
Ray-Casting Algebraic Surfaces using
Stream Computing

Johan Seland – johan.seland@sintef.no
Joint work with Martin Reimers

24. January
Geilo Winter School 2008

Applied Mathematics 1/16



Algebraic surfaces

Definition

For a function f : R3 → R, an
implicit surface can be defined by
the level set of the equation
f (x , y , z) = c , where x , y , z ∈ R.

Definition

If the function f is a polynomial,
it is called algebraic. The
resulting surface is called an
algebraic surface.
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Goals for this talk

Give a brief introduction to ray-casting

Demonstrate hybrid CPU/GPU usage

Demonstrate pre-evaluation
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Raycasting

Raycasting amounts to “shooting” rays inside a view frustum (VF)
and determine if they intersect the surface.

Ray casting has traditionally been a very slow process

Assume a screen resolution
of (m + 1)× (n + 1) pixels.

Pixel (p, q) corresponds to a
ray through p and the pixel
with coordinates
(p/m, q/n).
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Raycasting algorithm

Along a ray rpq(t), we seek t ∈ [0, 1] such that

f ((1− t)npq + tfpq) = f (rpq(t)) = 0

Naive approach:

Work directly on f

Solve using Newton like method

Conceptually “easy”

f is expensive to evaluate

How to ensure we find the first solution?

f could be numerically unstable

Embarrassingly parallel

⇒ perfect for stream processing?
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Bernstein Polynomials

We would like to work on a univariate Bernstein polynomials

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t) = 0

The Bernstein Basis:

Bd
k (t) =

(d
k

)
td(1− t)d−k

Σd
k=0B

d
k (t) = 1

bd
k (t) ≥ 0, t ∈ [0, 1]

Not orthogonal basis

Proved to be numerically optimal

Nice algorithms for root finding
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The View Frustum Form

Idea: Parameterize the view frustum over the unit cube, s. t.
(u, v , 0) and (u, v , 1) maps to points on the near and far plane.
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A ray in the view frustum is given by: rpq(w) = L(p/m, q/n, w).
We define the View Frustum Form to be:

g = f ◦ L : [0, 1]3 → R.
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Using the composition g = f ◦ L,

f (L(
p

m
,
q

n
, w)) = g(

p

m
,
q

n
, w) =

d ,d ,d∑
i ,j ,k=0

gijkBd
i (

p

m
)Bd

j (
q

n
)Bd

k (w)

=
d∑

k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)


︸ ︷︷ ︸

cpqk

Bd
k (w).

Yielding univariate ray equations of degree d ,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t).
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Computing VFF Coefficients

We choose to find the VFF coefficients G = (gijk) by solving an
interpolation problem.

Choose (d + 1)3 distinct interpolation points (up, vq, wr ) on a
grid.

Solve

d ,d ,d∑
i ,j ,k=0

gijkBd
i (up)︸ ︷︷ ︸

Ωp

Ωq︷ ︸︸ ︷
Bd

j (uq)Bd
j (ur )︸ ︷︷ ︸

Ωr

= f (L(up, vq, wr ))

Needs inverse of Bernstein collocation matrices
Ωp = (Bd

i (up)).

Pre-evaluate: Only dependent on d

Use Chebyshev interpolation points for stability.

Not dependent on the representation of f .
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Computing ray coefficients

Remember g = f ◦ L:

f (L(
p

m
,
q

n
, w)) =

d∑
k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)

Bd
k (w).

Basis functions evaluated at every pixel

Only dependent on screen resolution and degree

Pre-evaluate Bernstein collocation matrices as well

M = (mij) = Bd
i ( p

m ), N = (nij) = Bd
i ( q

n )
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Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:

Evaluate the inverse Ω matrices
Evaluate the pre-evaluated ray-polynomials M, N

For each frame

Evaluate f ◦ L at (d + 1)3 interpolation points
Apply Ω−1

Calculate ray-coefficients MCkN
Find first intersection of each ray
Shade all intersections based on normal-estimate
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Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:

CPU: Evaluate the inverse Ω matrices
CPU: Evaluate the pre-evaluated ray-polynomials M, N

For each frame

CPU: Evaluate f ◦ L at (d + 1)3 interpolation points
CPU: Apply Ω−1

Transport ray coefficient to GPU
GPU: Calculate ray-coefficients MCkN
GPU: Find first intersection of each ray
GPU: Shade all intersections based on normal-estimate
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Matrix-Tensor product

For each frame we calculate the ray coefficients

Ck = MGkN

Matrix-Tensor product is perform in a dedicated CUDA kernel

M and N are stored in texture memory

G are stored in constant memory

Coalesced read of float4 into shared memory

Blockwise matrix-multiply

Coalesced write of ray coefficients (4-components at a time)

Repeated (d/4 + 1) times
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Root finding
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Init: We only know the control points
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Root finding
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Find the first root of the control polygon, t = 2/9
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Root finding
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Subdivide at t → two new control polygons
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Root finding
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Again, find zero of control polygon – subdivide
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Root finding
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Yields two new control polygons – repeat
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Root finding
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Method converges quadratically
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CUDA implementation of root finding

Each ray is processed by a ray

Coefficients are read (coalesced) 4-coeffients at a time

The root finding kernel is specialized per degree

Can lead to very divergent behavior within one warp

Future work: Predict behavior based on ray coefficients
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Results

Visualizes surfaces up to degree 18

24 FPS for d = 8, 12 FPS for d = 10, 3FPS for d = 18

Accepted to Eurographics 2008

Fierce competition

Several approaches to this problem fight for performance crown

OpenMP performance much lower due to thread startup cost
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That’s all folks!

Thank you for listening
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Shameless advertisement!

SINTEF has open positions if you are interested in
(GP)GPU, Cell or CMP programming!
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