formula and do a map-
ping to a unit triangle. In this reference space we find the approximation of the
integrals, and transform it back to the physical space.

We denote the simulation grid containing the irregular triangle by the physical
space P and the reference space by R. The triangle in P corresponding to x1,x2,
and x3 will be referred to as T = T (x1,x2,x3), and the corresponding unit triangle
in R will be T̂ . Variables in R will be denoted by a ’ ˆ ’, e.g., T̂ . The linear
transformation from R to P is given by

x(x̂) =
[

x(x̂, ŷ)
y(x̂, ŷ)

]

= x1(1− x̂− ŷ)+x2x̂+x3ŷ (4.21)

=
[

x1
y1

]

(1− x̂− ŷ)+
[

x2
y2

]

x̂

[

x3
y3

]

ŷ, (4.22)

where x̂ = (x̂, ŷ) are the local reference space coordinates such that 0 ≤ x̂ ≤ 1− ŷ
and 0 ≤ ŷ ≤ 1− x̂.
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4.4.1 Properties

The Jacobi matrix and the Jacobi determinant

The Jacobi matrix of the transformation (4.21) is constant and given by

J (x̂) =
dx
dx̂

=

[

∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]

=
[

x2 −x1 x3 −x1
y2 −y1 y3 −y1

]

, (4.23)

and the Jacobi determinant (or Jacobian) is

detJ (x̂) =
∂x

∂x̂

∂y

∂ŷ
−
∂x

∂ŷ

∂y

∂x̂
= (x2 −x1)(y3 −y1)− (x3 −x1)(y2 −y1). (4.24)

The Jacobian is constant and equal to two times the area of the triangle

detJ = 2{ Area of K}. (4.25)

Provided detJ 6= 0, the inverse of the Jacobi matrix is given by

J−1(x̂) =
dx̂
dx

=
1

detJ

[

∂y
∂ŷ −∂x

∂ŷ

− ∂y
∂x̂

∂x
∂x̂

]

. (4.26)

Change of variables in an integral

If f (x,y) is integrable on a triangle T , and f (x(x̂, ŷ),y(x̂, ŷ)) is integrable on T̂ ,
the change of variables for double integrals is given by

∫

T
f (x,y)dxdy =

∫

T̂
f (x(x̂, ŷ),y(x̂, ŷ))detJdx̂dŷ. (4.27)

Transformation of a gradient

We will derive the transformation of a gradient. Let u be a function of x and define

∇u =
du

dx
=
[ ∂u

∂x
∂u
∂y

]

(4.28)

and

∇̂u =
du

dx̂
=
[ ∂u

∂x̂
∂u
∂ŷ

]

. (4.29)
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From the chain rule, we have that

du

dx
=
du

dx̂
dx̂
dx

=
du

dx̂
J−1. (4.30)

By substituting (4.28) and (4.29) into (4.30), we obtain

∇u = J−T ∇̂u. (4.31)

Piola transformation

The Piola transformation is a vector transformation from R to P that conserves
fluxes over any x̂-curve or ŷ-curve. The transformation is given by

v(x(x̂)) =
1

detJ
J v̂(x̂). (4.32)

Here v(x(x̂)) is the vector in P , v̂(x̂) is the vector in R, x(x̂) is the linear transfor-
mation (4.21). The Jacobi matrix J and the Jacobi determinant detJ are denoted
by (4.23) and (4.24), respectively.

Assuming that the transformation x(x̂) is invertible, we can solve (4.32) for
v̂(x̂). The inverse transformation is given by

v̂(x̂(x)) = detJ (x)J−1(x)v(x). (4.33)

By transforming the vector v to a vector v̂ in reference space using the Piola
transformation, the corresponding flux in the two spaces will be equal. See [21, 1]
for details about Piola transformation.

4.4.2 Variational Formulation in the Reference Space

The variational formulation for the time-of-flight equation 3.5 in reference space
may be written

AK̂U = −RK̂UK̂ +F+
K̂
UK̂ +F−

K̂
UU (K̂) = BK̂ , ∀K̂. (4.34)

To evaluate the integrals in the unit triangle in the reference space, we use the
properties discussed in the previous subsection. The area integrals are obtained
by the following operators and matrixes

(RK̂ )ij =
∫

K̂
(Lki (x̂)v̂) · ∇̂Lkj (x̂)dx̂, (4.35)

(BK̂ )j =
∫

K̂
φLkj (x̂)detJdx̂, (4.36)
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where v̂ = detJJ−1v and v is the velocities interpolated in the interior of the ele-
ments; see Equation (4.39) in next section.

Further, we have to evaluate the boundary integrals. Since v · n is assumed
constant over each element face, we can write v · n = fl

|∂Kl| , where |∂Kl| is the
length of edge number l for element K, and fl is the flux over the particular edge.
The flux is conserved in the transformation, and we can directly replace v ·n with
fl

|∂Kl| in the boundary integrals. Each boundary integral can be computed as line
integrals using the Jacobi matrix (4.23) and a parametrisation βl(t) for each edge
of the unit integral. The resulting integral of the boundaries can now be written as
unit line integrals for each edge

(F+
K̂

)ij =
d+1
∑

l=1

max(fl,0)
|∂Kl|

‖Jβ′l(t)‖
∫ 1

0
Lki (βl(t))L

k
j (βl(t))dt, (4.37)

(F−
K̂

)j =
d+1
∑

l=1

min(fl,0)
|∂Kl|

‖Jβ′l(t)‖
∫ 1

0
L
kext
i (βl(t))L

k
j (βl(t))dt. (4.38)

4.5 The Velocity Field

For applications in porous media, the velocity field v is typically obtained by
solving a pressure equation of the form (2.11). In this work, we assume that v is
known and given in such a way that the flux v ·n is constant over each element face
in a Cartesian or triangular grid. To obtain this, the velocity field v is computed
using a standard low-order discretisation method for (2.11), like the two-point
flux-approximation method (i.e., the five-point method in 2D) or the lowest order
Raviart-Thomas mixed finite-element method.

Since the velocity field is given as a flux on each face in all elements we have
to interpolate these fluxes in the interior of the elements for the dG schemes. To
do this we use the lowest order Raviart-Thomas vector basis function, see [43, 1].
For triangular elements, we do the interpolation of the velocity field using

vK =
d+1
∑

i=1

fivi|K , ∀K, (4.39)

where d is the spatial dimension, vi|K denotes the vector basis function on element
K, and fi is the Raviart-Thomas coefficient. For two spatial dimenstions, the
Raviart-Thomas vector basis functions for triangles are

vi|K =
1

2|K|

[

x−xi
y−yi

]

, i = 1,2,3,∀K (4.40)
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where (xi,yi) are the nodes of the triangles and |K| is the area of the triangle.
Equations (4.39) and (4.40) equip us with a connection between numbering of
nodes, faces, and vector basis functions. Node i is defined to be the node opposite
of face i, or, in other words, node i is the node that is not a part of face i. See left
figure in Figure 4.5 for the numbering of nodes and edges in a triangle. The right
figure shows the numbering of nodes in a rectangular element.

1

2

3

3

1

2

xi xi+1
yj

yj+1

1 2

3

4

Figure 4.5: Numbering of edges and nodes in a triangle and the numbering of nodes in a
rectangle.

In a similar manner, the interpolation function for Cartesian grid may be writ-
ten

vK =
2d
∑

i=1

fivi|K , ∀K. (4.41)

The vector basis functions for 2D are defined as

v1|K =
1
|K|

[

xi+1 −x
0

]

, v2|K =
1
|K|

[

x−xi
0

]

,

v3|K =
1
|K|

[

0
yj+1 −y

]

, v4|K =
1
|K|

[

0
y−yj

]

, (4.42)

where xi, xi+1, yj and yj+1 are the coordinates of the faces, as depicted in Figure
4.5.

The vector basis function vi have the following property,

vi ·nj|∂Kj| =
{

0, i 6= j,
1, i = j,

(4.43)

where |∂Kj| is face j. Hence v ·n is constant on all faces, which is a prerequisite
for the optimal ordering strategy.

4.6 Slope Limiting

For highly heterogeneous reservoirs with large variations in the porosity or strong
shears in the velocity field, the time-of-flight will generally have low regular-
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ity and exhibit very large variations. For instance, in regions where high-speed
flow meets low-speed flow from nearly impermeable regions, the time-of-flight
may oscillate with orders of magnitude over a few elements. This problem arises
due to several types of reservoir heterogeneities: obstacles, shales, layers with
large permeability ratios, fluvial reservoirs with high-permeable channels on a
low-permeable background, large variations in pore volumes, etc. Use of higher-
order polynomial approximations can easily result in spurious oscillations and
non-physical time-of-flight values. Moreover, if these variations are not captured
by the local approximation, (large) errors can propagate to neighbouring elements.

Spurious oscillations near discontinuities and kinks is a common problem in
discontinous Galerkin methods using higher order basis functions. We can cir-
cumvent this problem by applying a (slope) limiter that reduces the local variation
of each basis function by modifying the coefficients of higher order (one or more)
polynomial terms.

Limiters are usually derived from the maximum principle or from a princi-
ple that limits the local variation. For the time-of-flight equation (3.5), the only
principle available to us is the fact that τ(x) is strictly increasing along stream-
lines, which follows trivially from (3.2). We therefore propose to check that the
time-of-flight is increasing from inflow to outflow in each element; that is,

minτ|∂K+ > (1− ε) maxτ|∂K− , 0 ≤ ε� 1. (4.44)

If this is not the case, we recompute the solution in this element by making a uni-
form subdivision into a set of first-order elements. By reducing the order to one,
we expect to reduce possible oscillations, and by subdividing, we try to compen-
sate for the reduced accuracy associated with first-order elements. For rectangular
elements, the number of new elements corresponds to the degrees-of-freedom in
the original element to compensate for the reduced accuracy due to order reduc-
tion. Hence, for basis functions of order one, we split the element in two in each
spatial direction, for basis functions of order two we split in three, etc. For trian-
gular grids, a similar idea can be used.

To illustrate the difficulty of accurately resolving time-of-flights, we show the
exact solution sampled in 2000×2000 evenly spaced points inside two grid cells
taken from the fluvial Upper Ness formation in Layer 76 of the 10th SPE test case;
see Figure 4.6, and Paper A for more details. Since time-of-flight is an integrated
quantity, it is generally not sufficient to capture the complex spatial behaviour
inside each grid cell in an averaged sense. The variations in time-of-flight over
a grid cell may be quite large relative to an average value or a few representative
point values. Any method based on either a low-order polynomial (as in dG(1) and
dG(2)), or a few representative streamlines, is therefore bound to give quantitative
errors.
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Figure 4.6: Time-of-flight in the two grid cells of Layer 76 in the 10th SPE test case
sampled in 2000×2000 evenly distributed points inside each cell.

4.7 Multi-Phase Flow

An implicit discontinuous Galerkin scheme for purely advective multiphase flow
in porous media in the absence of gravity and capillary forces is briefly presented
in Paper B. We refer to Natvig and Lie [37, 36] for the complete presentation of
implicit discontinuous Galerkin schemes for fast computation of multiphase flow
in porous media.

An implicit discretisation of multiphase flow models is given by (3.11). To
advance the solution a single time step, one must solve the discrete system of non-
linear equations. Assembling and solving a large nonlinear system is often very
expensive, even for a simple first-order method, and using a higher-order spatial
discretisation introduces extra couplings and increases the nonlinearity of the dis-
cretised equations. By applying a dG method in combination with an upwind flux
approximation, the corresponding discrete system of nonlinear equations can be
decoupled in a sequence of nonlinear problems that can be solved sequentially in
one grid block at time using the standard Newton-Raphson algorithm. The use of
an element-wise solutions procedure makes implicit higher-order schemes feasi-
ble. This scheme is robust and efficient which makes it possible to compute the
solution in very large grids on a single desktop computer.

A multiphase model may produce discontinuities at interfaces between in-
jected water and resident oil. In the presence of discontinuities or kinks in the
solution, the higher order spatial discretisations tends to produce spurious oscilla-
tions, which can be suppressed by performing a post-processing with a nonlinear
limiter function after each step. The gain in the nonlinear case is possibly even
greater than in the linear case, because the Newton-Raphson iteration can be con-
trolled seperately in each element; see [37, 36] for more details.
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4.8 Streamline Tracing

As we compare grid-based solutions obtained by discontinuous Galerkin methods
of varying order to highly resolved streamline solutions, we give a brief descrip-
tion of streamline tracing using Pollock’s method.

Streamline-based methods may be applied to solve flow and transport prob-
lems in porous reservoirs; see e.g., [22, 29, 32, 33, 34]. Streamlines can visualise
flow patterns and identify swept or drained areas for different wells. Currently,
streamlines methods can be used on much larger geological models than finite-
volume methods. The included papers demonstrate that similar capabilities are
possible in a finite-element (or finite-volume) framework by using the assump-
tions of unidirectional flow.

To compute highly resolved reference solutions, a streamline tracing method
due to Pollock [42] is used. Pollock’s method builds a streamline as a series of
(small) line segments that each cross a grid cell in physical space. The segments
are constructed such that the exit point of the streamline in one cell is the entrance
point in the next cell. Pollock’s method uses an exact formula for streamlines
through each element based upon a piecewise linear approximation of v in each
direction. Given an entry point of a streamline into a grid cell, Pollock’s method
starts by mapping the grid cell onto the unit square (or unit cube in 3D). Each
component of the velocity field is then approximated in reference space by a lin-
ear function, and the streamline path in each direction is given as an exponential
function of the travel time. To trace streamlines, Pollock’s method determines the
travel time through the grid block as the minimum time to exit in each spatial di-
rection, which is given by a logarithmic expression. The travel time is then used
to compute the exit point, and the exit point is mapped back into physical space
to give the entry point into the next element, and so on. See [22, 42, 21] for a
more detailed description of Pollock’s method. The method is widely used in the
petroleum industry to trace streamlines, even though it may become inaccurate for
non-Cartesian grids, see [22].

4.9 Solution Procedure

Altogether, we have demonstrated that the dG schemes in combination with an op-
timal ordering of elements is a robust, accurate and efficient numerical approach
for the solution of incompressible flow of fluids in porous media. Below, the solu-
tion procedure for our methodology is summerized. The velocity field is assumed
given in such a way that the flux is constant over each elment face.

1. Find a representation of the geometry and create a mesh. The standard way
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of representing a mesh is by the meshpoints (vertex nodes) and a partition
of the computational domain.

2. For implementation of the optimal ordering strategy in Step 3, the neigh-
bouring elements are crucial. This relationships between elements may be
extracted from the information of node positions and the element indicies.

3. Find a prior reordering of elements such that the solution can be computed
efficiently in an element-by-element fashion. To find the sequence we let the
elements and fluxes together form a directed graph, where the elements are
the vertices and the fluxes are the directed edges. The desired computational
sequences can be obtained by a topological sort of the vertices in the graph.

If the velocity field has a nonzero circulation, there are one or more strongly
connected components in the graph, and these groups can be detected by one
additional depth-first traversal of the graph. In such a group of elements, the
solution must be computed simultaneously.

4. Rewrite the mathematical problem in a variational form.

5. Seek solutions in a finite-dimensional subspace. This space consists of
piecewise smooth functions of order n that may be discontinuous over ele-
ment interfaces.

6. The resulting linear system can be assembled and solved in an element-by-
element fashion. The coefficients can be approximated by applying, e.g.,
Gauss quadrature of the integrals. The integrals are simplified by mapping
them into a unit triangle using a linear transformation.

7. If spurious oscillations arise, we introduce a sort of (slope) limiter to sta-
bilise the solution. Recompute the solution in the actual element by making
a subdivision into a set of first-order elements.





Chapter 5

Applications in Groundwater
Protection

In this section we will describe two applications related to groundwater protection
using the dG methods introduced in the previous sections. They do not appear in
the included papers, but are good examples that demonstrate the practical rele-
vance of the dG methods; see [8].

A water-protection zone is fundamental in groundwater protection. Within
this area, building houses is not permitted, nor have any industrial activities or
aggressive agriculture that may contaminate the water.

In Germany, the water-protection zone is called a fifty-day line. This means
that biological processes need at least fifty days to decompose and degrade the
contaminants to an acceptable quantity of contamination. Hence, if a spill acci-
dent happens and contaminants infiltrate, it should take at least fifty days for the
contaminants to travel from the spill point to the protected area. To build anything
that can produce contaminations inside the fifty-day line is prohibited. To find this
type of water-protection zone, we need a concept that allows us to calculate fifty-
day time zones. Obviously, the time-of-flight calculations can give us directly the
information that we need to find protection zones.

We present two cases where we calculate the protection zones around wa-
ter supplies (e.g., a river, lake, etc.) using time-of-flight calculations. To com-
pute time-of-flight, a third-order dG scheme is considered. From experience, we
choose this order of the basis functions to obtain an accurate solution within a
reasonable computation time (See Paper A). Of course, these results are strongly
related to the heterogeneity of the permeability. For both cases, the viscosity µ in
Equation (2.11) is constant equal to 1.14×10−3kg/ms.



42 Applications in Groundwater Protection

5.1 Case I

Lake

Figure 5.1: Sketch of case I

In the first example, we investigate a lake that needs to be protected from conta-
mination. The lake is “connected” to a highway through the heterogeneous soil
(computational domain); see Figure 5.1. We will investigate the following prob-
lem; Assume that an accident, which involves a contaminant spilling, happens on
a certain position on the road. Which position will be most critical with respect
to contamination of the lake? That means from which position on the highway
will the contaminant use the shortest time to travel from the accident site on the
highway to the lake. According to the calculation of the most dangerous position,
restrictions can be set up on the road to avoid or reduce the risks of the fastest
pollution case.

Boundary conditions for the computational domain Ω with dimensions 300 m
× 75 m are given in Figure 5.2. We assume that the upper and lower boundaries
are impermeable and defined as no-flow boundary conditions. Flow is generated
by the difference of Dirichlet pressure boundary conditions between the accident
site on the left boundary and the whole right boundary. As depicted in Figure
5.2, there is a no-flow boundary condition on the left side except for the injection
point, where the spill accident takes place.

node 4

300 m

Neumann no flow

Neumann no flow

7
5

m

Dirichlet accident site

Dirichlet

p = 2.0E5
a

p = 2.5E5

Figure 5.2: Boundary conditions for case I
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The heterogeneous permeability field is obtained from synthetic data. How-
ever, the variation of the values in the permeability field is realistic. For our nu-
merical simulation, a 64 × 16 rectangular grid is used. Hence, there are 15 nodes
inside the left boundary, which are numbered in the sequence 1, 2, · · · , 15 from
bottom to top. In Figure 5.2, the injection point corresponds to node 4. To ob-
serve the effect of the heterogeneous porous medium on the results, we choose
seven symmetric injection nodes 1, 4, 6, 8, 10, 12, 15 on the left boundary to cal-
culate the time-of-flight. The time-of-flight results for the seven different accident
sites are given in Figure 5.3.

The plots in Figure 5.3 are computed time-of-flights for the different injection
points in the domain Ω. The first row is related to injection nodes 1 and 4, the
next row 6 and 8 etc. It is easy to see that time-of-flights are non-symmetric for
symmetric injection nodes due to the heterogeneity.

Figure 5.3: Time-of-flight [s] graphs for different injection points.

