
Ray-Casting Algebraic Surfaces using
Stream Computing

Johan Seland – johan.seland@sintef.no
Joint work with Martin Reimers

24. January
Geilo Winter School 2008

Applied Mathematics 1/16

Algebraic surfaces

Definition

For a function f : R3 → R, an
implicit surface can be defined by
the level set of the equation
f (x , y , z) = c , where x , y , z ∈ R.

Definition

If the function f is a polynomial,
it is called algebraic. The
resulting surface is called an
algebraic surface.

Applied Mathematics 2/16

Goals for this talk

Give a brief introduction to ray-casting

Demonstrate hybrid CPU/GPU usage

Demonstrate pre-evaluation

Applied Mathematics 3/16

Raycasting

Raycasting amounts to “shooting” rays inside a view frustum (VF)
and determine if they intersect the surface.

Ray casting has traditionally been a very slow process

Assume a screen resolution
of (m + 1)× (n + 1) pixels.

Pixel (p, q) corresponds to a
ray through p and the pixel
with coordinates
(p/m, q/n).

p
rpq(t)

fa
r pla

ne

nea
r pla

ne

Applied Mathematics 4/16

Raycasting algorithm

Along a ray rpq(t), we seek t ∈ [0, 1] such that

f ((1− t)npq + tfpq) = f (rpq(t)) = 0

Naive approach:

Work directly on f

Solve using Newton like method

Conceptually “easy”

f is expensive to evaluate

How to ensure we find the first solution?

f could be numerically unstable

Embarrassingly parallel

⇒ perfect for stream processing?

Applied Mathematics 5/16

Bernstein Polynomials

We would like to work on a univariate Bernstein polynomials

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t) = 0

The Bernstein Basis:

Bd
k (t) =

(d
k

)
td(1− t)d−k

Σd
k=0B

d
k (t) = 1

bd
k (t) ≥ 0, t ∈ [0, 1]

Not orthogonal basis

Proved to be numerically optimal

Nice algorithms for root finding

t

B3(t)

B3
0

B3
1 B3

2

B3
3

Applied Mathematics 6/16

The View Frustum Form

Idea: Parameterize the view frustum over the unit cube, s. t.
(u, v , 0) and (u, v , 1) maps to points on the near and far plane.

p

fa
r pla

ne

nea
r pla

ne

u

v

w

L

A ray in the view frustum is given by: rpq(w) = L(p/m, q/n, w).
We define the View Frustum Form to be:

g = f ◦ L : [0, 1]3 → R.

Applied Mathematics 7/16

Using the composition g = f ◦ L,

f (L(
p

m
,
q

n
, w)) = g(

p

m
,
q

n
, w) =

d ,d ,d∑
i ,j ,k=0

gijkBd
i (

p

m
)Bd

j (
q

n
)Bd

k (w)

=
d∑

k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)


︸ ︷︷ ︸

cpqk

Bd
k (w).

Yielding univariate ray equations of degree d ,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t).

Applied Mathematics 8/16

Computing VFF Coefficients

We choose to find the VFF coefficients G = (gijk) by solving an
interpolation problem.

Choose (d + 1)3 distinct interpolation points (up, vq, wr) on a
grid.

Solve

d ,d ,d∑
i ,j ,k=0

gijkBd
i (up)︸ ︷︷ ︸

Ωp

Ωq︷ ︸︸ ︷
Bd

j (uq)Bd
j (ur)︸ ︷︷ ︸

Ωr

= f (L(up, vq, wr))

Needs inverse of Bernstein collocation matrices
Ωp = (Bd

i (up)).

Pre-evaluate: Only dependent on d

Use Chebyshev interpolation points for stability.

Not dependent on the representation of f .

Applied Mathematics 9/16

Computing ray coefficients

Remember g = f ◦ L:

f (L(
p

m
,
q

n
, w)) =

d∑
k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)

Bd
k (w).

Basis functions evaluated at every pixel

Only dependent on screen resolution and degree

Pre-evaluate Bernstein collocation matrices as well

M = (mij) = Bd
i (p

m), N = (nij) = Bd
i (q

n)

Applied Mathematics 10/16

Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:

Evaluate the inverse Ω matrices
Evaluate the pre-evaluated ray-polynomials M, N

For each frame

Evaluate f ◦ L at (d + 1)3 interpolation points
Apply Ω−1

Calculate ray-coefficients MCkN
Find first intersection of each ray
Shade all intersections based on normal-estimate

Applied Mathematics 11/16

Algorithmic flow

This suggest the following “passes”:
For a given d and screen resolution:

Pre-process:

CPU: Evaluate the inverse Ω matrices
CPU: Evaluate the pre-evaluated ray-polynomials M, N

For each frame

CPU: Evaluate f ◦ L at (d + 1)3 interpolation points
CPU: Apply Ω−1

Transport ray coefficient to GPU
GPU: Calculate ray-coefficients MCkN
GPU: Find first intersection of each ray
GPU: Shade all intersections based on normal-estimate

Applied Mathematics 11/16

Matrix-Tensor product

For each frame we calculate the ray coefficients

Ck = MGkN

Matrix-Tensor product is perform in a dedicated CUDA kernel

M and N are stored in texture memory

G are stored in constant memory

Coalesced read of float4 into shared memory

Blockwise matrix-multiply

Coalesced write of ray coefficients (4-components at a time)

Repeated (d/4 + 1) times

Applied Mathematics 12/16

Root finding

b1 = − 1
4

b2 = 1

b3 = br
3 = − 1

6

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Init: We only know the control points

Applied Mathematics 13/16

Root finding

b1 = − 1
4

b2 = 1

b3 = br
3 = − 1

6

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Find the first root of the control polygon, t = 2/9

Applied Mathematics 13/16

Root finding

b0 = bl
0 = 1

2

bl
1

bl
2

bl
3 = br

0
br

1

br
2

br
3

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Subdivide at t → two new control polygons

Applied Mathematics 13/16

Root finding

b0 = bl
0 = 1

2

bl
1

bl
2

bl
3 = br

0
br

1

br
2

br
3

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Again, find zero of control polygon – subdivide

Applied Mathematics 13/16

Root finding

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Yields two new control polygons – repeat

Applied Mathematics 13/16

Root finding

t

f (t) =
P3

i=0 bi B
3
i (t)

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1

Method converges quadratically

Applied Mathematics 13/16

CUDA implementation of root finding

Each ray is processed by a ray

Coefficients are read (coalesced) 4-coeffients at a time

The root finding kernel is specialized per degree

Can lead to very divergent behavior within one warp

Future work: Predict behavior based on ray coefficients

Applied Mathematics 14/16

Results

Visualizes surfaces up to degree 18

24 FPS for d = 8, 12 FPS for d = 10, 3FPS for d = 18

Accepted to Eurographics 2008

Fierce competition

Several approaches to this problem fight for performance crown

OpenMP performance much lower due to thread startup cost

Applied Mathematics 15/16

That’s all folks!

Thank you for listening

Applied Mathematics 16/16

Shameless advertisement!

SINTEF has open positions if you are interested in
(GP)GPU, Cell or CMP programming!

Applied Mathematics 17/16

