Ray-Casting Algebraic Surfaces using

Stream Computing

Johan Seland — johan.seland@sintef.no
Joint work with Martin Reimers

24. January
Geilo Winter School 2008

SINTEF

Applied Mathematics 5

1/16

Algebraic surfaces

For a function f : R3 = R, an
implicit surface can be defined by

the level set of the equation
f(x,y,z) = c, where x,y,z € R.

If the function f is a polynomial,
it is called algebraic. The
resulting surface is called an
algebraic surface.

SINTEF Applied| Mathematics s B o 2/16

Goals for this talk

Give a brief introduction to ray-casting
Demonstrate hybrid CPU/GPU usage

Demonstrate pre-evaluation

SINTEF Applied Mathematics =] 3/16

Raycasting

Raycasting amounts to “shooting” rays inside a view frustum (VF)
and determine if they intersect the surface.

Ray casting has traditionally been a very slow process

e @
Q\'b° Q\Qf\
Assume a screen resolution @ Qe?}
of (m+1) x (n+ 1) pixels.
Pixel (p, g) corresponds to a L_‘ p

ray through p and the pixel
with coordinates

(p/m,q/n).

SINTEF Applied Mathematics =} 4/16

Raycasting algorithm

Along a ray rpq(t), we seek t € [0, 1] such that

F((1 = t)npg + tfpq) = F(rpe(t)) =0

Naive approach:
Work directly on f

Solve using Newton like method

Conceptually “easy”
f is expensive to evaluate
How to ensure we find the first solution?

f could be numerically unstable
Embarrassingly parallel

m = perfect for stream processing?

SINTEF Applied Mathematics =] 5/16

Bernstein Polynomials

We would like to work on a univariate Bernstein polynomials

d
f(rpq(t § , Cpak Bk
k=0

B3(t)

The Bernstein Basis:

Bd(t) = (¢)td(l — 1) B3 B3
Z‘Z:oBk()=

bd(t) >0, te€ [0, 1] g3 g3

Not orthogonal basis

Proved to be numerically optimal

Nice algorithms for root finding

SINTEF Applied Mathematics £ : =] 6/16

The View Frustum Form

Idea: Parameterize the view frustum over the unit cube, s. t.
(u,v,0) and (u, v,1) maps to points on the near and far plane.

> 1<

w <

A ray in the view frustum is given by: rpq(w) = L(p/m, q/n, w).
We define the View Frustum Form to be:

g=folL:[0,1® = R.

SINTEF

Applied Mathematics .

=] 7/16

Using the composition g = f o L,

d,d,d
P g9, 9P y5e()50
LT) =g(29, I;ng B7(2)Bg(w)

d
— ZgUde Bd(n) B (w).

k=0 \i,/j=0

Cpak

Yielding univariate ray equations of degree d

f(rpq(t Z Cpqk Bk

SINTEF

Applied Mathematics £

8/16

Computing VFF Coefficients

We choose to find the VFF coefficients G = (gjjx) by solving an
interpolation problem.

Choose (d + 1) distinct interpolation points (up, v4, w;) on a

grid.
Solve
d,d,d Q:’
) gk B (49) B (uq) B (1) = F(L(up, vy)
ij,k=0 HQ/_/
p r

Needs inverse of Bernstein collocation matrices
_ d

Qp = (Bf (up))
m Pre-evaluate: Only dependent on d

Use Chebyshev interpolation points for stability.

Not dependent on the representation of f.

SINTEF Applied Mathematics . A =] 9/16

Computing ray coefficients

Remember g = f o L:

d d,d
AL Low) =37 [D e/ (2)87(]) | B(w)
k=0 \i,j=0

Basis functions evaluated at every pixel
m Only dependent on screen resolution and degree

Pre-evaluate Bernstein collocation matrices as well
m M= (my) =B(£), N=(ny)=Bf(2)

SINTEF Applied Mathematics o 10/16

Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:

m Evaluate the inverse Q2 matrices

m Evaluate the pre-evaluated ray-polynomials M, N
For each frame

m Evaluate f o L at (d + 1)* interpolation points

m Apply Q71

m Calculate ray-coefficients MC, N

m Find first intersection of each ray

m Shade all intersections based on normal-estimate

SINTEF Applied Mathematics . . B o 11/16

Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:
m CPU: Evaluate the inverse Q2 matrices
m CPU: Evaluate the pre-evaluated ray-polynomials M, N
For each frame
m CPU: Evaluate f o L at (d + 1) interpolation points
CPU: Apply Q!
Transport ray coefficient to GPU
GPU: Calculate ray-coefficients MC, N
GPU: Find first intersection of each ray
GPU: Shade all intersections based on normal-estimate

SINTEF Applied Mathematics o 11/16

Matrix-Tensor product

For each frame we calculate the ray coefficients
Cx = MG N

Matrix-Tensor product is perform in a dedicated CUDA kernel
M and N are stored in texture memory
G are stored in constant memory
Coalesced read of float4 into shared memory

Blockwise matrix-multiply

Coalesced write of ray coefficients (4-components at a time)
Repeated (d/4 + 1) times

SINTEF Applied Mathematics o 12/16

Root finding

(1) = Xl biB ()

1 ——

[

= o
ol

<k
[\
Wi ——
ol ——

i

i

o

&

I

|

ol

@ SINTEF i s o B o 13/16

Root finding

(1) = ko biB ()

1 ——

I
= o
ol
<k
[\
Wi ——
ol ——
&
I
o
& €
I
|
-

Find the first root of the control polygon, t =2/9

SINTEF Applied Mathematics . =] 13/16

Root finding

() = S50 biBR(0)

LT
b;
\\
- \
3 \
\
bl bk = bj \\
3 = Bo
By :
bz \
\ !
0 } f % | : N
1 ! 2 2 5 |
3 3 2 ’ ' - "
G R
i

Subdivide at t — two new control polygons

Applied Mathematics =} 13/16

Root finding

() = S50 biBR(0)

L1
by
\
- \
3 \
\
bl b = b§ \\
3 = Bo
By :
: - \\
\ !
0 } f % | : % "
: 3 b L
- b}
B R
a

Again, find zero of control polygon — subdivide

Applied Mathematics =} 13/16

Root finding

() = S50 biBR(0)

1 —
-
1 _ 1
2
-
-
1
I I I I ! I
0 T T T T T Ll t
&
1 1 1 2 5 -
3 3 2 3 6 .
JE S
a

Yields two new control polygons — repeat

Applied Mathematics =} 13/16

Root finding

() = S50 biBR(0)

1 ——

[T

o
ol= ——
Wik
Nl ——
Wi ——
ol ——
/i .

'

1
7

Method converges quadratically

Applied Mathematics =} 13/16

CUDA implementation of root finding

Each ray is processed by a ray
Coefficients are read (coalesced) 4-coeffients at a time
The root finding kernel is specialized per degree

Can lead to very divergent behavior within one warp
m Future work: Predict behavior based on ray coefficients

SINTEF Applied Mathematics o 14/16

Visualizes surfaces up to degree 18
24 FPS for d = 8, 12 FPS for d = 10, 3FPS for d = 18
Accepted to Eurographics 2008
Fierce competition
m Several approaches to this problem fight for performance crown

OpenMP performance much lower due to thread startup cost

SINTEF Applied Mathematics . A =} 15/16

That's all folks!

Thank you for listening

SlNTEF Applied Mathematics . o 4 » & « =] 16/16

Shameless advertisement!

SINTEF has open positions if you are interested in
(GP)GPU, Cell or CMP programming!

@ SINTEF Applied Mathematics » o » » & & o 17/16