We will determine which position of the road that is the most critical regards
pollution of the lake if an accident involving contamination spill should happen.
Comparing the results in Figure 5.3, we can see that the breakthrough time at
the lake is longest in the middle right figure, where we have injection in node
8. Here the exact breakthrough time is 4.4402×106s (≈ 51 days). The injection
position for the shortest breakthrough time is node 15, (the lowest figure), where
the breakthrough time is 3.5805×106s (≈ 41 days). If a fifty days water protection
zone is establish around the lake, we have to set up restrictions on the road around
the position associated with node 15.
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5.2 Case II

In the second example, we consider a synthetic test case, where River 1 needs to be
protected from the infiltration of contaminants from River 2, see Figure 5.4. The
water table of River 2 changes with seasons and the weather, while the changes of
the water table of River 1 are neglected. Hence, the pressure difference between
the two rivers changes. In this case we will investigate the following scenario:
if contaminants spill to River 2, how long will it take for the contaminants to
infiltrate and arrive at River 1? The water-protection zone is a fifty-day line, and
to guarantee this criteria we find the upper limit for the pressure gradient between
the rivers. This means we must control the water table of River 2 such that the
arrival time of potential contaminants to be longer than 50 days.
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River 1
River 2

Figure 5.4: Sketch of case II

Assume that the porous medium between the rivers is heterogeneous in the
horisontal direction and homogeneous in the vertical direction, so that the problem
is reduced to a two-dimensional case.

Boundary conditions for the computational domain Ω with dimensions 100 m
× 100 m are given in Figure 5.5. We assume that the upper and lower boundaries
are impermeable and defined as no-flow boundary conditions. Flow is generated
by the pressure difference between the left and right Dirichlet boundary condi-
tions. To find the critical water table of River 2, different pressures on the left
boundary are tried, e.g., p1, p2, p3, p4 in Figure 5.5. In this case, a 32 × 32
rectangular grid is used.
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Figure 5.5: Boundary conditions for case II

Figure 5.6 shows the computed time-of-flights for different injection pressure
heads in the domain Ω. To control the water table of River 2, we want to know
how big the injection pressure head can be without contaminating River 1. To
avoid polluting River 1, the time-of-flight of contaminants has to be longer than,
or at least equal to 50 days (= 4.32× 106s). By comparing the results in Figure
5.6, we see that for a pressure head of 17 bar the contaminants have arrived at
River 1 in less than 50 days, which means that the pressure head in this case is
too big (bigger than the allowed critical value). According to the results and by
using manual bisection, the injection pressure head has to be smaller than, or at
most equal to 15.73 bar, which corresponds to a certain water table such that the
contaminants will use more than 50 days to travel from River 2 to River 1.
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(a) 12 bar (b) 14 bar

(c) 15.73 bar (d) 17 bar

Figure 5.6: Time-of-flight [s] graphs for different injection pressure heads [bar]



Chapter 6

Summary of Papers

Summaries of the papers included in Part II of the thesis, will now be given.
Details are also to be found in the previous sections.

6.1 Summary of Paper A

In Paper A, we focus on advective transport in a porous medium completely filled
with fluids of a single phase and we assume that the fluid velocity v is a time-
independent function. To this end, we consider a method for a class of linear
equations on the form

v ·∇u =H, in Ω, u = h, on ∂Ω−, (6.1)

where H and h are bounded functions, ∂Ω− denotes the inflow boundary of the
domain Ω and v is a given (divergence-free) vector field.

To accurately solve (6.1), we use a discontinuous Galerkin (dG) method in
combination with an upwind flux approximation on a Cartesian grids. This dG
discretisation will lead to a large system of linear equations that must be solved
to obtain the approximate solution of (6.1). Since the characteristics of (6.1) are
positive, all waves propagate in the same direction as v and the solution in each
elementK depends on the solution at the inflow boundary ∂K− and is independent
of the solution elsewhere in the domain. Using an upwind flux in our dG discreti-
sation preserves this one-sided domain of dependence, and the sign of the normal
component of v at an element interface K ∩E determines in what sequence the
solution in element K and E must be computed. We can find a sequence of ele-
ments p1,p2, ...,pNe such that element pi appears after element pj in the sequence
if pi depend on pj. Then the solution of the boundary-value problem (6.1) can be
computed element by element, from inflow to outflow boundaries.
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In Paper A, we introduce a general procedure to obtain such sequences. To find
the sequence we let the elements and fluxes together form a directed graph, where
the elements are the vertices and the fluxes are the directed edges. The desired
computational sequences can be obtained by a topological sort of the vertices
in the graph. A topological sort can be computed in O(Ne) operations for Ne

vertices using a depth-first traversal of the graph. This way, assembly of the full
global system is avoided, reducing implementational complexity, computaional
costs and memory requirements. The optimal sequence of elements is a simple
way to obtain efficient linear solvers for large advective problems.

If the velocity field v has a nonzero circulation, there are one or more strongly
connected components (cycles) in the graph. Strongly connected components
are groups of elements that are interdependent, and for these groups we need to
compute the solution simultaneously. Hence, a sequential procedure can still be
achieved by replacing each strongly connected component with a single vertex in
the graph.

The examples in Paper A demonstrate that the discontinuous Galerkin
schemes in many cases can compute time-of-flight with an accuracy compara-
ble to streamline approaches and superior to Berre et al’s grid-based attempts for
higher order polynomial approximations in [5]. For smooth media, higher-order
versions of these schemes yield excellent results with resolution comparable to
direct integration of streamlines. The optimal sequential solution procedure sim-
plifies the implementation of higher-order schemes, and reduces the costs in terms
of runtime and memory requirements.

For strongly heterogeneous cases, the results are quite inaccurate. The first-
order discontinuous Galerkin scheme is, in fact, identical to the first-order five-
point upwind scheme presented in [28]. This scheme gives results similar to the
results obtained in [5]. Using higher-order polynomial approximations near high
contrast features in the medium results in oscillations and unphysical time-of-
flight values in these areas.

By applying a (slope) limiter in an adaptive scheme we have been able to im-
prove the time-of-flight results for higher-order schemes. In elements where we
detect oscillations in the approximation, we replace the higher-order approxima-
tion with a first-order approximation and refine the grid to compensate for the
reduced accuracy associated with first-order elements. The number of subdivided
elements corresponds to the degrees-of-freedom in the original element. Hence,
for an n’th order method we replace a single element with a uniform n×n refine-
ment. This approach yields pretty accurate approximations of time-of-flight and
is only slightly more costly.

Another interesting observation in Paper A is that we efficiently can approxi-
mate swept and drained areas/volumes. By solving a boundary-value problem for
stationary tracer transport of each injection well, i.e., (6.1) with H = 0 and h = 1
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around a single injection well, we obtain the swept volumes. By reversing the
velocity field, we can find the drained volumes. The higher-order discontinuous
Galerkin scheme computes the stationary tracer transport problem with high accu-
racy for both smooth and strongly heterogeneous reservoirs. Moreover, low-order
approximations seems to provide sufficient accuracy.

Comments: For fluvial and layered media, direct integration of streamlines
gives a spatial resolution that is hard to match with other methods bases on grid
points or cell volumes. One should therefore not expect grid-based methods to
perform as well as back-tracked streamlines for all possible velocity fields (as was
demonstrated in [5]). However, compared to streamline methods, our approach
has a few advantages. First of all the discontinuous Galerkin scheme is conser-
vative. Therefore, mass balance errors are not a problem. Secondly, whereas
streamline methods need a method to distribute streamline such that the whole
grid is covered, we only need to find a sequence of computations.

6.2 Summary of Paper B

In Paper B we summarise the development in Paper A for linear transport in
porous media. In this paper we also briefly present an extension of the method-
ology to more general nonlinear equations of the form v · ∇f (u) = H (u,x); see
Natvig and Lie [37, 36] for a throughout presentation of implicit discontinuous
Galerkin schemes with an element-wise solver for multi-phase flow.

The non-linearity does not alter the dependency graph formed by elements
and interfaces fluxes. By applying the same ideas as for linear cases, we can solve
the system of nonlinear equations by solving a sequence of nonlinear subsystems.
At each step in the sequence, the solution of a small system of nonlinear equa-
tions is computed using a Newton-Raphson method. Each such system involves
the degrees-of-freedom of one element (or a few elements if the graph contains
strongly connected components).

Additional to sharp contrast in the features in the media, a multi-phase model
will generally produce discontinuities at interfaces between the different phases.
Near discontinuities, the dG scheme will tend to produce spurious oscillations.
This can be suppressed by performing a post-processing with a nonlinear limiter
function after each step; see [37, 36, 35] for more details. This scheme makes
it possible to compute the solution in very large grids on a single desktop com-
puter. Furthermore, the use of an element-wise solution procedure makes implicit
higher-order schemes feasible.

Comments: An observation from the examples done by Natvig and Lie in
[37] is that the decreasing of numerical diffusion in the spatial discretisation from
first to second order is very noticeable. Third or higher-order schemes do not
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improve the solution as much because of the use of a limiter effectively reduces
the order at the fronts. In addition, the overall accuracy of scheme also depends
on the size of the time step.

Paper B was presented at the conference on Computational Methods in Water
Resources in June 2006.

6.3 Summary of Paper C

The numerical results in papers A and B show that the discontinuous Galerkin
method is efficient and accurate for computing transport in porous media. In Paper
C, we investigate dG schemes in naturally fractured media.

Due to the high contrast and different length scales of the rock matrix and the
fractures, naturally fractured media represent a challange for reservoir character-
isation, modelling, and simulation of petroleum and groundwater reservoirs. The
aim of Paper C is to investigate how the dG discretisation of the time-of-flight
equation is able to handle the geometries and sharp variations in rock properties
of naturally fractured reservoirs. For simplicity, we only consider models in two
space dimensions consisting of regular Cartesian grid. The optimal reordering of
unknowns based on prior information of the direction of flow is used in the same
manner as in Papers A and B. The result is an efficient method, which can be a
grid-based alternative to streamline methods.

Since fractures exist on a much smaller spatial scale than the characteristic
length scale of the matrix, we assume that we have a discrete fracture model,
where the fractures are modelled as one-dimensional in a two-dimensional reser-
voir model. However, for the numerical calculations, we model the fractures as
two-dimensional objects and approximate the solution in fracture elements in the
same manner as for the matrix elements. This can be motivated based on the fact
that the transport changes rapidly in the fractured regions.

Due to the complex geometries and potentially large variations in parameter
values, fractures will often have a significant impact on the flow characteristics of
a porous medium, and in this paper we investigate two simplified grid models to
examine various approaches for the dG discretisation in fractured regions of the
porous medium. Since it is assumed that the width of the fractures is negligible
compared to characteristic length scales of the reservoir, we first consider a mod-
ification of the discretisation for the fracture elements, by assuming that there is
no variation in time-of-flight across the fracture. The fractures are resolved with
one element in the latitudinal direction of the fractures, thus reflecting the fact that
the fractures initially are modelled as one-dimensional. The numerical results in
Paper C demonstrate that this scheme does not give accurate approximations. Mo-
tivated by the fact that the time-of-flight has large variations across the fractures,
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it is natural to consider a finer grid resolution in the latitudinal direction of the
fractures (as opposed to only one element). Comparing the numerical results of
the dG approximation with those from a streamline simulator, we reveal the im-
portance of a sufficient grid resoultion in the latitudinal direction of the fractures,
even though the widths of the fractures are very small compared to typical length
scales of the unfractured parts of the reservoir.

The grid-resolution is necessary since the time-of-flight is an integrated quan-
tity that exhibits fine-scale details and contains large spatial variation within
and close to fractures (even though these may have been modelled as lower-
dimensional objects in the original model). To avoid instabilities in the solution,
we consider order reduction of the dG approximation in the latitudinal direction of
the fractures. This also results in more efficient scheme due to a reduced number
of unknowns for fracture elements.

Paper C was presented at the conference on Computational Methods in Water
Resources in June 2006. Extension of the methodology to unstructured triangular
grids is done in Paper D.

6.4 Summary of Paper D

The research presented in Paper D are a continuation of the ideas from C. In Pa-
per C, we only considered Cartesian grids and this restricted the orientation of the
fractures to be horizontal or vertical. Realistic fractured media lead to compli-
cated domains which demand the use of adapted grids, and in Paper D we extend
the methodology used in Paper C to unstructured triangular grids in 2D. The ex-
tension to tetrahedral elements in 3D is straightforward. A dG approximation on
unstructured grids using lower order basis functions is presented by Røe in [47].

We consider single-phase flow in semi-realistic models of fractured reservoirs,
where the fractures themselves are represented explicitly as volumetric cells with
small width and high permeability. Explicit modelling of complex fracture net-
works will give rise to very complex structures, and using unstructured triangular
(tetrahedral) grids, at least locally, may be necessary to accurately model realistic
cases.

Numerical examples in Paper D for unfractured and fractured media illustrate
the efficiency and robustness of the proposed numerical model. For triangular
grids, the dG method is convergent for smooth solutions, but loses accuracy near
discontinuities. The numerical results show how the nature of random perturbated
grids impact the accuracy, leading to reduced convergence rates for rough grids.

Overall, the dG approximations give solutions that are qualitatively good—the
schemes predict the actual flow patterns even for coarse grid resolutions. Some
of the examples indicate that increasing the order of the basis functions is more
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important than increasing the grid resolution (provided the flux is resolved with
sufficient accuracy). Our experience is that a dG discretisation of sufficiently high
order is a relatively robust alternative to streamlines that performs well in a wide
range of realistic cases. However, strongly discontinuities in the reservoir may
give oscillations and reduce the accuracy of the solution. To avoid this we may
introduce a limiter as presented in Paper A, where we reduce the order of the basis
functions and refine the grid in areas with high media contrasts. In Paper D, we
confirm the observation in Paper C about the importance of having a sufficient grid
resolution in the latitudinal direction of the fractures to accurately compute time-
of-flight in fractured porous media. This is necessary to capture the fine-scale
features of the solution and reduce local discretisation errors that would otherwise
tend to destroy the solution downstream of the fracture.

The framework is used to compute the stationary tracer equation in order to
find an approximations to the well connectivity in a reservoir. The numerical
experiments show that low-order approximations provide sufficient accuracy to
produce a reasonable delineation of the reservoir volume.
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Abstract

We consider a discontinuous Galerkin scheme for computing transport in heterogeneous media. An efficient solution of the resulting
linear system of equations is possible by taking advantage of a priori knowledge of the direction of flow. By arranging the elements in a
suitable sequence, one does not need to assemble the full system and may compute the solution in an element-by-element fashion. We
demonstrate this procedure on boundary-value problems for tracer transport and time-of-flight.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we consider efficient and accurate methods
for a class of linear equations of the form

v � ru ¼ Hðu; xÞ; for x 2 X;

u ¼ hðxÞ; for x 2 oX�
ð1Þ

where v is a given (divergence-free) vector field and oX� de-
notes the inflow boundary of X. Our motivation for study-
ing this equation comes from transport in porous media,
where equations of this form are used as simple transport
models or arise as the result of a semi-discretisation of a
more complex transport equation. Accurate solution of
(1) is of great importance in areas such as oil recovery
and groundwater hydrology because (1) reveals the trans-
port properties of v. Solving (1) is rather easy for smooth
v, but becomes much harder when the vector field has large

spatial variations and exhibits fine-scale details that are
important for the global flow pattern.

In the following, we focus on convective transport in a
porous medium completely filled with fluids of a single
phase. To this end, we assume that the fluid velocity v is
a time-independent function that is given as the result of
a finite-volume or a (mixed) finite-element computation.
In reservoir simulation, for instance, it is common to use
a low-order method to compute the flux defined on a grid
rather than the flow velocity v, meaning that v will be given
in terms of flux values that typically are constant on each
element face in the grid.

To discretise (1), we will use a discontinuous Galerkin
(dG) method for the operator v Æ $ in combination with
an upwind approximation of the flux. The discontinuous
Galerkin method was introduced by Reed and Hill [17]
for the problem of neutron transport. LeSaint and Raviart
[14] analysed the method in this context and proved a rate
of convergence of OðDxnÞ for smooth solutions on Carte-
sian grids. A number of researchers have made significant
contributions since then. Among others, Lin and Zhou
[13] proved convergence of the method for non-smooth
solutions. Moreover, Cockburn and Shu [2,3] analysed
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and extended the original discontinuous Galerkin method
to systems of hyperbolic conservation laws and convec-
tion-dominated problems.

It is interesting to note that (1) can be interpreted as a
stationary advection equation with a source term, and it
is therefore close to the original application of Reed and
Hill. However, the problem we address in this paper is
the resolution of advective transport when v varies many
orders of magnitude, whereas, Reed and Hill consider a
smooth velocity field.

The dG discretisation of (1) will lead to a large system of
nonlinear equations. However, due to the directional deriv-
ative v Æ $, the exact solution in each grid cell K only
depends on the set of points on the upstream side of a bun-
dle of streamlines passing through K and is independent of
the solution elsewhere in the domain. Using an upwind flux
in our dG discretisation preserves this one-sided domain of
dependence, and it is therefore possible to compute the
solution in one element at a time, from inflow to outflow
boundaries, if we can find a sequence of elements so that
element i appears after element j in the sequence if i depend
on j. Using arguments from graph theory, we will show
that such a sequence can be found in linear time by travers-
ing the grid and visiting each grid cell once. This optimal
sequence of elements can then be exploited to develop a
very efficient nonlinear solver based on a reordering of
the unknowns giving an upper block-triangular system.
This way, the computational effort needed to solve (1) is
reduced from solving a large sparse nonlinear system
involving all degrees-of-freedom in the domain, to solving
a sequence of smaller problems involving one or a few non-
linear equations. In the linear case, this gives a direct solver
that is not only simple to implement, but also fast and inex-
pensive in terms of storage. In the nonlinear case, one has
to apply an iterative solver for each subproblem. The
resulting solver will generally have better convergence than
a corresponding solver for the full system, since the itera-
tions can be controlled independently in each subproblem.
We note that these ideas are not new. The reduction of a
matrix to block-triangular form by use of depth-first tra-
versal of elements was described in Duff et al. [7]. Similarly,
Dennis et al. [6] explore the use of block-triangular struc-
tures to construct effective Newton-type nonlinear solvers.
As far as we know, however, these ideas have not been used
to compute transport in porous media.

In this paper, we will mainly focus on the case where
H(u) is a linear function of u. Extensions of the methodol-
ogy to more general nonlinear equations of the form
v � rF ðuÞ ¼ Hðu; xÞ (arising e.g., from an implicit semi-dis-
cretization of multiphase-multicomponent transport mod-
els) are discussed in a separate paper [15]. In Section 2, we
derive a few basic transport models on the form (1). Our
motivating examples will be two linear boundary-value
problems, one for the stationary distribution of tracers
and one for the so-called time-of-flight. Isocontours of
time-of-flight represent the time-lines in a reservoir and
the corresponding differential equation exhibits all the dif-

ficulties seen in more complex transport models due to
non-smooth spatial variations in the forcing velocity field.
The time-of-flight equation will therefore be our key
example used to develop the methodology. Solutions of
the stationary tracer equation have a much simpler struc-
ture and are only used herein as a means to delineate res-
ervoirs with multiple wells into (nearly) independent flow
regions. In Section 3, we introduce the discontinuous
Galerkin method briefly and present the variational for-
mulation and discretisation of (1). Then, in Section 4 we
show how to solve the corresponding linear system effi-
ciently using a reordering strategy. In Section 5, we show
how to compute the distribution of tracers from multiple
wells in a single-phase reservoir. In Section 6, we present
some numerical examples for computation of time-of-
flight from (5) and compare the accuracy of our dG meth-
ods to highly-resolved solutions obtained by pointwise
integration of streamlines. Finally, Section 7 contains
some concluding remarks.

2. Basic transport models

The flow of fluids through porous and heterogeneous
media can be modelled as a set of balance laws for the con-
servation of mass for each fluid component. For a mixture
of m fluid components separated into ‘ phases, we have

X‘
i¼1

ðotð/caiqisiÞ þr � ðcaiviqiÞÞ ¼
X‘
i¼1

caiqi; a ¼ 1; . . . ;m;

ð2Þ
where / is the porosity of the medium; qi; si; vi, and qi are
the density, saturation (volume fraction), phase velocity,
and volumetric source term of the ith phase; and cai is
the mass fraction of component a in phase i. In this model
gravity and capillary effects have been neglected.

If all fluids are of the same phase (i.e., ‘ = 1) and the
flow is incompressible, we can write down the equation
for the bulk motion of the fluid components in terms of
the common fluid pressure p and the volumetric velocity
field v:

r � v ¼ q=q; v ¼ �K

l
rp: ð3Þ

Here K is the permeability of the medium and l is the vis-
cosity. The linear relation between average fluid velocity
and pressure gradients is called Darcy’s law. For simplicity,
we scale (3) such that l = 1 and assume that q consists of a
set of point-sources modelling injection/production wells.

The individual distribution of the various components
are now given in terms of linear transport equations,
ot(/ca) + $ Æ (cav) = caq/q. In other words, each fluid com-
ponent is transported according to the volumetric velocity
field v. As our first example of such a transport model, we
consider the stationary distribution of a set of passive trac-
ers (a ¼ 1; . . . ;m) and assume incompressible flow. Eq. (2)
then simplifies to
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v � rca ¼ 0:

We remark that gravity can be included in these simple
transport equations by replacing Darcy’s law in (3) by
v = � K($p � qg)/l. In Section 5, we will use the station-
ary tracer transport equation as a means for computing
connectivity between sites for injecting and producing flu-
ids, thereby deriving reservoir compartmentalisation.

For flows with more than one phase, one can derive a
pressure equation of the form (3), where K/l is replaced
by Kk(s) and k(s) is a nonlinear function accounting for
the reduced mobility due to the presence of more than
one fluid phase. As for single-phase flow, the motion of flu-
ids is, in the absence of gravity, aligned with the velocity
field v; thus, all instantaneous transport occurs along inte-
gral curves W of v.

Integral curves, or streamlines, W are everywhere tan-
gent to the velocity field v. If we introduce the bistream
functions n; g, given such that v = $n · $g, the integral
curves of v map to straight lines (n = const, g = const) in
the so-called streamline coordinates ðs; n; gÞ. Here s takes
the role of the spatial coordinate along streamlines and is
called the time-of-flight coordinate. Moreover, we have
the operator identity

v � r ¼ /os: ð4Þ
The appearance of / in this relation is convenient since /
rescales streamline coordinate according to the pore vol-
ume the streamline passes through. For a homogeneous
medium, however, s equals the standard curve length along
W after an appropriate scaling (corresponding to setting /
= 1).

The simplest possible model of the form (1) for convec-
tive transport induced by v, is the following boundary-
value problem for time-of-flight s in X,

v � rs ¼ /; sjx2oX� ¼ 0: ð5Þ
The equation follows trivially by applying the operator
identity (4) to the streamline coordinate s. The time-of-
flight s(x) measures the time it takes a passive particle re-
leased at the closest point on the inflow boundary to travel
to a given point x. Isocontours of s(x) are the time-lines in
the porous medium and as such give vital information
about the flow pattern, in particular for single-phase flow.
The time-of-flight is also a cornerstone in modern stream-
line methods, see [5,11]. In a streamline setting, s(x) is usu-
ally given by the integral

sðxÞ ¼
Z

W

/ds
jvj ; ð6Þ

evaluated along the streamline W connecting x to the inflow
boundary oX�.

Another interesting sub-case of (1) arises if we apply an
implicit temporal discretisation to the transport Eq. (2),
giving equations of the form

un � un�1

Dt
þr � ðvunÞ ¼ q: ð7Þ

By using the product rule on the term $ Æ (v un) and a dis-
continuous Galerkin method for spatial discretisation of
v Æ $un, we will get essentially the same linear systems for
each time step as for (5), but with a different right-hand
side.

3. Discontinuous Galerkin discretisation

The discretisation in a discontinuous Galerkin method
starts with a variational formulation as in a standard
Galerkin method, but allows for discontinuities over the
element edges. To get the variational formulation of (1),
we partition the domain into a collection of non-overlap-
ping elements {K}. Let V be the space of arbitrarily smooth
test functions. By multiplying (1) with a function v 2 V and
integrating by parts over each element K, we get

�
Z

K
ðuvÞ � rvdxþ

Z
oK
ðuvÞ � nvds¼

Z
K

Hðu;xÞvdx 8v 2 V ;

where n is the outer normal on the element boundary oK.
We seek solutions in a finite-dimensional subspace Vh � V,
so we replace the exact solution and the test function by
uh 2 Vh and vh 2 Vh, respectively. For Vh, we choose the
space of piecewise smooth functions that may be discontin-
uous over element boundaries. Since uh may be discontinu-
ous over inter-element boundaries, we must replace the flux
term (uv Æ n) by a consistent and conservative numerical
flux function f̂ ða; b; v � nÞ. This leads to the following dis-
crete variational formulation: let

aKðuh; vhÞ ¼ �
Z

K
ðuhvÞ � rvhdxþ

Z
oK

f̂ ðuh; uext
h ; v � nÞvhds;

bKðuh; vhÞ ¼
Z

K
Hðuh; xÞvhdx;

and find uh such that

aKðuh; vhÞ ¼ bKðuh; vhÞ 8K; 8vh 2 V h: ð8Þ
Here f̂ is the upwind flux given by

f̂ ðp; pext; v � nÞ ¼ p maxðv � n; 0Þ þ pext minðv � n; 0Þ; ð9Þ

for inner and outer approximations p and pext at the ele-
ment boundaries. The upwind flux preserves the directional
dependency in the solution, which is crucial in our solution
procedure.

To fix ideas, we assume, for simplicity of presentation,
that X � R2 and assume that the elements K are rectangles
in a regular Cartesian grid. Let Q

n ¼ spanfxpyq :
0 6 p; q 6 ng be the space of polynomials of degree at most
n in x and at most n in y, and let V ðnÞh ¼ fv : vjK 2 Qng. A
convenient basis for this space is the tensor product of
Legendre polynomials Lk = ‘r(x)‘s(y) for r; s ¼ 0; . . . ; n.
The approximate solution on an element Ki can then be
written as

uhðx; yÞ ¼
Xn2

k¼0

ti
kLk

2ðx� xiÞ
Dxi

;
2ðy � yiÞ

Dyi

� �
; ð10Þ
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where ðxi; yiÞ is the centre of element Ki. Thus, V ð0Þh is the
space of elementwise constant functions and yields a for-
mally first-order accurate scheme, V ð1Þh is the space of ele-
mentwise bilinear approximations and yields a formally
second-order accurate scheme, etc. In the following, we
use dG(n) to denote the discontinuous Galerkin approxi-
mation of polynomial order n. In other words, the error
of a dG(n)-method will decay with order n + 1 for smooth
solutions. On non-smooth solutions, slower convergence is
to be expected. Finally, the degrees of freedom per element
in a dG(n)-method is m = (n + 1)d in d spatial dimensions.

4. Fast solution by reordering the unknowns

In the following we will motivate and present the opti-
mal reordering that allows us to solve (8) elementwise.
To this end, we will use the time-of-flight Eq. (5), for which
(8) simplifies to a linear system

aKðuh; vhÞ ¼ bKðvhÞ 8K; 8vh 2 V h: ð11Þ
Although (8) and (11) have different structure on a given
element K, the two global systems will have a similar block
structure. All ideas presented for the linear case (11) will
therefore immediately carry over to the nonlinear case (8).

By substituting the approximate solution (10) and the
tensor-product Legendre polynomials in the variational
formulation (11), we get a set of linear equations for the
degrees-of-freedom in each element. Let T denote the vec-
tor of unknown coefficients ti

k in all of X, and let TK be the
vector of unknowns for element K. In element K, we have

AKT ¼ BK ; AKT ¼ �RKT K þ F KT

where ðAKÞij ¼ ah
KðLi;LjÞ and ðBKÞi ¼ bh

KðLiÞ, and ah
K and bh

K

are numerical approximations to the integrals in (11) using
Gaussian quadrature. For convenience, we have split the
coefficient matrix into the element stiffness matrix R and
the coupling to other elements through the numerical flux
integral F. The coefficient matrix has a block-banded struc-
ture, where the size of each block is given by the number of
unknowns in each element.

The properties of F are in general determined by the
choice of numerical flux. The upwind flux (9) can be written
as

F KT ¼ F þK T K þ F �K T UðKÞ; ð12Þ

where F+ denotes flux out of element K; F � denotes flux
into element K, and we write UðKÞ for the set of neighbour-
ing elements on the upwind side of K, i.e.,
UðKÞ ¼ fE 2 X : oE \ oK� 6¼ ;g. Thus, the system reads

�RKT K þ F þK T K ¼ BK � F �K T UðKÞ: ð13Þ

The split F = (F+ + F�) is easy to motivate and understand
if one assumes that v Æ n does not change sign on element
interfaces, which we will do henceforth. If v is computed
using a standard low-order discretisation method for (3)
like the two-point flux-approximation method (i.e., the
five-point method in 2D) or the lowest-order Raviart–

Thomas mixed finite-element method, v Æ n will typically
be constant on each element face. In this case, UðKÞ con-
sists of all elements E such that ðv � nÞjoE\oK < 0, where n

is the outward-pointing normal to K.
The key to an efficient solution procedure is to take

advantage of the fact that (1) has this one-sided domain
of dependence; in other words, both the exact and the
numerical solution in any element is determined by the
solution on the upstream side(s). Thus, we can construct
the solution in a given element once the solution is known
in the element’s immediate upstream neighbours. By care-
ful inspection, we may therefore construct the solution
locally, starting at sources or inflow boundaries and pro-
ceeding downstream. A similar approach was used in [17]
in the context of neutron transport. To our knowledge,
the idea has never been applied to transport in porous
media before.

From a computational point of view, it is more conve-
nient to look at this as a reordering of unknowns. Observe
that we can solve (13) element by element if we can deter-
mine a sequence of elements such that i appears before j in
the sequence if there is a flux from element Ki to element Kj.
By processing the elements in such a sequence, the right-
hand side of (13) is a known quantity in each step. Since
the directions of the fluxes are determined solely by v

(and not by T), this sequence can be computed as part of
a preprocessing step before solving the system (13).

The idea of solving boundary-value problems for advec-
tive transport sequentially by a reordering of unknowns
was also used in [1], but with a different spatial discretisa-
tion. In that paper, we used an algorithm to compute a
suitable sequence based on physical arguments. The solu-
tion was constructed by marching outwards from the
inflow boundaries or sources. To do so, we needed to keep
a list of candidate nodes for the next update(s). In each step
of the algorithm, a suitable candidate node was sought in
the list, the solution at this node was computed based
entirely on known nodal values, and each of the node’s
downstream neighbours were added to the list.

In this paper, we choose a different approach. To find
the sequence of elements, we observe that the elements
and fluxes together form a directed graph, where the ele-
ments are the vertices and the fluxes are the directed edges;
that is, if there is a flux from element i to element j, then
there is a directed edge from vertex i to vertex j in the
graph. Furthermore, if the desired sequence of elements
exists, this graph is acyclic (DAG). In graph theory, the
task of finding this sequence of vertices is known as a topo-
logical sort of the vertices, which can be accomplished by a
depth-first traversal of the reversed DAG (see, e.g., [18]).
The depth-first traversal takes OðNÞ operations for a graph
of N vertices. In most cases, the depth-first traversal will
produce a sequence of nodes that allows an elementwise
computation of the solution. If the sequence of elements
does not exist, it means that there are so-called strongly
connected components in the graph, that is, groups of ele-
ments that are interdependent. For these groups of
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elements, we need to compute the solution simultaneously.
This is discussed in the next subsection (Section 4.1). How-
ever, strongly connected components of directed graphs
can be found by one additional depth-first traversal. This
means that finding a reordering and locating possibly con-
nected components is altogether an OðNÞ operation. For
the remaining part of the paper, we will assume that a
topological sort can always be performed (or, as in our
implementation, that the solution algorithm is capable of
solving several cells simultaneously whenever connected
cells are encountered). In Fig. 1, we have illustrated the
difference between the DAG algorithm and the advanc-
ing-front algorithm [1] for finding an adequate ordering
of elements in a simple 2D case.

Standard linear solvers are usually assumed to have
a computational complexity of na operations for n

unknowns. Modern techniques like multigrid or domain
decomposition can obtain (close to) linear complexity
(a � 1.0) for advection problems, but constructing such
solvers efficiently is certainly non-trivial. Reordering the
elements reduces the computational effort needed to solve
(13) from (Nm)a to Nma, where N is the number of elements
and m is the number of degrees-of-freedom per element. In
other words, instead of solving a large (Nm) · (Nm) system,
we solve N small linear m · m systems, for which highly
efficient solvers easily can be constructed. Thus, reordering
is a simple way to obtain highly efficient linear solvers for
large advection problems. See [15] for a discussion of
how the same principle can be applied to decouple the solu-

tion of nonlinear systems arising in the implicit discretiza-
tion of multiphase transport equations. Discontinuous
Galerkin methods based on explicit temporal discretiza-
tions are discussed by Hoteit and Firoozabdi [9].

4.1. Strongly connected groups of elements

As noted above, the graph defined by the grid and the
fluxes may in some cases not be acyclic. For instance, if a
higher-order method is used to discretise (3), there may
be a few element faces over which the flux changes sign.
Consider such a face, with neighbouring elements K1 and
K2. If v Æ n takes both signs on oK1 \ oK2, then K1 2
UðK2Þ and K2 2 UðK1Þ (see (12)), meaning that solutions
in the two neighbouring elements depend on each other
and must be computed simultaneously. A direct mapping
of the corresponding fluxes to a graph results in a graph
with two-way edges. To obtain a directed graph, each
two-way edges must be replaced by two one-way edges.
The corresponding cycle can be automatically detected as
before.

Also when v Æ n is constant on each grid face, certain
boundary conditions for the pressure Eq. (3) will produce
cycles in the dependency graph. This is a reflection of the
fact that although streamlines do not cross, they may pass
through a grid cell more than once. An example of this is
shown in Fig. 2. The figure shows a velocity field computed
using a mixed finite-element method with lowest-order
Raviart–Thomas on a coarse and on a fine grid. The veloc-
ity field is the solution of (3) with the imposed boundary
conditions shown. When the global inflow and outflow
boundaries are edges of the same element, every streamline
starts and ends in this element. Thus, the dependency graph
of the elements will not be acyclic. In fact, for this case all
the degrees-of-freedom in the domain must be computed
simultaneously. Note also that a more accurate solution
of (3) projected onto the 3 · 3 grid produces the same
dependency graph.

The situation in Fig. 2 is a worst-case scenario. A more
likely distribution of fluxes is depicted in Fig. 3, where a
small subset of elements are strongly connected. In this sit-
uation, our reordering strategy still works and gives one
larger linear system associated with the 2 · 2 block of inter-

11 15 16

51 4

32 7 8

6

1413129

10 10 14 16

61 5

42 8 12

9

1513113

7

Fig. 1. (Left) Direction of flow and the order of computation generated by
a depth-first traversal of the reversed flow field. (Right) The sequence that
could have been computed from an advancing-front algorithm.

Fig. 2. (Left) A homogeneous domain with inflow and outflow in a single element and no-flow boundary elsewhere. The arrows indicate the sign of the
flux on the faces of a 3 · 3 grid. (Middle) Streamlines of a mixed finite-element solution with 3 · 3 elements. (Right) Streamlines for a solution computed
using 90 · 90 elements.
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connected cells in addition to the usual twelve linear sys-
tems associated with single cells.

Moreover, blocks of interconnected cells do not appear
if one uses a two-point flux-approximation finite-volume
scheme for the pressure Eq. (3), as has been the standard
in the oil industry. A simple argument of decreasing pres-
sure along streamlines rules out the possibility of a stream-
line re-entering a cell.

5. Approximation of tracer distribution

Determining the spatial region swept by a fluid source or
an inflow boundary, or vice versa, the spatial region from
which fluid is drained by a sink or an outflow boundary,
is of practical importance both in groundwater manage-
ment and petroleum engineering. In reservoir engineering,
computing streamlines is well-suited for predicting where
fluid from different wells will eventually end up. For incom-
pressible flow, any streamline in the domain connects two
wells, an injector and a producer. Thus, by assigning a
unique label to each well, streamlines will give information
about well connectivity and areas affected by each injector
or producer. The way one could obtain the same informa-
tion in a finite-volume method is by computing the trans-
port of tracers from each injector. When the tracer
transport becomes stationary, one would obtain informa-
tion about well connectivity and affected areas.

Our ideas lend themselves naturally to compute the
transport of tracer effectively. The stationary distribution
of tracers is given by an equation of the form

v � rc ¼ 0; cjx2oX� given: ð14Þ
Since c is constant along streamlines, the solution to this
equation can be determined in each point by tracing a
streamline backward to the inflow boundary.

To determine the reservoir volume connected to a par-
ticular injector, we would solve (14) by setting the concen-
tration of tracer component i to 1 in well i and 0 in the
m � 1 other wells and compute the tracer distribution in
the non-well blocks. For an upwind discontinuous Galer-
kin discretisation of Eq. (14), the linear equations for ele-
ment K are

ð�RK þ F þK þ F �K ÞCi ¼ 0; i ¼ 1; . . . ;m; ð15Þ

where Ci is the vector of unknowns for tracer i. As before,
we may split the vector of unknowns Ci in the unknowns
Ci;K for element K and the unknowns Ci;UðKÞ in the neigh-
bouring upwind elements. Then, (15) may be written as

�RKCi;K þ F þK Ci;K ¼ �F �K Ci;UðKÞ; i ¼ 1; . . . ;m:

By solving this equation for C in one element at a time, we
compute the distribution of tracers in the domain. Note
that the tracer components are independent so only one
matrix factorisation is needed for the solution of an m-tra-
cer problem. The same idea can easily be extended to
compressible flows, for which (14) is replaced by v Æ $c =
� c$ Æ v.

From the tracer distribution, we can approximate the
swept areas of each injection well. The simplest approach
is to draw the 0.5 contour (isosurface) of each tracer con-
centration. To obtain the drained areas for each produc-
tion well, we simply reverse the velocity field. To get the
well connectivity, we can combine the two calculations to
uniquely determine the part of the domain affected by a
given injector–producer pair.

At this point, it might be tempting to ask why one could
not replace (14) by a simple graph colouring algorithm to
assign a colour to all nodes influenced by a particular injec-
tor (or more generally, a particular part of the inflow
boundary). Such an approach is indeed possible, but would
in general lead to multi-labelled nodes. Due to the fluxes,
our directed graph is a weighted graph. By solving the tra-
cer Eq. (15), we are effectively computing a weighted colour-

ing of the graph.

5.1. Swept areas/volumes

We will now present three test cases, in which we use the
above idea to delineate reservoirs in 2D and 3D, respec-
tively. To this end, we compute the stationary distribution
of one tracer launched from each injector. In the figures, we
show the swept areas/volumes, which are distinguished by
different shading. In 2D, the boundaries of the regions are
marked by black and correspond to the 0.5 contour of each
tracer concentration.

We first show how this idea works in two space dimen-
sions. To assess the performance of the method, we will
use geological data from Model 2 of the 10th SPE Compar-
ative Solution Project [4]. The model contains 60 · 220 · 85
cells and consists of two formations: a shallow-marine Tar-
bert formation in the top 35 layers, where the permeability is
relatively smooth, and a fluivial Upper-Ness permeability in
the bottom 50 layers. Both formations are characterised by
large permeability variations, 8–12 orders of magnitude, but
are qualitatively different; see Fig. 9 for plots of the corre-
sponding permeabilities. We compute the swept areas of
eight injectors placed on the boundary of two rectangular
reservoirs corresponding to Layers 1 and 76. Three produc-
tion wells are placed inside the domain so that the wells form
three five-spot patterns. The production wells are sources
with rate �2.0, the injection wells in the corners have rate
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1 2 3 4
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Fig. 3. The figure shows a suitable sequence of computations when a
group of connected elements is encountered.
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+0.5, and the other injection wells have rate +1.0. In the fig-
ures, the production wells are marked by white and injection
wells by black circles.

Fig. 4 shows the swept areas for Layers 1 and 76, respec-
tively, computed using the dG(0) and dG(1) methods. To
illustrate the flow directions, a few streamlines are plotted
in the domain. In the figures, these are drawn in white.
The streamlines close to the boundaries between the swept
areas make it possible to evaluate the quality of the approx-
imations for different orders of the dG discretisation.

The permeability in Layer 1 is relatively smooth, and the
differences between the dG(0) and dG(1) discretisations are
minor. The permeability in Layer 76, has a strongly heter-
ogeneous structure with intertwined high-permeable chan-
nels on a low-permeable background. Using the dG(0)
method, we can observe some streamlines crossing the
boundaries between the swept areas, whereas, the dG(1)
method seems to have captured the areas correctly.

Increasing the order in the dG discretization further did
not produce any observable differences in the swept areas.

The same idea can also be applied to three-dimensional
problems. Fig. 5 shows swept volumes computed for the 15
upper layers of the SPE 10 test case. The injection wells are
located in the upper-left and upper-right corners of the
back plane and in the lower-left and lower-right corner in
the front plane. The production well is placed in the centre
of the domain. To distinguish the swept regions for each
tracer, we have applied different shadings.

Table 1 reports runtimes for a similar partitioning of the
full SPE 10 model with 1,122,000 cells. The runtimes have
been split into time used to reorder and time used for solv-
ing the local dense m · m systems with LAPACK. For
completeness we have also included corresponding timings
for dG with tri-linear and tri-quadratic basis functions
(P-basis). By using the first-order dG(0) discretization,
the whole 1.1 million reservoir model is delineated in only

Fig. 4. The plots show the tracer distribution for two layers of the SPE 10 test case. The solution is computed using the dG(0) (upper) and dG(1) (lower).
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a few seconds, which means that the method has a big
potential for use in interactive user-exploration of large
geomodels. If more accuracy is required for the swept vol-
umes, the corresponding runtime will of course increase
significantly. However, by using the P-basis, a second-
order approximation is computed in less than 10 s and a
third-order approximation in less than 1.5 min. (Notice
also that for dG(2), the total number of unknowns is more
than 30 millions).

6. Approximation of time-of-flight

In this section we will discuss the approximation of the
time-of-flight Eq. (5) through a series of test cases with
increasing difficulty. Although the equation has a simple
form, the solutions are useful in many applications of
transport in porous media. In ground-water flow, for
instance, the time-of-flight can be used to identify the areas
affected by a contamination. Moreover, as the examples in
this section will clearly demonstrate, time-of-flight holds
much of the spatial complexity present in solutions of mul-
ticomponent and multiphase models from reservoir simula-
tion. Therefore, the following test cases show not only the
correctness of our solution strategy, but also the spatial
resolution, or the lack thereof, one can expect to get for
more complex transport models.

We start by verifying the accuracy and convergence
rates of our discontinuous Galerkin schemes. For this pur-
pose we use a simple rotating velocity field, for which the
exact time-of-flight can be computed analytically.

Case 1 (Convergence Study). Consider (5) with ðu; vÞ ¼
ðy;�xÞ for ðx; yÞ 2 ½1; 2� � ½1; 2�. This makes x = 1 and
y = 2 inflow boundaries and the remaining boundaries
outflow boundaries. By setting T = 0 on the inflow
boundaries, the exact time-of-flight can be computed as

T ðx; yÞ ¼ arctan
y
x

� �

� arctan

min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðx; yÞ2 � 1

q
; 2

� �

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðrðx; yÞ2 � 4; 0Þ

q
; 1

� �
0
BB@

1
CCA;

where rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In Table 2, we have computed

the L2-errors of the discontinuous Galerkin scheme for dif-
ferent orders and grid resolutions. The upper half of the ta-
ble shows L2-errors in a smooth part ð1; 1:3Þ � ð1; 1:3Þ of
the domain, while in the lower half the error is integrated
over the whole domain. The dG methods yield the expected
order of accuracy in smooth regions, but due to the kink in
the solution along the circular arc r ¼

ffiffiffi
5
p

, we get reduced
convergence rates for the whole domain.

For applications in porous media the velocity field v is
typically obtained by solving a pressure equation of the
form (3). In the remaining examples of this section we will
compare grid-based solutions obtained by discontinuous
Galerkin methods of varying order to highly-resolved
streamline solutions obtained by back-tracing streamlines
from a set of 10 · 10 uniformly distributed points within
each element. Unless stated otherwise, the same subresolu-
tion is used in all the following plots to evaluate the piece-
wise polynomial dG-solutions within each element.

In all examples, we assume that v is known and given in
a such way that the flux v Æ n is constant over each element

Fig. 5. Tracer distribution for a subsample from the smooth Tarbert formation in the SPE 10 test case. The velocity is computed using a two-point flux
approximation.

Table 1
CPU time in seconds used to reorder and to solve the tracer boundary-
value problem for the SPE 10 five-spot reservoir using dG(n) with m

degrees of freedoms per cell

n Basis m Reorder Solve Total

0 – 1 1.24 1.87 3.11
1 P-basis 4 1.21 8.65 9.86
1 Q-basis 8 1.20 25.22 26.41
2 P-basis 10 1.21 85.28 86.48
2 Q-basis 27 1.20 582.34 583.53

Runtimes are measured on a single core on an AMD Athlon X2 4400+
processor.
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face in a Cartesian grid. We can then use a streamline trac-
ing method due to Pollock [16] to compute highly-resolved
reference solutions. Pollock’s method uses an exact for-
mula for the streamline through each element based upon
a piecewise linear approximation of v in each direction.
The method is widely used in the petroleum industry to
trace streamlines, even though it may become highly inac-
curate for non-Cartesian grids, see [10].

The first example is a standard test case in oil reservoir
simulation, called a quarter-five spot:

Case 2 (Heterogeneous Quarter Five-Spot). Consider a
reservoir consisting of the unit square with no-flow
boundaries and with a source placed in the lower-left
corner and a sink in the upper-right corner. The synthetic
permeability field is lognormal and isotropic and spans six
orders of magnitude from the smallest to the largest value
and the porosity is assumed to be constant equal unity. The
corresponding (single-phase) velocity field is computed
using a mixed finite-element method with first-order
Raviart–Thomas basis on 129 · 129 elements.

Fig. 6 compares solutions computed by the dG(n)
scheme for n ¼ 0; 1; 2 with the solution obtained by the
node-based fast-sweeping scheme of [1] (for which no
subsampling was used in the plotting). In addition, we have
included a reference solution obtained by tracing stream-
lines with Pollock’s method [16] from 10 · 10 uniformly
distributed points inside each element. Pollock’s method
reproduces the exact time-of-flight since the velocity field
computed by the lowest-order Raviart–Thomas approxi-
mation is consistent with the velocity approximation used
in the tracing algorithm. The fast-sweeping method gives a
resolution that is slightly better than dG(0) and slightly
worse than dG(1). The differences are easily explained if we
momentarily interpret dG(0) as a first-order finite-differ-

ence scheme. Whereas, dG(0) uses a first-order upwind
discretisation in each coordinate direction corresponding
to a five-point stencil, the fast-sweeping method uses a first-
order upwind discretisation along local streamlines, which

corresponds to a nine-point stencil and should therefore be
more accurate. In the plots, it also appears to be smoother
than dG(0), but this is a plotting artifact due to the linear
interpolation inherent in the contouring algorithm.
(For dG(0) we effectively use a piecewise constant inter-
polation due to the 10 · 10 subsampling).

Finally, we notice that the third-order method agrees
remarkably well with the highly-resolved streamline refer-
ence solution.

In our second reservoir example we consider a three-
dimensional case with similar heterogeneity as in Case 2.

Case 3. We consider a reservoir model consisting of
64 · 64 · 16 grid cells with unit porosity and a smoothed,
lognormally distributed permeability field with values
spanning five orders of magnitude, see Fig. 7. An injector
is located in the lower-left corner of the front face, a
producer is located in the upper-right corner of the back
face, and no-flow conditions are specified at the
boundaries.

Fig. 7 shows time-of-flights computed by dG(n) for
n ¼ 0; 1; 2. As in Case 2, dG(0) resolves the main features
of the heterogeneous flow field, but underestimates the
penetration of sharp fluid fingers. By increasing the
polynomial order in the dG-basis functions, we allow for
sub-cell variation in the time-of-flight and thereby improve
the resolution of the viscous fingering, which in a sense is a
sub-grid phenomenon.

In the absence of gravity effects, (hyperbolic) models for
multiphase and multicomponent transport will typically
have only positive characteristics. This means that time-
of-flight carries important information about the temporal
development of complex spatial structures in the solution
and s(x) can thus be used to infer much about flow patterns
for convection-dominated transport. In other words, by
solving for s(x) one can therefore learn much about the
fluid motion without having to compute all time steps of
a full fluid simulation.

Table 2
The L2-errors and convergence rates for a grid refinement study of the discontinuous Galerkin scheme with increasing approximation order on a series of
N · N grids

N dG(0) dG(1) dG(2) dG(3)

10 3.36e�03 – 3.13e�05 – 1.74e�07 – 2.77e�09 –
20 1.52e�03 1.15 7.42e�06 2.08 2.24e�08 2.96 1.45e�10 4.25
40 8.01e�04 0.92 1.95e�06 1.93 2.90e�09 2.95 9.58e�12 3.92
80 4.14e�04 0.95 5.02e�07 1.96 3.69e�10 2.97 6.22e�13 3.94

160 2.05e�04 1.01 1.25e�07 2.01 4.60e�11 3.01 3.84e�14 4.02
320 1.02e�04 1.01 3.10e�08 2.01 5.73e�12 3.00 2.39e�15 4.01

10 2.83e�02 – 2.06e�03 – 6.16e�04 – 3.07e�04 –
20 1.72e�02 0.72 7.59e�04 1.44 2.07e�04 1.57 9.81e�05 1.64
40 1.01e�02 0.76 2.75e�04 1.47 6.80e�05 1.61 3.07e�05 1.68
80 5.79e�03 0.80 9.90e�05 1.47 2.23e�05 1.61 9.54e�06 1.68

160 3.23e�03 0.84 3.54e�05 1.48 7.25e�06 1.62 2.94e�06 1.70
320 1.76e�03 0.87 1.26e�05 1.49 2.34e�06 1.63 9.00e�07 1.71

In the upper half, the L2 error is measured over the smooth domain ½1; 1:3� � ½1; 1:3� and in the lower half over the square ½1; 2� � ½1; 2�.
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From a computational point-of-view, computing the
time-of-flight is in a certain sense more difficult than com-
puting one time-step of a transport problem like e.g., (7).
For transport problems, data are given in the whole spatial
domain, and the domain of dependence for a single point
(or grid cell) is therefore limited by Dt times the maximum
wave speed associated by the corresponding continuous

equation, and the variation in phase saturations or compo-
nent concentrations are typically limited to the interval
[0, 1]. Time-of-flight, on the other hand, has a global
domain of dependence in the sense that s(x) depends on
all points along the streamline from x and back to the
inflow boundary; see (6). Moreover, the time-of-flight val-
ues may easily span several orders of magnitude.

Fig. 6. Time-of-flights for Case 2 computed using dG(n) for n ¼ 0; 1; 2, the fast-sweeping method, and direct streamline integration. The contours in the
plots are T ¼ 0:07; . . . ; 0:49 PVI in steps of 0.07.
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In the two examples above, the reservoir heterogeneity
was mild due to unit porosity and relatively smooth spatial
variation in v. As a result, s(x) had relatively smooth vari-
ation even though it contained the characteristic viscous
fingers, and we were able to obtain good resolution by
choosing a uniform sufficiently high order for the dG basis
functions.

For highly heterogeneous reservoirs with large varia-
tions in the porosity or strong shears in the velocity field,
s will generally have low regularity and exhibit very large
variations. For instance, in regions where high-speed flow
meets low-speed flow from nearly impermeable regions
such as channel walls or obstacles, the time-of-flight may
oscillate with orders of magnitude over a few elements.
Use of higher-order polynomial approximations can there-
fore easily result in oscillations and unphysical time-of-
flight values, as will be demonstrated in Case 4. Moreover,
if these variations are not captured by the local approxima-
tion, the error along the outflow edges will be propagated
to the neighbour elements.

6.1. Slope limiting

Spurious oscillations is a common problem in many dis-
continuous Galerkin methods and is usually circumvented
by applying a (slope) limiter that reduces the local variation
of each basis function by modifying the coefficients of poly-
nomial terms of order two and higher. Limiters are usually
derived from a maximum principle or from a principle that
limits the local variation.

For the time-of-flight Eq. (5), the only principle avail-
able to us is the fact that s(x) is strictly increasing along
streamlines, which follows trivially from (6). We therefore
propose to check that the time-of-flight is higher on the
outflow edges than on the inflow edges of each element;
that is,

min sjoKþ > ð1� eÞmax sjoK� ; 0 6 e� 1:

If this is not the case, we recompute the solution in this ele-
ment by making a uniform subdivision into a set of first-or-
der elements such that the number of new elements
corresponds to the degrees-of-freedom in the original ele-
ment. That is, for dG(1) we split the element in two in each
spatial direction, for dG(2) we split in three, etc. By reduc-
ing the order to one, we expect to reduce possible oscilla-
tions, and by subdividing, we try to compensate for the
reduced accuracy associated with first-order elements.

To clearly demonstrate the problems caused by shear in
the velocity field and the effect of our order-reduction/sub-
division strategy, we consider an artificial transport prob-
lem with four large impermeable geometrical obstacles.

Case 4. We consider a quarter five-spot in a square domain
with an injector in the lower-left corner and a producer in
the upper right. The permeability field consists of a
homogeneous background into which we have inserted
four nearly impermeable obstacles – two triangles, a circle,
and a rectangle – each having a permeability 10�6 relative
to the background. The corresponding velocity field is

Fig. 7. Lognormal permeability field for Case 3 and corresponding time-of-flights computed using dG(n) for n ¼ 0; 1; 2. The contours shown in the slice
plots are at T ¼ 0:1; . . . ; 0:6 PVI in steps of 0.1.
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computed using a mixed finite-element method with the
lowest-order Raviart–Thomas basis.

As observed in [1], transport past obstacles and through
channels is very challenging since the time-of-flight field
will have extreme gradients downstream from the obsta-
cles. In Fig. 8, we compare two approximate solutions
computed using dG(0) and dG(2) with the exact streamline
solution. As above, the first-order scheme fails to capture
the leading viscous fingers, in particular those creeping
around the impermeable circle. Similarly, the dG(2) solu-
tion contains strong oscillatory pollution that arise along
impermeable boundaries and propagate in the downstream
direction. By applying the order-reduction/subdivision
strategy devised above with e = 0.005, almost all the
oscillations are removed and the exact solution is repro-
duced quite accurately. By only using order-reduction and
no subdivision, the corresponding dG(2)-solution has
comparable accuracy to that of dG(0).

In the above example, we used a somewhat extreme case
to demonstrate the problems caused by large shears in the
velocity field. Similar problems will arise due to several
types of strong reservoir heterogeneities: impermeable
blocks, shales, layers with large permeability ratios, fluvial
reservoirs with high-permeable channels on a low-perme-
able background, large variations in pore volumes. These

difficulties will be partly demonstrated in our final example,
in which we revisit Model 2 from the 10th SPE Compara-
tive Solution Project [4].

So far, our reference solutions have been obtained by
back-tracing a large number of streamlines inside each grid
cell. For large models (in 3D), this approach is generally
not computationally feasible. Instead, modern streamline
methods [11] rely on tracing a set of representative stream-
lines launched from injectors and/or producers; see e.g.,
[12]. Cell-values for time-of-flight can then be computed
by averaging all streamlines passing through or in the
neighbourhood of each cell. This approach reduces the spa-
tial accuracy unless one uses a sophisticated scheme for
obtaining sufficient streamline coverage.

Case 5. In this example, we consider two 2D quarter five-
spot cases with permeability and porosity data taken from
Layers 1 and 76, respectively, of Model 2 in the SPE 10 test
case. Fig. 9 shows the permeability and the corresponding
time-of-flights computed by dG(n) for n ¼ 0; 1; 2. For
comparison we also show solutions obtained by tracing
1500 streamlines initiated uniformly from the well block.
For the Tarbert formation in Layer 1, the variation in
permeability and porosity is relatively smooth. As in Case
2, dG(1) and dG(2) reproduce the qualitative behaviour of
the solution, whereas, dG(0) underestimates the viscous

Fig. 8. Transport past obstacles for Case 4 computed by dG(0) and dG(2) with and without order-reduction/subdivision.
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fingering. The accuracy of the standard streamline method
is somewhere between that of dG(1) and dG(2).

The fluvial Upper Ness formation in Layer 76 contains
sharp contrasts in permeability (and porosity) between the
low-permeable background and a set of intertwined high-
permeable channels. For the higher-order dG methods we
have therefore applied our order-reduction/subdivision
strategy. Fig. 9 shows that although dG(1) and dG(2)
have quantitative errors, they are able to capture most of

the qualitative behaviour of the time-of-flight, which
should be of most interest to a reservoir engineer. More-
over, the higher-order dG solutions are at least as accurate
as the solution obtained by the standard streamline
method.

To illustrate the difficulty of accurately resolving the
time-of-flight in Layer 76, Fig. 10 shows the exact solution
sampled in 2000 · 2000 evenly spaced points inside two
grid cells. Since time-of-flight is an integrated quantity, it is

Fig. 9. Permeability field and time-of-flight for Layers 1 (left) and 76 (right) of the SPE 10 test case computed with dG(n) for n ¼ 0; 1; 2 (order increasing
downwards), streamline solution with 1500 streamlines, and a streamline reference solution (bottom). The contours shown in the plots are at
T ¼ 0:1; . . . ; 0:6 PVI in steps of 0.1 for Layer 1 and T ¼ 0:05; 0:1; 0:15 PVI for Layer 76.

Fig. 10. Time-of-flight in the two grid cells (200, 36) and (200, 37) of Layer 76 in the 10th SPE test case sampled in 2000 · 2000 evenly distributed points
inside each cell.
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generally not sufficient to capture the complex spatial
behaviour inside each grid cell in an averaged sense. The
variations in time-of-flight over a grid cell may be quite
large relative to an average value or a few representative
point values. Any method based on either a low-order
polynomial (as in dG(1) and dG(2)), or a few representative
streamlines, is therefore bound to give quantitative errors,
as observed in Fig. 9.

7. Final remarks

The purpose of this paper has been to explore the effi-
ciency and accuracy of a discontinuous Galerkin scheme
applied to a class of boundary-value problems for advec-
tive transport. A unique feature of our methodology is
the use of an optimal ordering of the unknowns that allows
us to compute the solutions in an element-by-element
fashion.

We have demonstrated how one can use the framework
to compute accurate approximations to the stationary tra-
cer distribution in a reservoir. This can be used to compute
so-called swept and drained areas/volumes and well con-
nectivities. These quantities are usually computed using
streamline methods and have proved to be useful tools
in, e.g., ranking and history matching. Due to the efficient
sequential solution procedure presented in this paper, this
is a one-sweep computation that can be performed with
high-order accuracy and modest demands on storage and
computing power. Moreover, as our numerical test cases
illustrate, low-order approximations do, in general, provide
sufficient accuracy.

We have also demonstrated that the discontinuous
Galerkin schemes in many cases can compute the time-
of-flight with an accuracy comparable to streamline
approaches and superior to our earlier grid-based attempts
[1]. For strongly heterogeneous cases, direct integration of
streamlines gives a spatial resolution that is hard to match
with other methods based on grid points or cell volumes.
One should therefore not expect grid-based methods to
perform as well as back-traced streamlines for all possible
velocity fields, as was demonstrated in [1]. Indeed, we
observe reduced accuracy for transport past (and through)
barriers and through channels as in Cases 4 and 5. For sim-
ple 2D cases one can always argue that better results can be
obtained by grid refinement or by tracing more streamlines,
but this is less feasible, e.g., for the full SPE 10 model con-
taining 60 · 220 · 85 = 1,122,000 grid cells, even if one is
able to use the reordering algorithm to solve for the time-
of-flight separately in each cell.

Our experience is that a dG discretisation of sufficiently
high-order is a relatively robust alternative (to streamlines)
that performs well in a wide range of realistic cases. The
computational efficiency of our methodology makes it a
candidate for applications where one needs to establish
the qualitative structures of the flow pattern. Prime exam-
ples of such applications are the calibration of reservoir

models to production data and validation of upscaling of
geological models. In [8] the dG-methodology was used
to study simple 2D models of discrete fracture networks.
Extensions of the dG/reordering methodology to multi-
phase and multicomponent transport will be discussed in
a forthcoming paper [15]. Finally, although the method
was presented for uniform Cartesian grids, the reordering
idea is equally applicable to unstructured and irregular
grids.
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Abstract

We present a family of efficient solvers for hyperbolic transport equations modelling
flow in porous media. The solvers are based on discontinuous Galerkin spatial dis-
cretisations and implicit temporal discretisation. By applying an optimal reordering
algorithm, the corresponding discrete system of (non)linear equations can be solved in
one grid-block at a time. This way, we avoid assembly of a full (non)linear system. Our
approach allows us to handle large numbers of grid blocks with modest requirements
on memory.

1. INTRODUCTION

In this paper we present efficient and accurate solution procedures for a class of
linear and nonlinear boundary-value problems of the form

αu +∇ ·
(
vF (u)

)
= β, x ∈ Ω,

u = h(x), x ∈ ∂Ω+.
(1)

Here F (u) is a flux function with positive characteristics, v is a given (nearly) curl-free
vector field, and ∂Ω+ denotes the inflow boundary on which v · n < 0. Equations of
this form arise either as simple models for single-phase flow, like e.g., the time-of-flight
equation,

v · ∇τ = φ, (2)

or as the result of an implicit semi-discretisation of systems of hyperbolic conservation
laws for multiphase and multicomponent flow of the form

φ∂tui +∇ ·
(
vFi(u)

)
= qi, i = 1, . . . , `− 1. (3)

To discretise (1) we use a discontinuous Galerkin (dG) formulation. By this approach,
we can easily achieve high-order accuracy with local, compact stencils where the only
coupling is between elements sharing a common element face. This yields systems of
(non)linear equations with predictable structure: Each (non)linear equation describes
the interaction between the degrees-of-freedom of one element and its immediate neigh-
bours sharing a common element face. If the normal velocity n · v is constant on each
face, this structure can be greatly simplified by using an upwind approximation of the
fluxes across element interfaces. In fact, in the linear case the upwind discretisation
yields reducible systems of equations, for which we can find symmetric permutations
that map the global systems to block-triangular systems, where each block involves the
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degrees-of-freedom of one or a few elements. In the nonlinear case, the permutation
of equations and unknowns yields a block-triangular Jacobian matrix. Finding the
permutation (or reordering) is quite easy if we view the fluxes across element inter-
faces as edges in a directed graph and rephrase the permutation as a topological sort.
From elementary graph theory it follows that the reordering can be found by using a
depth-first traversal of the grid, in which each cell is visited only once.

A key point in our approach is to exploit this optimal reordering to develop very
efficient (non)linear solvers. In the linear case [7], we use a direct solver to factor the
small diagonal blocks in the triangular system and thereby obtain a very efficient direct
solver. In the nonlinear case (see [6]), the nonlinear subsystems can be solved one-by-
one according to the reordering, using for instance a Newton–Raphson method. In
both cases the computational effort is reduced significantly from solving a large sparse
(non)linear system for all degrees-of-freedom in the domain to solving a sequence of
block problems involving a few (non)linear equations for each element. Moreover, in
the nonlinear case, we may control the iterations separately for each subsystem and
this will generally give better convergence than for the corresponding global nonlinear
iteration. Finally, by using the optimal reordering one avoids assembling the global
system.

The reordering idea is not new and has been described previously by [3]. Similarly,
[2] explore the use of block-triangular structures to construct effective Newton-type
nonlinear solvers. However, to the best of our knowledge, these ideas have not previ-
ously been used to compute transport in porous media, even though the idea is quite
natural and can easily be motivated by the underlying physics: The triangular struc-
ture of the equations reflects the directional dependence of the continuous equation (1)
that previously has been exploited in streamline methods, see [5]. Due to the positive
characteristics of F , the exact solution in each element K will only depend on the up-
stream points of all streamlines passing through K and be independent of the solution
elsewhere in the domain. Using an upwind flux in our dG formulation preserves this
one-sided domain-of-dependence, which is a prerequisite for the reordering approach.

2. DISCONTINUOUS GALERKIN DISCRETISATION

A discontinuous Galerkin method starts with a variational formulation. We thus
partition the domain into non-overlapping elements {K}, multiply (1) with a function
v from the space of arbitrary piecewise smooth functions V , and integrate by parts
over K to get∫

K

(αu− β)v dx−
∫

K

F (u)v · ∇v dx +

∫
∂K

vF (u)v · n ds = 0, ∀v ∈ V.

We seek a solution in a finite-dimensional subspace Vh ⊂ V consisting of functions that
are smooth inside each element, but may be discontinuous over the element boundaries.
Due to the possible discontinuities, we must replace the flux F (uh)v·n with a consistent

and conservative numerical flux function F̂ (a, b,v · n). This leads to the following
discrete variational formulation: let

aK(uh, vh) =

∫
K

(αuh − β)vh dx−
∫

K

F (uh)v · ∇vh dx +

∫
∂K

F̂
(
uh, u

ext
h ,v ·n

)
vh ds (4)

and find uh such that

aK(uh, vh) = 0, ∀K, ∀vh ∈ Vh. (5)
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For the numerical flux F̂ we use an upwind approximation

F̂ (p, pext) = F (p) max(v·n, 0) + F (pext) min(v·n, 0), (6)

for inner and outer values p and pext at element boundaries. Note that there are
other consistent flux approximations are also consistent, but they may not preserve
the directional dependency we rely on to compute a permutation of the unknowns. For
instance, the well-known Lax-Friedrichs flux yields a consistent approximation of the
inter-element fluxes, but creates a bidirectional dependence between all elements.

In the following we assume that our elements K are hexahedrals in a regular Carte-

sian grid and choose V
(n)
h = {v : v|K ∈ Qn−1}, where Qn = span{xpyqzr, 0 ≤ p, q, r ≤

n}. A simple basis for this space is the tensor-product of Legendre polynomials Lk.

Thus V
(1)
h is the space of elementwise constant functions giving a scheme that is for-

mally first order; V
(2)
h is the space of elementwise trilinear functions, giving a second-

order scheme; etc. Henceforth, dG(n) will denote the discontinuous Galerkin scheme
of formal order n having m = nd unknowns per element in d spatial dimensions.

Substituting the tensor-product Legendre basis functions into (5) and using an ap-
propriate Gaussian quadrature rule to approximate the integrals, we end up with a
system of nonlinear equations for the unknown degrees-of-freedom U

GK(U) := ah
K(uh, Lk) = 0, ∀K. (7)

By writing U |K for the unknowns in element K and U |Ω\K for the unknowns outside
K and separating GK into the different terms of (4) and (6), we can write (7) as

MKUK −BK + RK(U |K) + F+
K (U |K) + F−(UΩ\K) = G+

K(U |K) + G−(U |Ω\K) = 0.

If we reorder the unknowns, all degrees-of-freedom on the upwind side of element K
will be known, meaning that G−(U |Ω\K) is a known quantity. The only unknowns in
(7) for each K are therefore the degrees-of-freedom in K.

3. SEQUENTIAL SOLUTION

As explained in the introduction, the key to obtaining a fast (non)linear solver is to
find a reordering p = (p1, . . . , pN) of the elements that renders the system of equations
(7) into a block-triangular form

G+
p1

(Up1)
G−

p2
(Up1) + G+

p2
(Up2)

...
G−

pN
(Up1 , . . . , UpN−1

) + G+
pN

(UpN
)

= 0,
= 0,
...
= 0.

(8)

We therefore consider the directed graph defined by assigning a vertex to each element
Ki and a directed edge for each flux (v · n)|∂Ki∩∂Kj

between elements. Thus, an edge
from vertex i to vertex j implies that the solution in Kj depends on the solution in Ki.
The task of arranging vertices in a sequence according to their position in a directed
graph is called a topological sort. To see how a suitable sequence can be constructed,
note that pi < pj for any vertex i that can be reached from vertex j by going backwards
in the graph. By traversing the graph backwards in a depth-first manner, adding vertex
j to the sequence when the search backwards from j has been completed, we obtain a
topologically sorted sequence. Since a depth-first search only visits each vertex once,
the topological sort of a directed graph can be obtained in O(N) time for N vertices.
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Figure 1. Stationary tracer distributions used to delineate the SPE 10 test
case into independent flow regions. (Left) The four swept volumes in this
scenario are shown in different colours. (Right) By removing one tracer, the
intricate surfaces separating the swept volumes are revealed.

If the sequence cannot be found by a single depth-first traversal, the graph has at
least one cycle of vertices that can reach any other vertex in the same cycle. Cycles
correspond to groups of elements that are made mutually dependent by a nonzero cir-
culation in the velocity field v. The degrees-of-freedom in such a group of elements
correspond to a irreducible diagonal block and must be computed simultaneously. For-
tunately, cycles can be detected automatically by performing a forward depth-first
search. By lumping all elements in a cycle into a single vertex, we obtain an acyclic
graph where each vertex corresponds to one or a few elements that form an irreducible
block of degrees-of-freedoms.

For flow in porous media, the velocity field is typically computed by solving a pressure
equation. For incompressible flow, the exact velocity field has zero circulation. A simple
argument shows that the same is true for an approximate velocity field computed by
a two-point pressure solver. A mixed finite-element solution, on the other hand, may
give a velocity field with nonzero circulation. In compressible flow, we may also get
nonzero circulation. In our experience, cycles that appear in velocity fields computed
by the mixed finite-element method are small and sparse for incompressible and weakly
compressible flows.

4. NUMERICAL EXAMPLES

In this section we present a few examples to demonstrate that our dG approach gives
efficient and accurate solvers for single-phase and multiphase flow in porous media.

4.1. Steady-State Tracer Distribution. As our first example, we consider the sta-
tionary distribution of a set of tracers being continuously injected into a reservoir,
modelled by the simple equation

v · ∇cα = 0, cα|∂Ω+ given.

The reservoir model is taken from [1], has 220 × 60 × 85 grid cells, and consists of a
smooth shallow-marine Tarbert formation on-top of a fluvial Upper Ness formation. A
vertical injection well is located in each of the four corner and a producer is located
in the middle. By launching different tracers in each of the four injectors, we may
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Figure 2. Time-of-flight in quarter five-spot with low-permeable region.
Contours correspond to [0.075 : 0.15 : 0.875] pore volumes injected. The
solution is computed using (from left to right) streamline integration, dG(3),
and adaptive dG(3). The figure on the right zooms on the 0.65 contour of
dG(3) (red) in the lower half and the adaptive dG(3) (red) in the upper half,
both with the streamline solution shown as a dashed line.

determine the volumes swept by each injector and use this to delineate the reservoir
into independent flow regions, as shown in Figure 1. The velocity field of this scenario
was computed with a two-point flux approximation, with pressure-driven injection.
The stationary tracer distributions were computed with a second-order discontinuous
Galerkin scheme, and the boundaries between the swept volumes were computed as
the 0.5 isosurface of the different tracer saturations.

4.2. Time-of-Flight. In our second example, we show time-of-flight computed in a
quarter five-spot test case in the unit square. The flow is driven by point sources in
the lower left and upper right corners. The permeability and porosity equal 10−6 in
(0.3, 0.7)×(0.3, 0.7) and 1.0 elsewhere. The solutions computed on 100× 100 elements
with the dG-method are shown in Figure 2 together with a reference solution computed
by direct integration of time-of-flight along streamlines. To generate the plots the
solutions have been sampled using 10× 10 points in each element.

This seemingly innocent example turns out to be quite difficult to compute using any
finite-difference or finite-volume method. The reason is that the time-of-flight solution
has a large gradient downstream from the impermeable region. This rapid variation is
impossible to capture accurately with polynomial elements, and will generate oscilla-
tions for elements with order higher that one.

Since our solution procedure computes the solution in one element at a time, we are
able to implement a simple adaptive procedure. Clearly non-physical solutions can be
detected by checking if the solution is increasing from inflow to outflow in each element
K. If this is not the case (large) errors can propagate to the next element. To avoid
this situation, we recompute the solution in K with a first-order method on a refined
grid of n×n sub-elements. A computation based on this approach is shown in Figure 2.

4.3. Two-Phase Flow. In our next example we consider (3) for ` = 2, modelling an
oil-water system. The primary unknown is the water saturation s and the flux function
is given by f(s) = s2/(s2+(1−s)2). Applying a backward Euler temporal discretisation
to (3), we get an equation of the form (1) for each time-step

φ

∆t
sn +∇ ·

(
vf(sn)

)
=

φsn−1

∆t
.
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Figure 3. Two-phase flow in the fluvial Upper Ness formation of the SPE 10
test case. The figure shows (from top-left to bottom-right) the permeability
field, the solutions at time t = 0.2PVI computed using dG(1), dG(2), and
dG(3).

The two-phase model will generally produce discontinuities at interfaces between in-
jected water and resident oil. Near discontinuities, the dG scheme will tend to produce
spurious oscillations, which can be suppressed by performing a post-processing with a
nonlinear limiter function after each step, see [6] for more details. Figure 3 shows a
solution of a water injection scenario in Layer 37 of the model from [1]. This layer is
part of the fluvial Upper Ness formation characterised by high contrast and complex
channel patterns. The computations are performed with a fixed velocity field computed
with a mixed finite-element method and saturations have been computed with dG(1),
dG(2) and dG(3) using very long time steps corresponding to a CFL-number of 2500.
The resolution of thin fingers improve with increased order of accuracy as expected
except at the front, where the nonlinear limiter function reduce the accuracy to second
order.

4.4. Three-Phase WAG Injection. In our last example, we consider a water-alter-
nating-gas scenario in a quarter five-spot. Here the primary unknowns are the water
and gas saturations, sw and sg. To define the flux functions, we introduce the phase
mobilities

λw(sw) = s2
w/µw, λg(sg) = (0.1sg + 0.9s2

g)/µg,

λo(sw, sg) = (1− sw − sg)(1− sw)(1− sg)/µo,

where µw = 0.35, µg = 0.012 and µo = 0.8. The two components of the flux function
are fα = λα/(

∑
α λα) for α = w, g. This system has only positive characteristics and

is strictly hyperbolic except for the single point of 100% gas saturation, where the
eigenvalues coincide [4]. Figure 4 shows the time evolution of a WAG injection cycle
starting with the injection of 0.05 pore volumes of water, then 0.05 pore volumes of
gas, etc. Before each injection step, the pressure and velocity fields are recomputed to
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4. Three-phase flow in the smooth Tarbert formation in the 6th
layer of the SPE 10 test case. The figures show (top, right) the permeability
field with high permeability indicated by light shading, (left column) the water
saturation and (right column) the gas saturation in five steps of a WAG cycle.
The plotted contours are [0 :0.1:1] for the water saturation and [0 :0.05:1] for
the gas saturation. The permeability field span values from 1e− 6 to 1e− 12.
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account for the change in total mobility. The transport is computed with dG(2) using
a CFL-number of 5000.

5. CONCLUDING REMARKS

In this paper we have demonstrated the capabilities of an implicit discontinuous
Galerkin discretisation for linear and nonlinear transport in porous media. A sequential
solution procedure based on reordering the equations yields a very fast method with the
attractive feature that the runtime scales linearly with the number of elements. In the
linear case, this offers a competitive alternative to streamline methods for delineating
reservoirs. For nonlinear time-dependent problems this scheme yields a nonlinear solver
that allows implicit time-stepping in large multiphase flow computations on desktop
computers.

For very large problems, domain decomposition may be used to circumvent the
memory limitations of a single computer. For time-dependent problems, the sequential
solution procedure allows many time steps to be computed in parallel. Neither of these
options have been tested yet.
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Abstract

Discrete fracture models, in which fractures are represented individually as lower-
dimensional objects, are beginning to appear in simulators for porous media flow. Here we
present a discontinuous Galerkin method for computing time-of-flight in discrete-fracture
models of fracture-fault systems. Isocontours of time-of-flight are time-lines of porous-
media flow and give information about flow patterns, in particular for single-phase flow.

Recent numerical results show that the discontinuous Galerkin (dG) method is efficient
and accurate for solving the time-of-flight equation. In this paper, we use two simplified
grid models to examine various approaches for the dG discretisation in fractured regions
of the porous medium. Comparing the numerical results of the dG approximation with
those from a streamline simulator, we demonstrate the importance of a sufficient grid
resolution across the fractures, even though the widths of the fractures are very small
compared to typical length scales of the unfractured parts of the reservoir.

1. INTRODUCTION

In recent years, advanced drilling techniques and enhances in seismic and geological
characterisation of petroleum reservoirs have emerged. Consequently, there is an increased
need for more detailed understanding of how local reservoir heterogeneities, such as frac-
tures, affect the oil and gas recovery. A naturally fractured reservoir can be defined as a
reservoir containing planar discontinuities created by natural processes like diastrophism
and volume shrinkage. Due to the complex geometries and potentially large variations
in parameter values, fractures will often have a significant impact on the flow charac-
teristics of a porous medium, and fractured reservoirs represent a challenge for reservoir
characterisation, modelling, and simulation.

The traditional way of simulating flow in a fractured medium is by the use of dual-
porosity models, where the matrix (unfractured rock) and fractures are treated as two co-
existing porous media. Although such models are efficient in some cases, they generally fail
to deliver sufficient resolution of the complex flow patterns that develop when a fractured
medium is produced. In recent years, several approaches have been taken to describe
fracture-fault systems more accurately. These approaches rely a discrete description of
individual fractures, using complex (unstructured) gridding schemes in which each fracture
is represented explicitly by lower-dimensional objects at cell faces.

1
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In a recent paper (Natvig et al., 2006), we presented a discontinuous Galerkin (dG)
method for computing single-phase transport in porous media. Here we present the first
step towards extending this method to discrete fracture systems. For simplicity, we only
consider conceptual 2D models consisting of a regular Cartesian grid representing the
matrix and extra lines at cell edges representing straight fractures. The aim of this first
step is to investigate how the dG discretisation is able to handle the geometries and sharp
variations in rock properties of fractured fields. In general, we use the same solution
procedure as in (Natvig et al., 2006), but due to the high contrasts and different length
scales of the rock matrix and the fractures, we investigate different dG approximation
strategies for the model equation in the fractures. A key point in our approach is an effi-
cient solution procedure for the resulting system of discrete flow equations. By exploiting
a priori knowledge of the directions of flow, we may arranging the elements in a suitable
sequence such that one does not need to assemble the full system and can compute the
solution extremely fast in an element-by-element fashion.

The outline of the paper is as follows: In Section 2, we introduce the time-of-flight for-
malism as a model for single-phase transport in porous media. In Section 3, we give a brief
outline of the dG method and present the variational formulation and discretisation of our
model problem, distinguishing between the discretisation in the rock matrix and in the
fractures. We also show how to solve the resulting linear system using an a prior reorder-
ing of the elements. Numerical examples are presented in Section 4; here, we compare
the accuracy of the solutions computed by the dG method to highly resolved solutions
obtained by pointwise integration of streamlines. Finally, we draw some conclusions and
indicate further work.

2. GOVERNING EQUATIONS

We consider single-phase transport in porous media. The velocity field v is governed
by Darcy’s law, and for convenience we assume that v = v(x) is given and is nearly
irrotational and divergence free. The motion of the fluid is aligned with the velocity
field v; thus, all instantaneous transport occurs along integral curves (streamlines). A
streamline Ψ is the path traced out by a passive particle moving with the flow given by a
velocity field v such that the vector v is tangential to Ψ at every point. The time-of-flight
τ(x) is the time needed for a passive particle to travel along a streamline from the inflow
boundary to a given point x. Isocontours of τ(x) are the time-lines in the porous medium
and give information about the flow patterns, in particular for single-phase flow. The
time-of-flight can be defined by the following integral along a streamline Ψ:

τ(x) =

∫
Ψ

φ ds

|v(x(s))|
, (1)

where φ is the porosity of the porous medium. Hence, a simple model for convective
transport in v is the boundary-value problem for time-of-flight τ in Ω:

v · ∇τ = φ, τ = 0 in ∂Ω+; (2)

see (Datta-Gupta and King, 1995). Here, ∂Ω+ denotes the inflow boundary of the fluid.
Accurate solution of (2) is rather easy for smooth velocities, but the equation becomes
harder to solve when the vector field has large spatial variations and fine-scale details. In



CMWR XVI 3

this paper, we will show the efficiency and accuracy of the dG method to simulate single-
phase transport in fractured porous media as described by (2); however, the solution
strategy also applies for slightly more general models of the same type; see (Natvig et al.,
2006). We refer to (Natvig and Lie, 2006) for an extension of the dG methodology in to
multiphase and multicomponent flow.

3. DISCONTINUOUS GALERKIN METHOD

The physical domain Ω consists of matrix and fractures. Since fractures exist on a much
smaller geometrical scale than the characteristic length scale of the matrix, we assume that
we have a discrete fracture model, where the fractures are modelled as one-dimensional
curves in a two-dimensional reservoir model. However, for the numerical calculations, we
let the fractures have a small width ε, so that both the matrix and the fracture are two
dimensional.

The domain is partitioned into a regular quadrilateral grid of N elements {Ei}Ni=1. More
precisely, we denote the M elements corresponding to the matrix by {Ki}Mi=1 and the
N −M elements describing the fractures by {Ii}N−Mi=1 . As quadrilateral corner-point grids
can be transformed to regular grids (Prévost et al., 2002), the method can be extended
to also handle more general partitions.

In the following, we describe the discretisation of the time-of-flight equation (2) using a
discontinuous Galerkin method (Reed and Hill, 1973), distinguishing between the discreti-
sation in the matrix and in the fracture elements. Thereafter, we explain the numerical
solution procedure. It is assumed that the fluid velocity v is a time-independent function
that is given in terms of fluxes across the element edges.

3.1. Approximation in the Matrix. Let V be the space of arbitrarily smooth test
functions. By multiplying (2) with a function ϕ ∈ V and integrating by parts over each
matrix element K, we obtain

−
∫
K

Tv · ∇ϕ dx +

∫
∂K

Tv · nϕ ds =

∫
K

φϕ dx ∀ϕ ∈ V, (3)

where n is the outer normal on the element boundary ∂K. We seek a solution in a finite-
dimensional subspace Vh ⊂ V , so we replace the exact solution and the test function by
Th ∈ Vh and ϕh ∈ Vh, respectively. The space Vh consists of functions that are smooth
inside each element, but may be discontinuous over the element boundaries. Since Th
may be discontinuous over the element boundaries, we must replace the flux term, Tv ·n,
by a consistent and conservative numerical flux function f̂ . This leads to the following
discrete variational formulation: Find Th such that

−
∫
K

(Thv) · ∇ϕh dx +

∫
∂K

f̂(Th, T
ext
h ,v · n)ϕh ds =

∫
K

φϕh dx ∀K, ∀ϕh ∈ Vh. (4)

For inner and outer approximations Th and T ext
h at the boundaries, the numerical flux f̂

is approximated by the upwind flux given by

f̂(Th, T
ext
h ,v · n) = Th max(v · n, 0) + T ext

h min(v · n, 0). (5)

The upwind approximation of the flux preserves the directional dependency that we will
later exploit to compute the solution element by element.
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The restriction ϕ|K of a function ϕ ∈ Vh on an element K is defined by ϕ|K ∈ Qn−1,

where Qn = span{xpyq : 0 ≤ p, q,≤ n}. Hence, for n = 1, V
(1)
h is the space of functions

that are elementwise constant in the unfractured domain and yields a scheme that is

formally first order; for n = 2, V
(2)
h is the space of elementwise bilinear functions on the

unfractured domain and yields a formally second order accurate scheme; and so on.

3.2. Approximation in the Fractures. Since it is assumed that the width ε of the
fractures is negligible compared to characteristic length scales of the reservoir, we first
consider a modification of the discretisation described above for the fracture elements,
{Ii}, by assuming that there is no variation in time-of-flight across the fracture. This is
consistent with the initial reservoir model, which assumes that the fractures have zero
width. Depending on the position of the fractures, the thin fracture elements {Ii} are
placed in either the x1-direction or the x2-direction.

∂Is
∂Ie

∂In∂Iw εnw
ns

ne
nn

Figure 1. Fracture element of width ε.

Assuming a constant solution across the fracture, and using the same framework as for
the discretisation in the matrix, we obtain the following discrete variational formulation
for a fracture element Ii placed in the x1-direction: Find Th such that for all ϕh ∈ Vh

−ε

∫
Ix1

(Thv) · ∇ϕ dx1 + εThϕhv · nw +

∫
∂Is

Thϕhv · ns dx1

+ εThϕhv · ne +

∫
∂In

Thϕhv · nn dx1 = ε

∫
Ix1

ϕh dx1.

(6)

For fracture elements located in the x2-direction, a discretisation is obtained in the same
manner, using that the solution is constant across the fractures in the x1-direction. To
compute the boundary integral we use the upwind flux function (5), where nw, ns, ne,
and nn denote the outer normals at each element boundaries. Additionally, we use that
∂I = ∂Iw ∪ ∂Is ∪ ∂Ie ∪ ∂In; see Figure 1. Since the order of the scheme is reduced to one
in the direction across the fractures, the discretisation is simplified compared with the
discretisation (4) in the matrix elements.

As an alternative, we may model the fractures as fully two-dimensional objects and
approximate the solution in fracture elements in exactly the same manner as for the
matrix elements. This can be motivated based on the fact that the flow changes rapidly
in the fractured regions. For this reason, it is also natural to consider a finer grid resolution
across the fracture (as opposed to only one element). The two alternative discretisations
are discussed further in Section 4 by the means of two numerical examples. See (Hoteit
and Firoozabadi, 2005) for a different dG approach.

3.3. Numerical Solution Procedure. The approximate solution and the test function
on an element Ei can be written as a linear expansion of basis functions. By substituting
this into the variational formulations (4) for the matrix elements and (6) for the fracture
elements and approximating the integrals using Gaussian quadrature, we get a set of
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linear equations for the degrees-of-freedom in each element. Let Ti denote the vector of
unknowns for element Ei. If n denotes the order of the scheme, the number of unknowns
per element using a dG method is n2 for matrix elements, and n for fracture elements if
the order reduction in the dG approximation across the fractures is applied.

Let us now examine the structure of the linear system. For convenience, we split
the coefficient matrix into the element stiffness matrix Ri and the coupling to the other
elements through the numerical flux integral Fi. The exact solution in Ei depends only
on the upwind points of the bundle of streamlines passing through Ei and is independent
of the solution elsewhere in the domain (Berre et al., 2005; Natvig et al., 2006). Using
the upwind flux (5) preserves this one-side domain of dependence. In other words, the
solution in Ei will only be influenced by elements that are intermediate neighbours in
the upwind direction. Let U(i) = {j |v · n < 0 on ∂Ei ∩ Ej} denote the indices of these
elements. Then, if F+

i denotes the flux out of element Ei and F−i the flux into element
Ei, we have

−RiTi + F+
i Ti = Bi − F−i TU(i), (7)

where TU(i) are the degrees-of-freedom for all neighbouring elements of Ei in the upwind
direction.

The key to obtaining a fast linear solver is to find an a prior reordering of the elements
that renders the system of equations (7) in block-triangular form. In other words, we seek
a reordering (p1, . . . , pN) of the N elements such that pj < pi if j ∈ U(i), which means
that it is possible to start at the inflow boundary and compute the solution element by
element. Such a reordering can be found in N operators if it exists. If a reordering does
not exist, there must be streamlines that pass through a grid cell more than once. If this
occurs, the mutually connected elements must be solved for simultaneously. Nevertheless,
the reordering still applies; the only difference is that we locally get a larger linear system
associated with the interconnected elements; see (Natvig et al., 2006).

4. NUMERICAL EXPERIMENTS

We now present numerical examples for two different test cases and discuss the dG
approximations for computing time-of-flight in fractured porous media.

We consider two test cases. For both, we assume no-flow boundaries and an injector
placed in the lower-left corner and a producer in the upper-right corner of the unit square
Ω = [0 1]× [0 1]. The fractures are of permeability 106 D and are located in an elsewhere
homogeneous reservoir of permeability 1D as illustrated in Figure 2. The fracture width is
set to 0.0001 length units. The velocity field v is given such that the flux v ·n is constant
over each element face.

We compare solutions obtained by the dG methods with a highly resolved streamline
(SL) reference solution. We have also calculated a “reference” solution using the dG
approximation of 7th order. For both reference solutions, we have used a grid consisting of
320×320 standard matrix elements in addition to the elements that result from discretising
the fractures with a resolution of eight elements in the direction across the fractures. The
streamline solutions are obtained by back-tracking streamlines from the cell centre of each
element.
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Figure 2. Fracture distribution in Case 1 (left) and Case 2 (right).

Case 1. In our first test case, a single fracture forms a staircase structure in the flow
direction in a elsewhere homogeneous reservoir; see Figure 2. The reference solutions
for this test case are shown in Figures 3(a) and 3(b). For all test examples, we have
considered a second-order dG approximation.

Figure 3(c) displays the result of the dG approximation with order reduction across
the fracture as described in Section 3.2. For this example, the fracture is resolved with
one element in the direction across the fracture, thus reflecting the fact that the fracture
initially is modelled as one-dimensional. As we can see, the breakthrough time at the
production well is highly inaccurate. Figure 3(f) shows the result for the same test
example, but without order reduction; that is, the same dG approximation is applied both
for the matrix and the fracture elements and in this respect, the fractures are considered as
fully two-dimensional. With this approximation, we observe instabilities in the solution,
resulting in negative time-of-flights in some regions. On the other hand, the breakthrough-
time is more correct than for the approximation displayed in Figure 3(c). To sum up, we
see that we faced with two problems: either we get a highly erroneous breakthrough time
at the producer, or we get negative values of time-of-flight.

Motivated by the fact that the transport is very rapid in the fractures, and our previous
experience with dG methods for obstacle problems (Natvig et al., 2006), we try to increase
the grid-resolution in the fractures. However, to avoid instabilities in the solution, we first
consider examples where the order reduction of the dG approximation in the fracture ele-
ments is kept in the direction across the fracture. The results are depicted in Figures 3(d)
and 3(e) for a resolution of four and eight elements across the fractures. Clearly, the
results are significantly improved. In Figures 3(g) and 3(h), we display the results for
refined fracture resolutions, but without order reduction of the dG approximation in the
fractures. For eight elements across the fractures, we obtain a solution that resembles the
SL reference solution, although one can still see small signs of instabilities.

Case 2. The fracture distribution in the second test case consists of four fractures in an
elsewhere homogeneous reservoir as depicted in Figure 2. Figures 4(a) and 4(b) show the
streamline reference solution and the solution obtained with the seventh-order dG method
on a fine grid.

Figures 4(c) and 4(d) show results for a second and fourth-order dG approximation
with order reduction and a resolution of eight elements across the fracture when order-
reduction is applied. As we can see, the solutions are stable, but fail to completely capture
the complex flow in the region near the upper-right fracture. Results for the same example,
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(a) SL reference solution. (b) dG reference solution.

(c) Order red., nf = 1. (d) Order red., nf = 4. (e) Order red., nf = 8.

(f) No order red., nf = 1. (g) No order red., nf = 4. (h) No order red., nf = 8.
 

 

−0.4 −0.2 0 0.2 0.4 0.6

Figure 3. Second-order dG approximations with 80 × 80 standard ma-
trix elements in addition to the elements that result from discretising the
fracture by nf elements in the fracture width, with and without order re-
duction.
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(a) SL reference solution. (b) dG reference solution.

(c) Order red., n = 2. (d) Order red., n = 4.

(e) No red., n = 2 (f) No red., n = 4.

(g)
Frac-
ture

 

 

0 0.2 0.4 0.6 0.8 1

Figure 4. Second and fourth-order dG approximations with and without
order reduction on a grid with 80 × 80 standard matrix elements in the
fracture width in addition to the elements that result from discretising the
fracture by eight elements in the fracture width. The right plot shows the
approximation with a subresolution of 25 × 25 points in each element for
the fracture from the upper-right part of the reservoir.
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but without order reduction, are displayed in Figures 4(e) and 4(f). Here, the solutions
are improved, but, as for Case 1, we can observe signs of instabilities in the solutions.

To further illustrate the necessity of a sufficient grid-resolution across the fractures, we
have plotted the time-of-flight computed with the streamline simulator in the upper-right
fracture element of Case 2 in Figure 4(g). This plot clearly demonstrates the complex
flow pattern in the fracture.

5. Concluding Remarks

In this paper, we have investigated an efficient discontinuous Galerkin method for com-
puting time-of-flight in fractured porous media. In particular, we have revealed the im-
portance of a sufficient grid-resolution across the fractures. This is necessary since the
time-of-flight is an integrated quantity that exhibits fine-scale details and contains large
spatial variation within the fractures (even though these may have been modelled as
lower-dimensional objects in the original grid model). To assure a stable solution, one
can apply order reduction of the dG approximation in the direction across the fractures.
This also results in a more efficient scheme due to a reduced number of unknowns for
fracture elements.

A crucial part of the methodology is an optimal reordering of unknowns, which is based
on prior information of the direction of flow. The result is an efficient method, which can
be a grid-based alternative to streamline methods. Extension of the methodology to
triangular and unstructured grids is currently in progress.
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A DISCONTINUOUS GALERKIN METHOD FOR
TRANSPORT IN FRACTURED MEDIA USING

UNSTRUCTURED TRIANGULAR GRIDS

B. EIKEMO, K.-A. LIE, G. T. EIGESTAD, AND H. K. DAHLE

Abstract. The possibility to couple discrete (fractures, shear zones) and
continuous (rock matrix) model elements is a prerequisite for simulating
flow and transport processes in fractured rocks. The method described in
this paper uses unstructured triangular grids to explicitly represent the frac-
tures and matrix rock as a single continuum in which one can compute the
transport using a higher-order discontinuous Galerkin method. By model-
ling the complex fracture networks explicitly, very complex structures can
be modelled and using unstructured triangular grids may be necessary to
accurately model realistic cases. Herein we consider single-phase equations
for advective transport, which have an inherent causality in the sense that
information propagates along streamlines. Our discontinuous Galerkin dis-
cretization preserves this causality. We can therefore use a simple topological
sort of the graph of discrete fluxes to reorder the degrees-of-freedom such
that the discretised linear system gets a lower block-triangular form, from
which the solution can be computed very efficiently using a single-pass for-
ward block substitution. The accuracy and utility of the resulting transport
solver is illustrated through several numerical experiments.

1. Introduction

Accurate representation of fractured reservoirs represents a challenge for
the characterisation, modelling, and simulation of petroleum and groundwater
reservoirs, see [4, 12, 3]. Fractured reservoirs are complex geological structures,
where fractures (cracks and joints created by rock stress) have higher permeabil-
ity and porosity than the surrounding rock (matrix). Although the aperture of
fractures is very small compared with the dimensions of the reservoir, the frac-
ture network often forms the primary pathway for fluid flow and mass transfer
and has a significant impact on the flow characteristics of the porous medium.
The matrix blocks between the conducting fractures, on the other hand, can
significantly increase the storage capacity of the rock.

Models for fractured media have traditionally been of two general types: dis-
crete or multi-continua (porosity) models. In a discrete model, the fractures
are considered as discrete structures integrated in the surrounding rock matrix.
With such a model we have the possibility to model single- and multiphase
flow and transport processes accurately. Using multi-continua models, we have
to make assumption that an representative elementary volume cannot only be
obtained for porous medium–the rock matrix–but also for the fractured system.
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In a dual-porosity model, for instance, the rock is characterised as two overlap-
ping continua, which are both treated as porous media, meaning that also the
matrix blocks are assigned a value of porosity greater than zero.

It is principally possible to use different flow and transport models for the dif-
ferent continua. Exchange terms describing the interaction between the matrix
system and the fracture system are very important using multi-continua mod-
els, see [11]. For a rock mass with large porous blocks between the conducting
fractures, multi-continua models have been used to account for the release of
fluid from storage in the matrix blocks into the fracture network. The primary
advantage of multi-continua flow models is that they provide a mechanism to
account for the delay in the hydraulic response of the rock caused by fluid that
is resident in less permeable matrix blocks.

The interaction of fracture and matrix porosities and permeabilities is very
complex and often makes simple models highly inaccurate. Indeed, it is widely
recognised that state-of-the-art simulation methods based upon multi-continua
descriptions are not able to deliver sufficient resolution of the complex flow pat-
terns that develop when a fractured reservoir is produced. Several approaches
have therefore been taken to accurately describe fracture-fault systems on a
grid-cell scale, that is, based upon complex gridding schemes in which fractures
are represented explicitly as lower-dimensional objects at the cell faces. Herein
we consider an even more ambitions modelling approach that has increased in
popularity lately; in this approach fractures are represented explicitly as thin
volumetric cells in a highly detailed geological model. In the following we con-
sider single-phase flow in semi-realistic 2D models of fractured reservoirs and
use unstructured, conforming triangular grids, where the fractures themselves
are represented explicitly as cells with small width and high permeability (and
porosity). This will lead to models with highly contrasting reservoir properties
and very complex hydraulic conductivities. To accurately model the flow and
transport in regions characterised by high contrast in permeability between the
fractures and the matrix, we will also briefly investigate the use of local adaptive
refinement.

A simple single-phase model is often sufficient to reveal the major displace-
ment patterns in a fractured medium (e.g., if represented as a single continuum
with fractures as volumetric objects). Computing single-phase flow essentially
amounts to solving an elliptic pressure equation. However, to further under-
stand the flow mechanisms one can consider various derived quantities like
timelines, influence regions, reservoir partitioning, tracer profiles, well pairs,
etc., that may be more visual and intuitive than pressure values and discrete
fluxes. One particular quantity of interest is the time-of-flight, which can be
used to identify areas affected by contaminations in groundwater flow or to
determine drainage and flooded volumes in petroleum reservoirs.

Most of such derived quantities are often associated with, and computed by,
streamlines methods. However, since they all can be described by (steady-state)
transport equations, one could equally well use a grid-based method: the pur-
pose of our paper is to develop a finite-volume method for solving time-of-flight
type equations to characterise flow patterns and to compute fluid transport
for highly detailed models with explicit fracture modelling. To discretize the
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time-of-flight equation, we will use a higher-order discontinuous Galerkin (dG)
method, which results in a linear system having a block structure where each
block corresponds to the degrees-of-freedom in a single cell (which we sometimes
will refer to as an element). Blocks corresponding to neighbouring cells in the
grid are coupled through the numerical flux function used to approximate the
physical flux over cell interfaces. By introducing an upwind flux approxima-
tion, the elements can be ordered to ensure that the linear system has a lower
block-triangular form, where each block corresponds to the degrees-of-freedom
in a single cell or in a collection of cells having circular dependence due to ro-
tation in the velocity field. Given the triangular form, the linear system can
be decomposed to a set of small problems, one for each block and solved using
a forward block substitution. This solution procedure is very efficient and has
very low memory requirements: once the elements have been reordered, the
linear system can be assembled and solved in a local block-by-block fashion.
For more details on the efficiency of the reordering method, we refer the reader
to [8, 7], in which the same ideas are applied to multiphase flow. The ideas
presented herein are a continuation of the research in [5], where we presented a
family of discontinuous Galerkin schemes for simulating flow in idealised frac-
tured media using rectangular grids. In this representation, the orientation of
the fractures are restricted to being horizontal or vertical.

The rest of this paper is organised as follows: In Section 2 the equations used
to model single-phase flow are described in detail. Next, Section 3 introduces
the discontinuous Galerkin method used to discretize the fluid transport equa-
tions. Then, numerical results for single-phase transport in fractured 2D media
are given in Section 4. We also verify the accuracy and convergence rates of
our schemes using a simple unfractured case with known analytical solution.
Finally, in Section 5 we summarise and give main conclusions.

2. Single-Phase Flow Models

Single-phase flow in an incompressible porous medium is typically modelled
by a mass-balance equation in combination with Darcy’s law. If we assume
gravity to be negligible, the governing equations can be written

(1) ∇ · v = f, v = − 1
µ
K∇p, x ∈ Ω.

This system can be solved to compute the pressure p and the volumetric flow
velocity v if given a specification of the fluid sources f , the rock permeability K,
the fluid viscosity µ, and proper conditions at the boundary ∂Ω of the physical
domain Ω. Alternatively, the system can be written as a second-order elliptic
equation for the pressure. To simplify the presentation, we assume that there
are no internal fluid sources or sinks and that the flow governed by (1) is driven
entirely by conditions set on the inflow and outflow boundaries, denoted ∂Ω−

and ∂Ω+, respectively.
For many purposes, (1) does not give a sufficient description of the flow pat-

terns and it is therefore customary to introduce additional transport equations
to describe quantities like tracers, contaminants, etc. that are passively advected
with the single-phase flow. This paper focuses on such transport equations. For
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simplicity, we will henceforth assume that v = v(x) is given and is divergence
free and irrotational. (Later we will also assume that v is given implicitly in the
form of fluxes that are constant on each element interface.) Given a fixed flow
velocity, the concentration q of a passively advected quantity evolves according
to the linear hyperbolic equation

(2) φqt + v · ∇q = 0, q|∂Ω− = q−(x, t),

where φ is the porosity of the medium. The steady-state version of (2),

(3) v · ∇q = 0, q|∂Ω− = q−(x),

describes the stationary distribution of a tracer that is injected into a reservoir
at the inflow boundary ∂Ω−. This equation can, for instance, be used to de-
termine the spatial region influenced by an inflow boundary (or a fluid source),
or by reversing the sign of v, the region influencing an outflow boundary (or
drained by a fluid sink). Within reservoir simulation, this could typically be
used to compute the swept region of an injector or the drainage region of a
producer (or combinations thereof).

Another quantity of interest is the time-of-flight τ = τ(x), which is defined
as the time needed for a passive particle to travel from a point on the inflow
boundary to a given point x. Iso-contours of τ define natural timelines in a
reservoir. To define τ , we introduce streamlines, which are a family of curves
that at any point are tangential to the velocity vector v of the flow. For a steady
velocity (as considered herein), streamlines coincide with the path traced out
by a passive particle moving with the flow field. The time-of-flight τ is defined
as

(4) τ(x) =
∫
ψ

φ(r) dr
|v(x(r))|

,

where ψ denotes the streamline that connects x to an inflow boundary (or fluid
source) and r denotes the arclength along the streamline. Note that modern
streamline methods use the time-of-flight τ rather than the arclength r as spatial
coordinates. Equation (4) may alternatively be written in differential form as,

(5) v · ∇τ = φ, τ |x∈∂Ω− = 0.

The transport equations (3) and (5) are special cases of the more general
equation

(6) v · ∇q = H(q,x), q|Ω− = h(x, t).

Similarly, (2) comes on the form (6) if we introduce an appropriate semi-
discretization in time. Accurate solution of (6) is important in areas such
as oil recovery and groundwater hydrology to reveal the transport properties of
v. Solving (6) is rather easy for smooth velocities, but becomes harder when
v has large spatial variations and exhibits fine-scale details that are important
for the global flow pattern.

In the following we present an efficient strategy for solving transport equa-
tions on the form (6) on unstructured triangular grids where we combine higher-
order discontinuous Galerkin (dG) spatial discretizations with an upwind nu-
merical flux function that creates a one-sided dependency between the elements
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in the grid and ensures that we can find a reordering of the elements such that
the resulting system becomes lower block-triangular and can be solved block-
by-block. We have previously studied the dG-reordering method for rectangular
grids [10, 5, 9], for which it proved to be both accurate and highly efficient. In
[8], we demonstrated that the same technique can be applied to semi-discrete
nonlinear transport equations of the form v · ∇F(q) = H(q,x, t) that describe
multiphase and multicomponent flow when gravity, capillarity, and dispersivity
are neglected.

3. Discontinuous Galerkin Schemes with Optimal Ordering

To develop higher-order discontinuous Galerkin methods, we start with a
variational formulation of (6). We then partition the solution domain Ω into
an unstructured grid consisting of non-overlapping triangular elements (cells)
{Tk}, and seek solutions in a finite-dimensional space Vh consisting of piecewise
smooth functions that may be discontinuous over element interfaces. Let Qn =
span{xpyq : 0 ≤ p + q ≤ n} be the space of polynomials of degree at most
n, and let V (n)

h = {ϕ : ϕ|Tk
∈ Qn}. Thus, V (0)

h is the space of elementwise
constant functions, which will give a scheme that is formally first-order accurate.
Similarly, V (1)

h is the space of elementwise linear functions giving a formally
second-order accurate scheme, and so forth. Henceforth, we use dG(n) to denote
the discontinuous Galerkin approximation of polynomial order n. Inside each
element Tk, the discrete solution qh can be written

qh(Tk) =
mk∑
i=1

qki L
k
i , ∀Tk.(7)

where {Lki } is some basis for V (n)
h on Tk and mk is the number of associated

degrees-of-freedom. The unknown coefficients {qki } are collected in the vector
Q for the whole domain and in (sub)vector QT for element T .

The approximate solution qh is determined as the unique solution of the
following weak formulation of (6)

(8) ahT (qh, ϕh) = bhT (qh, ϕh) ∀T, ∀ϕh ∈ V
(n)
h ,

where

ahT (qh, ϕh) = −
∫
T
(qhv) · ∇ϕhdx +

∫
∂T

v · n qhϕhds,

bhT (qh, ϕh) =
∫
T
H(qh,x)ϕhdx.

(9)

Since the solution is discontinuous over element interfaces, we will use an upwind
flux to approximate the integrand of the second integral in ahT (·, ·),

v · n qh ≈ f̂(qh, qexth ,v · n)

= qh max(v · n, 0) + max(qexth , 0) min(v · n, 0).
(10)

Here qh and qexth are the inner and outer approximations at the element inter-
faces. The upwind approximation of the flux preserves the directional depen-
dency of the underlying continuous equation (6). In other words, the solution
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on T will only be influenced by elements U(T ) that are intermediate neigh-
bours in the upwind direction, which we later exploit to compute the solution
in a blockwise fashion. Formally, U(T ) consists of all elements E such that
(v · nT )|∂E∩∂T < 0, where nT is the outward-pointing normal to T . Notice
that compared with a standard upwind approximation, we have introduced an
additional clipping, max(qexth , 0), to prevent negative values from propagating
downstream. Negative values are unphysical, but may arise when using high-
order polynomials.

To find a solution to (8), we choose trial functions ϕh = Lki and evaluate (9)
using appropriate quadrature rules. This gives a set of linear equations for the
degrees-of-freedom in each element,

ATQ = BT , (AT )ij = ahT (Li, Lj), (BT )i = bhT (Li, Lj).

For convenience, we split the coefficient matrix into the element stiffness matrix
RT and the coupling to other elements through the numerical flux integral
FT (Q). Given the upwind approximation of the flux (10), we can split the flux
integral in two parts. Let F+

T QT denote the flux out of element T and F−T QU(T )

denote the flux into element T . Hence, the following system of linear equations
is obtained

(11)
(
−RT + F+

T

)
QT + F−T QU(T ) = BT , ∀T.

The coefficient matrix has a block-banded structure, where the size of each
block is given by the number of degrees-of-freedom in each element or connected
collection of elements, see [8] for a more detailed discussion.

A fast linear solver can now be constructed by observing that the solution
in each element can be computed by inverting (−RT + F+

T ) once the solution
is known in all upstream neighbours of T . We may therefore construct the
solution locally, starting at inflow boundaries (or fluid sources) and proceeding
element by element downstream. From a computational point of view, it is more
convenient to look at this as an optimal ordering of unknowns that renders the
system of equations (11) in lower block-triangular form. If Ne is the number of
elements, such an ordering can be found in Ne operations if it exists.

If the reordering of elements does no exist, there must be circular dependence
among some of the elements and these mutually dependent elements must be
solved for simultaneously. Nevertheless, the reordering still applies, the only
difference is that we locally get a block system associated with a set of in-
terconnected elements instead of a single element. More details are found in
[10, 8].

4. Numerical Examples

In [5], we presented a dG scheme for computing time-of-flight in fractured
porous media represented on rectangular grids. The use of rectangular grid re-
stricts the orientation of fractures to be either horizontal or vertical. In this sec-
tion we will consider more realistic fracture distributions modelled on triangular
grids present results from selected numerical experiments using higher-order
dG schemes and optimal ordering of triangular elements. For each example,
the forcing velocity field will either be given by an analytical expression or be
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computed by a standard conservative method for solving the first-order system
of flow equations (1) or its second-order counterpart, in which case the velocity
will be divergence free and nearly irrotational. We will mainly apply the dG
schemes to compute time-of-flight in semi-realistic examples of fractured me-
dia. Because of the localised nature of the dG formulation, using hybrid grids
consisting of both rectangular and triangular cells are within reach, but is not
considered herein. However, we show one example of adaptively refined grids.

Case 1 (Convergence Study). We start by verifying the accuracy and conver-
gence rates of discontinuous Galerkin schemes on triangular elements. To this
end, we consider a rotating velocity field v = (y,−x) in the domain [1, 2]×[1, 2].
Let T = 0 on the inflow boundaries (x = 1 and y = 2), then the exact time-of-
flight is given by

(12) T (x, y) = tan−1
(y
x

)
− tan−1

(
min(

√
x2 + y2 − 1, 2)

max(
√

max(x2 + y2 − 4, 0), 1)

)
.

Tables 1 and 2 present L2-errors and convergence rates for a grid-refinement
study performed by increasing the order n in dG(n) on four grid types with
increasing roughness (see Figure 1):

Grid 1: triangulation of a uniform N ×N Cartesian grid.
Grid 2: uniform refinement and triangulation of a 10×10 base grid where

each internal node has been given a random perturbation up to 20% in
each spatial direction.

Grid 3: same as Grid 1, but with a perturbation up to 20% of all inner
nodes on the 2N ×N grid.

Grid 4: same as Grid 2, but with a perturbation up to 20% of all new
nodes on the 2N ×N grid for each refinement.

In Table 1 the L2-errors are measured in a smooth part of the domain, [1, 1.3]×
[1, 1.3], while in Table 2 the error is integrated over the whole domain. The ta-
bles indicate how different roughness1 in the refined grids impacts the L2-errors
and the convergence rates. For the perturbed grids the rates of convergence
are computed by comparing to two different mesh sizes: the average maximum
mesh size, which is the average of the maximum cell edges of each element, and
by the maximum mesh size, which is the largest cell edge in the domain.

Grids 1 and 2 are refined such that the elements approach half of parallel-
ograms in the asymptotic limit, and hence we observe the expected order of
accuracy in smooth regions. For the whole domain, however, we get reduced
convergence rates because of the kink in the solution along the circular arc
x2 + y2 = 5. This agrees with the results in [10] for rectangular elements. Note
that the kink may impact the regularity of the analytical solution, such that
the decays of convergence rates are expected.

1Rough grids are defined in the literature (see e.g., [6]) as quadrilateral grids that do not
approach parallelograms as the grids are refined. Here, the triangular grids are constructed by
dividing each quadrilateral of a quadrilateral grid into two triangles which have one common
edge. By this definition, Grids 3 and 4 are rough grids. Similar convergence studies have been
performed in [1], where in general a decay in convergence rates may be seen.
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Table 1. L2-errors and convergence rates over a smooth part of the
domain, [1, 1.3]× [1, 1.3], for a grid refinement study with dG(n) on a
series of 2N ×N grids for Grids 1 to 4. Convergence rates on Grids 3
and 4 are computed in terms of the average maximum and maximum
mesh size, respectively.

dG(0) dG(1) dG(2) dG(3)
N Error Rate Error Rate Error Rate Error Rate

10 2.17e-03 — 2.14e-05 — 4.52e-07 — 7.67e-09 —

20 1.09e-03 1.00 5.47e-06 1.97 5.88e-08 2.94 4.81e-10 4.00
40 5.47e-04 1.00 1.37e-06 1.99 7.38e-09 2.99 3.01e-11 4.00
80 2.74e-04 1.00 3.45e-07 1.99 9.12e-10 3.02 1.88e-12 4.00

160 1.37e-04 1.00 8.70e-08 1.99 1.12e-10 3.02 1.18e-13 4.00

10 2.05e-03 — 2.16e-05 — 4.50e-07 — 8.62e-09 —

20 1.03e-03 1.00 5.43e-06 1.99 5.55e-08 3.02 5.51e-10 3.97
40 5.15e-04 1.00 1.36e-06 2.00 6.91e-09 3.01 3.48e-11 3.99
80 2.58e-04 1.00 3.42e-07 1.99 8.50e-10 3.02 2.16e-12 4.01

160 1.29e-04 1.00 8.62e-08 1.99 1.06e-10 3.00 1.35e-13 4.01

10 2.28e-03 —/— 2.22e-05 — /— 4.99e-07 —/— 1.01e-08 —/—
20 1.13e-03 1.01/1.12 5.86e-06 1.92/2.18 6.68e-08 2.90/3.22 6.76e-10 3.90/4.52
40 5.67e-04 0.99/1.04 1.50e-06 1.96/2.05 8.74e-09 2.94/3.03 4.86e-11 3.80/4.03
80 2.85e-04 0.99/1.03 3.84e-07 1.97/2.03 1.15e-09 2.93/3.12 3.25e-12 3.90/3.92

160 1.43e-04 1.00/1.03 9.76e-08 1.98/2.04 1.52e-10 2.92/2.97 2.20e-13 3.88/4.01

10 2.05e-03 —/— 2.16e-05 —/— 4.50e-07 —/— 8.62e-09 —/—

20 1.12e-03 0.90/0.91 6.36e-06 1.81/1.83 7.19e-08 2.71/2.74 8.32e-10 3.46/3.49
40 6.09e-04 0.90/0.93 1.96e-06 1.75/1.80 1.26e-08 2.59/2.67 9.09e-11 3.30/3.40
80 3.35e-04 0.88/0.90 6.25e-07 1.69/1.73 2.28e-09 2.53/2.59 1.07e-11 3.16/3.24

160 1.94e-04 0.80/0.82 2.02e-07 1.67/1.71 4.66e-10 2.35/2.39 1.42e-12 2.99/3.05

Table 2. Same as Table 1, but with the L2-errors and convergence
rates measured over the whole domain, [1, 2]× [1, 2].

dG(0) dG(1) dG(2) dG(3)
N Error Rate Error Rate Error Rate Error Rate

10 1.92e-02 — 8.95e-04 — 2.67e-04 — 1.49e-04 —

20 1.01e-02 0.92 3.06e-04 1.55 1.00e-04 1.42 5.34e-05 1.48
40 5.34e-03 0.92 1.10e-04 1.47 3.23e-05 1.63 1.68e-05 1.67
80 2.81e-03 0.92 3.97e-05 1.48 1.07e-05 1.60 5.46e-06 1.62

160 1.47e-03 0.93 1.42e-05 1.48 3.48e-06 1.61 1.69e-06 1.69

10 1.96e-02 — 1.08e-03 — 3.41e-04 — 2.07e-04 —

20 1.05e-02 0.90 3.65e-04 1.57 1.13e-04 1.60 6.20e-05 1.74
40 5.62e-03 0.90 1.28e-04 1.51 3.61e-05 1.64 1.98e-05 1.64
80 3.00e-03 0.91 4.58e-05 1.48 1.22e-05 1.57 6.15e-06 1.69

160 1.59e-03 0.92 1.65e-05 1.47 4.01e-06 1.60 1.89e-06 1.70

10 1.95e-02 —/— 9.97e-04 —/— 2.91e-04 —/— 1.73e-04 —/—

20 1.05e-02 0.89/0.97 3.25e-04 1.62/1.62 1.15e-04 1.35/1.45 6.29e-05 1.46/1.56
40 5.51e-03 0.93/0.93 1.19e-04 1.45/1.50 3.88e-05 1.56/1.61 1.86e-05 1.76/1.82
80 2.91e-03 0.92/0.95 4.27e-05 1.48/1.50 1.22e-05 1.67/1.71 6.50e-06 1.51/1.52

160 1.53e-03 0.93/0.95 1.54e-05 1.47/1.50 3.99e-06 1.61/1.65 1.89e-06 1.78/1.82

10 1.96e-02 —/— 1.08e-03 —/— 3.41e-04 —/— 2.07e-04 —/—

20 1.13e-02 0.82/0.83 3.98e-04 1.48/1.50 1.44e-04 1.28/1.30 6.97e-05 1.61/1.63
40 6.58e-03 0.80/0.82 1.61e-04 1.34/1.37 4.77e-05 1.64/1.67 2.45e-05 1.55/1.58
80 3.93e-03 0.77/0.78 6.91e-05 1.26/1.29 1.97e-05 1.31/1.34 1.00e-05 1.32/1.36

160 2.35e-03 0.76/0.78 2.85e-05 1.31/1.34 7.51e-06 1.43/1.46 3.81e-06 1.44/1.47
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Grid 2 Grid 3 Grid 4

Figure 1. Two refinement levels for Grids 2, 3 and 4.

For the two rough grids, Grids 3 and 4, the errors increase on each refinement
level. Grid 3 seems to yield marginally lower convergence rates than the formal
order of the method when comparing to the average maximum mesh size. Note,
however, that when using the maximum mesh size to compute rates, they fluc-
tuate above and below the formal convergence rates, which may indicate that
the average maximum mesh size is a somewhat non-conclusive mesh size to
compare convergence against. This may be explained by the nature of random
grid perturbations and the impact this has on the numerically calculated so-
lutions on each refinement level. A long cell edge may impact the shapes of
the neighbouring triangles and may yield larger errors at nodes associated with
these.

Grid 4 experiences loss of convergence orders; this is observed when compar-
ing to both the average maximum mesh size and the maximum mesh size. This
may be explained by the diminishing grid quality such perturbations lead to.
In Figure 2, the histograms for the mesh sizes of the triangular grids have been
plotted for both Grids 3 and 4 for the grid size N = 80. Grid 3 has a normal
distribution of the measured mesh size h for each element, whereas the mesh
distribution in Grid 4 is skewed with a long tail in the interval corresponding
to triangular grid cells with longer edges. Note that by the definition of the
grid perturbation, the first refinement level of Grid 4 is a normal distribution.
As the grids are refined, the mesh distribution becomes more and more skewed,
with a significant tail to the right. Because of this kind of distribution (short
triangle edges combined with longer triangle edges), the mesh quality dimin-
ishes as the grid is refined, which introduces an opposite effect to the pure
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Figure 2. Histogram of edges of triangle meshes for Grid 3 (left)
and Grid 4 (right).

reduction of triangle edge sizes the other grids experience. The observed order
of dG(n) is significantly lower than n + 1 for the Grid 4 refinement and also
seems to decrease as the grids are refined, indicating a stronger effect of the
skewed mesh distribution for increasing numbers of grid cells. Note also that
the decay increases with the order of the basis functions.

These results should be compared with the theoretical results obtained in [6]
and [1], where the convergence of the pressure equation is studied for general
permeability description and irregular geometry. When a transformation to a
computational space is performed for the pressure equation on general quadri-
lateral grids with general permeability, the evaluation of a quantity which may
be viewed as the computational space permeability depending on the Piola map-
ping, becomes important. Different evaluations of the computational space
permeability may have a very different behaviour on rough grids, and conver-
gence may be lost entirely for rough grids that do not handle this evaluation
properly.

In the next example, we consider a case with strongly heterogeneous media
properties.

Case 2 (A Fluvial Medium). Consider a 2D quarter five-spot case with perme-
ability and porosity data from Layer 77 of Model 2 in the 10th SPE Comparative
Solution Project [2]. This layer contains sharp contrasts in permeability (and
porosity) between the low-permeable background and a set of intertwined high-
permeable channels. The strongly heterogeneous structure in this permeability
field is shown in the upper plot in Figure 3; the permeability variation is up to
eleven orders of magnitude. The right column in the figure shows the computed
time-of-flights on triangular elements for dG(n), n = 0, 1, 3, and 5. For compar-
ison, the left column shows the corresponding solutions using the dG scheme
on rectangular elements, see [10]. The grid size is 220× 60 for the rectangular
grid, while the triangular grid is created by dividing each rectangular element
into two triangles. The plots were created by sampling the polynomial patches
in 10×10 uniformly distributed points inside each rectangular elements. In the
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Figure 3. Time-of-flights for Layer 77 from the SPE10 test case
computed using dG(n), n = 0, 1, 3, and 5 on the original rectangular
grid (left column) and on a triangular grid (right column) created by
splitting each rectangular cell in two.

Table 3. The relative L1-errors of the computed time-of-flights for
different vertical cross sections. See Figure 4 for the computed time-
of-flights.

x dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

55 2.0719e-01 1.8535e-01 1.7421e-10 1.5946e-01 1.3955e-01 1.2579e-01
110 4.3507e-01 3.3024e-01 2.9480e-01 2.5810e-01 2.2044e-01 2.0217e-01
165 6.1523e-01 5.2704e-01 5.0089e-01 4.7045e-01 4.3190e-01 3.8929e-01
220 3.2763e-01 1.8338e-01 1.6834e-01 1.4444e-01 1.3316e-01 1.2459e-01

visual norm, the accuracy is approximately the same on the triangular and on
the rectangular grid.

For this case we investigate the computed time-of-flights for four different
vertical cross sections at x = 55, 110, 165, 220. The red graphs in Figure 4
show the dG(5) solution for the different cross sections and the blue graphs
show the solution obtained by back-tracing approximately 8 000 streamlines.
The corresponding relative L1-errors for time-of-flights computed in different
cross sections are present in Table 4. Altogether, we observe that strong het-
erogeneities in the permeability field influence the accuracy of the computed
time-of-flights.
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Figure 4. The computed time-of-flights along vertical cross sections
at x = 55, 110, 165, 220. The red graphs give the dG(5) solution and
the blue graphs give the solutions computed using approximately 8 000
streamlines.

Case 3 (Discrete Fracture Model). In this example, we consider a case with
three high-permeable fractures inside the unit square. We impose no-flow
boundaries at bottom and top, inflow at the left boundary, and outflow at
the right boundary. Two cases are considered with the fractures having a per-
meability of 103 and 105, respectively, relative to the homogeneous and isotropic
background field. The aperture of the fracture is 10−4 length units.

We compare the computed time-of-flights on a triangular grid with 5 048
elements that are adapted around and along the fractures with results on a
coarser grid with 437 elements, a finer grid with 23 463 elements, and a grid
with 5 301 elements but without adaptivity. The four grids are depicted in the
top row of Figure 5. The permeability ratio between matrix and the fractures
is 1 : 105. From the plots, we observe three qualitative tendencies: (i) for
the same number of unknowns (see Table 4), the solution is better for the
grid without adaptivity; (ii) increased polynomial order is more important than
increased grid resolution; and (iii) the improvements obtained by using finer
grid resolutions decays with the polynomial order of the scheme. Finally, we
observe that all the dG solutions establish the qualitative structures of the flow
pattern.
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N = 437 N = 5048 N = 5301 N = 23463

Figure 5. Case 3 with ratio between matrix and fracture permeabil-
ity equal 1 : 105. The rows present the computed time-of-flights using
dG(0), dG(1), and dG(3).

Table 4. Degrees-of-freedom for different order and grid resolution.

N dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

437 437 1311 2622 4370 6555 9177
5048 5048 15144 30288 50480 75720 106008
5301 5301 15903 31806 53010 79515 111321

23463 23463 70389 140778 234630 351945 492723

Next, we consider the pointwise accuracy at the outflow boundary compared
with a highly resolved solution computed by back-tracing approximately 16 000
streamlines. Table 5 shows the discrete relative L1-errors for the time-of-flight
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Table 5. Discrete relative L1-errors in time-of-flight (upper half)
and mass flow (lower half) at the outflow boundary for Case 3 with
ratio Km:Kf between the matrix and fracture permeability. The solu-
tions are compared with solutions computed by tracing approximately
16 000 streamlines.

Km:Kf N dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

1 : 103 437 9.1575e-02 3.5080e-02 1.3979e-02 8.4314e-03 6.2851e-03 5.2484e-03
5048 7.9320e-02 2.0271e-02 7.3588e-03 5.4863e-03 3.9867e-03 3.1843e-03
5301 7.0833e-02 1.9132e-02 7.2066e-03 5.4397e-03 4.1306e-03 3.7196e-03

23463 6.4046e-02 1.4980e-02 6.6697e-03 4.4689e-03 3.4315e-03 2.6675e-03

1 : 105 437 1.2607e-01 4.6378e-02 6.7521e-02 1.6426e-02 6.9459e-02 4.2250e-02

5048 9.4916e-02 3.7634e-02 6.3852e-02 1.5811e-02 6.8247e-02 4.3420e-02
5301 6.1381e-02 1.3697e-02 5.3138e-02 9.5423e-03 6.1411e-02 3.5569e-02

23463 3.9014e-02 1.2143e-02 5.6907e-02 1.5259e-02 1.6766e-02 6.2730e-03

1 : 103 437 1.1240e-00 5.1969e-01 1.7987e-01 1.1910e-01 7.5825e-02 5.8945e-02

5048 9.7077e-01 2.9547e-01 1.1434e-01 6.8977e-02 4.9809e-02 3.8912e-02
5301 8.3155e-01 2.8433e-01 1.0473e-01 6.8073e-02 4.7003e-02 4.0898e-02

23463 7.6335e-01 2.2220e-01 1.1358e-01 6.7778e-02 4.9492e-02 4.0935e-02

1 : 105 437 1.1102e-00 1.0192e-00 9.0023e-01 9.0149e-01 8.7923e-01 8.1843e-01
5048 1.0885e-00 1.0394e-00 9.2523e-01 9.1535e-01 9.2921e-01 8.5429e-01

5301 1.0577e-00 1.0305e-00 9.1703e-01 9.1194e-01 9.1910e-01 8.4378e-01
23463 1.0514e-00 1.0723e-00 1.0027e-00 9.4507e-01 9.2882e-01 7.5827e-01

and the mass flux across the outflow boundary. Figure 6 shows the time-of-flight
at the boundary for permeability ratio 1 : 103. Similarly, Figure 7 shows the
tracer production curve (average tracer concentration at the outflow boundary
versus time) that results from injecting a tracer slug in the time interval t ∈
[0, 0.05]. As above, we observe that high polynomial order is more important
than high grid resolution. In particular, Figure 7 shows that using dG(3) gives
the same qualitative structures for all grid resolutions, whereas dG(0) fails to
compute the correct tracer production on all grids. We also observe from Table 5
that the error increases with increasing ratio between the matrix and fracture
permeability. This observation agrees with the results in [10].

When increasing the grid resolution in the example above, the grid inside the
thin fractures only increased resolution in the longitudinal direction. For the
simple Cartesian grids studied in [5], we observed that it was more important to
increase the grid resolution in the latitudinal direction of the fractures to accu-
rately resolve sharp transitions in time-of-flight arising when the flow changes
from matrix to fracture and vice versa. In the next example, we therefore also
consider refinement in the latitudinal direction of the fractures.

Case 4 (Latitudinal Refinement in Fractures). Consider a unit square with flow
from left to right and no-flow boundaries at bottom and top. The fracture net-
work consists of five horizontal fractures and a skew vertical fracture extending
from top to bottom. The aperture of the fractures is 10−4 unit lengths and the
permeability ratio is 1 : 105. Figure 8 shows time-of-flight computed with dG(n)
for n = 0, 1, and 3. The upper row shows the time-of-flights computed on a
grid where each fracture is represented with one rectangular element divided
into two triangle elements in the latitudinal direction. The lower row shows the
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Figure 6. Time-of-flight for Case 3 with ratio between matrix and
fracture permeability equal 1 : 103. The red graphs show the dG(n)
solutions for n = 0, 1, and 3 (from top to bottom) and the blue graphs
are solutions computed by tracing approximately 16 000 streamlines.
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Figure 7. Average tracer concentration over the outflow boundary
as a function of time for the simulations shown in Figure 6.
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dG(0) dG(1) dG(3)

Figure 8. Time-of-flight for Case 4 with ratio between matrix and
fracture permeability equal 1 : 105. The upper row shows the results
using no latitudinal grid refinement, while the lower row shows the
solutions for a refinement with eight rectangular (divided in sixteen
triangular) elements in the latitudinal direction of the fractures. The
distribution of fractures is depicted as white lines.

solutions with eight rectangular elements (sixteen triangular elements) in the
latitudinal direction.

Table 6 reports the time-of-flights and mass flow computed at the outflow
boundary for the permeability ratios 1 : 103 and 1 : 105. We compare the
computed time-of-flights with a reference solution obtained by back-tracking
streamlines from uniformly distributed points inside each element at the outflow
boundary for a refined grid. With one exception, the errors decrease when
refining the grid in the latitudinal direction inside the fractures. These results
agree with the results in [5], where we observed the importance of sufficient
latitudinal grid resolution to correctly capture large spatial variations inside
the fractures. Capturing these variations is necessary since the time-of-flight is
an integrated quantity that is strongly affected globally by local discretization
errors.

Criteria to guide the choice between single and multi-continua (porosity) for-
mulations in site-specific applications are not easily defined. A simple method
is to consider by measuring the (outflow) concentration of some species present
in a reservoir model during some predefined time interval. Here we consider
breakthrough curves resulting from the injection of a tracer slug/pulse. If the
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Table 6. Discrete relative L1-errors in time-of-flight (upper half)
and mass flow (lower half) at the outflow boundary for Case 4 using M
elements across the fractures. The solutions are compared to solutions
computed by tracing approximately 4 000 streamlines.

Km:Kf M dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

1 : 103 1 (2) 1.5772e-01 6.7707e-02 3.8263e-02 2.8205e-02 2.0743e-02 1.9426e-02
8 (16) 1.5260e-01 5.7438e-02 3.2888e-02 2.3043e-02 1.7009e-02 1.6180e-02

1 : 105 1 (2) 7.7989e-01 5.8586e-01 3.9670e-01 3.5901e-01 3.2230e-01 2.9336e-01
8 (16) 7.4916e-01 4.6600e-01 2.1120e-01 1.5121e-01 1.3237e-01 1.0724e-01

1 : 103 1 (2) 1.1149e-00 7.5882e-01 6.4524e-01 5.5346e-01 4.3380e-01 4.3060e-01
8 (16) 1.1992e-00 5.9138e-01 3.8487e-01 2.9969e-01 2.3405e-01 2.4164e-01

1 : 105 1 (2) 1.4736e-00 1.2881e-00 6.2057e-01 6.3658e-01 3.9217e-01 3.7723e-01

8 (16) 8.3593e-01 2.6399e-01 2.5384e-01 2.6574e-01 1.8156e-01 1.9228e-01

curve has two peaks, there are two distinct transport mechanisms correspond-
ing to flow in fractures and matrix. On the other hand, if the curve has a single
peak, the medium can be modelled using a discrete model.

In the next example we demonstrate that our dG scheme can provide a fast
and easy method for evaluating tracer-breakthrough curves for flow in fractured
porous media.

Case 5 (Discrete model versus multi-continua model). Consider the same test
example as in Case 4, now with grid refinement in the latitudinal direction of
the fractures. We measure the concentration over the outflow boundaries. The
tracer is a pulse injection for a short time; in our case for t ∈ [0, 0.05]. Figure 9
shows the mass flow over the outflow boundary computed using dG(n) for n = 0,
1, and 4 compared with a highly resolved streamline simulation on a refined
grid. For permeability ratio 1 : 103, shown in the upper row, we obtain multiple
peaks, where the first peak represents the tracer going through the fractures
and the next peak represent tracer flowing through the lower-permeable rock
matrix. The results for permeability ratio 1 : 105 only has a single peak that
breaks through very early, meaning that the tracer goes straight through the
fractures and that this is the predominant transport mechanism. Thus, for the
first case it is necessary to use a multi-continua model, while for the second
case a discrete model may be appropriate.

The previous example demonstrates that the time-of-flight formalism can be
used to find breakthrough curves for highly resolved small-scale models where
fractures are represented explicitly as volumetric object. This may be used as
a guide when choosing an appropriate conceptual model to be used on a larger
scale. Hence, our method may serve as a technical guide for the choice of single
and multi-continua formulation in fractured rocks.

In the next example, we demonstrate how our dG methods can be used to
delineate the reservoir by determining swept and drainage volumes and well
connectivities. To this end, we will solve the steady tracer-concentration equa-
tion (3) rather than the time-of-flight equation. The stationary tracer equation
describes the steady concentration arising if we continuously inject tracer at a
certain part of the inflow boundary. Hence, if the tracer concentration is pos-
itive at a point, the point is influenced by the part of the inflow boundary on
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Figure 9. Computed mass flow over the outflow boundary with per-
meability ratio between matrix and the fractures equal 1 : 103 in the
upper row and 1 : 105 in the lower row. The red graphs give the dG(n)
solutions and the blue graphs give solutions computed by back-tracing
approximately 4 000 streamlines.

which we inject tracer. To partition a reservoir, we define the swept/drained
volumes as the volumes having a concentration larger than 0.5. Notice in par-
ticular that due to the efficient sequential solution procedure, computing each
drainage volume is a single-sweep computations that can be performed with
high order accuracy and modest demands on storage and computing power.

Case 6 (Approximation of Stationary Tracer Distribution). We consider the
stationary tracer distribution for a fractured reservoir shown in Figure 10. The
permeability ratio between the the matrix and the fractures is 1 : 105 and
the the aperture of the fractures is 10−4 length units. Four injection wells are
located in each corner and two production wells are located inside the domain.
Figure 10 shows the tracer distribution for each injector computed using basis
functions of increasing order. The different swept areas are shown in different
colours/shading, and the boundaries between the swept areas correspond to
the 0.5 contour of the different tracer concentrations. The figure illustrates
that low-order approximations do, in general, provide sufficient accuracy to
delineate the reservoir. This was also observed in [10].

Figure 11 shows the stationary tracer distribution in a more challenging
fractured reservoir. The distribution of the fractures is depicted in the figures,
and the permeability ratio between matrix and the fractures is 1 : 103. One
producer is located in the lower left corner and three injectors are located in
the three other corners. Each row in Figure 11 shows the swept areas for the
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dG(2) dG(3)

Figure 10. Stationary tracer distribution for four injectors placed
one in each corner and two producers are placed inside the domain.

three different injectors computed using dG(0) in the first column and dG(2)
in the second column.

5. Final Remarks

We have previously shown that the combination of a discontinuous Galerkin
spatial discretization and a optimal ordering of cells is a robust, accurate, and
efficient numerical approach for the solution of incompressible flow of fluids
in porous media, see [10, 8]. For multiphase flow [8, 7] and single-phase flow
in media with mild heterogeneity, our experience indicates that a low-order
dG method (the standard upwind method, dG(0), or the second-order dG(1))
is sufficient to accurately capture the fluid transport. For single-phase flow in
strongly heterogeneous media, one may need to increase the order to accurately
capture integrated quantities like time-of-flight and steady tracer concentration.

For fractured media, all our results have so far been presented for Cartesian
grids. However, explicit modelling of complex fracture networks will give rise to
very complex structures, and using unstructured triangular (tetrahedral) grids,
at least locally, may be necessary to accurately model realistic cases. In this
paper, we have made the first steps toward extending our dG methodology to
unstructured grids by presenting results for triangular elements in 2D, from
which the extension to tetrahedral elements in 3D is straightforward.
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dG(0) dG(2)

Figure 11. Tracer distribution for three injectors placed in three of
the corners and one producers placed in the lower left corner.

There are two features with our methodology that may prove very useful
when attacking complex 3D models. First of all, using a discontinuous Galerkin
discretization in combination with an upwind flux, we localise the degrees-of-
freedom (and their assembly) and simplify the coupling of different element
types. Secondly, we use an optimal ordering of the unknowns that allows us
to compute the solutions in an element-by-element fashion. This method is
quite general and applies to any grid where the inter-element dependence can
be described by a graph

For triangular grids, the dG method is convergent for smooth solutions, but
loses accuracy near discontinuities. Case 1 in Section 4 shows how the roughness
of randomly perturbed grids impact the accuracy, leading to reduced conver-
gence rates for rough grids. Considering polynomial degree versus grid resolu-
tion, some of the other examples indicate that increasing the order of the basis
functions is more important than increasing the grid resolution (provided the
flux is resolved with sufficient accuracy). Our experience is that a dG discreti-
sation of sufficiently high order is a relative robust alternative to streamlines
that performs well in a wide range of realistic cases. However, high permeability
contrasts reduce the accuracy of the solution. This may be countermanded by
introducing a sort of a slope limiter as used in [10], where we reduce the order
of the basis functions and refine the grid in areas with high media contrasts.
Finally, to accurately compute time-of-flight in fractured porous media, it is
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important having a sufficient grid resolution in the latitudinal direction of the
fractures. This is necessary since the time-of-flight is an integrated quantity
that is very sensitive to small-scale variations in media properties and contains
large spatial variation, in particular within and close to fractures.

We have also demonstrated how the framework can be used to compute
accurate approximations to the stationary tracer distribution in a reservoir.
Two test cases indicate that low-order approximations have sufficient accuracy
to produce reasonable delineations of a reservoir volume.

Altogether, we have demonstrated that the dG schemes in most cases can
accurately compute time-of-flight and stationary tracer distribution. These
quantities are of practical importance for applications in petroleum reservoir
simulation and groundwater modelling. For petroleum reservoir simulation, the
time-of-flight gives the timelines in the reservoir, whereas computing the tracer
distribution can determine the spatial regions swept or drained by a fluid from a
source or a sink. Within groundwater applications, the evaluation of the time-
of-flight may be a important tool to visualise the spreading of contaminants
and to help understanding the different transport processes.
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