
O
M

S 2005

Automatic parallelization and Parallel Recursive
Procedures (PRP) – a parallel package and its

implementation

Arne Maus,
with Torfinn Aas, Yan Xu, Arne Høstmark, Viktor Eide,

Tore André Rønningen, André Næss, Mads Bue,
Christian O. Søhoel, Bjørn Arild Kristiansen, Coung Van

Truong, Jørn Christian Syvertsrud
Dept. of Informatics,

Univ. Oslo

2

O
M

S 2005

Overview

1. Problems, promises and limitations in parallel
programming.

2. PRP - a programming package for ‘automatic’
parallel programming

3. A few results
4. How to implement PRP

3

O
M

S 2005

sequential vs. parallel program

problem

seq. algorithm

program

computer

Progr. language
compiler + runtime/VM

problem

1a) seq.algorithm

net + computer/cluster

1b) parallel algorithm

2) Parallel package,
preprocessor, runtime

Progr. language
compiler + runtime/VM

deployment, communication

Parallel program

”dream” -
this done

automatically?

4

O
M

S 2005

1. Limitations of Parallel programming
How fast a computer can you ever build, how large a problem
can ever be solved with PP ?
– Today's fastest (top 500)
– How many instruction can ever be performed (in all history) ?
– , and in practice
– In your office ‘soon’

Can all algorithms be parallelized?
– How much speedup: Amdahl's law
– Can all problems be parallelized:

20% (yes) + 60% (some parts) + 20 % (no)
– How to transform a sequential to a parallel algorithm

Matching the algorithm to the CPU/GPU/ computer/cluster
Little or no shared memory
Net delay
load balancing
fault tolerance

1000 times faster every 10 year.

For how long?

CPU :100 times faster every 10 year.

6

O
M

S 2005

7

O
M

S 2005

How many instruction can ever be performed?
Assume that each elementary particle in the universe
is turned into a CPU:
– connected as a perfect parallel machine :1080 CPUs
– cycle time = the time it takes light to pass an atom nucleus: 3*106

km/sec / 10-15 m = 3 * 10 24 Hz
– duration of computation: The Earth is destroyed by the Sun in 5

billion years = 60*60*24*365*5000 000 000 sec. ≤ 1,57 * 1016 sec
In total ≤ 10121 operations at 10105 flops

Easy to construct problems larger than 10121 operations,
i.e. the 100 queens problem, or The Travelling Salesman
(using the naive recursive decent algorithm) for 100 cities.

8

O
M

S 2005

More ’realistic’ assumptions:
a) 1000 ton of CPUs each 0.1 gram at 1000 GHz gives

1024 flops

b) PC with 105-106 multi-core CPU
(line width = 0.5 - 0.1 nm = 50-10 atoms) at your
desktop,
each at 10 -100 GHz gives:

1015- 1017 flops or 1 - 100 Petaflops

And if you will only wait for a week (≤106 sec.), then
anything more than 1020 - 1030 operations for solving a
problem, are unrealistic

9

O
M

S 2005

Amdahl's law and a conclusion
Amdahl:
If the problem has a fixed sequential part of p %, then 100/p is the

maximum speedup you get – assuming the rest of the computation is
performed in 0 time in parallel (p=1% gives max. 100x speedup).

Parallelism will ‘only’ help you solving problems with a fixed
speedup, at most 105-106 times faster, but always limited by:
– the time you can wait for the answer
– your parallel algorithm
– the number of CPUs
– the frequency of a single computing element

Conclusion: Faster calculations need:
1. Better sequential algorithms transformed into
2. Better parallel algorithms, and first then:
3. A ’big parallel machine’

10

O
M

S 2005

How to parallelize a problem
Partition
a) The program

• ‘Different’ parts of the algorithm on each CPU
b) The data

• Every CPU has its own part of the data set, but same program
c) Partition both program and data

Communication
– Asynchronous calls

Send (don’t wait for answer)
Wait for someone to call you
Best: use a separate thread to communicate at both ends

– Synchronous calls (send and wait for answer = no parallelism)

11

O
M

S 2005

When parallelizing – how to partition program & data

The program grain size:
– (neighbouring instructions, done by the CPU)
– the inner part of a loop (HPF, openMP)
– a procedure call (PRP)
– an object (Proactive)
– a process / subprogram (MPI, PVM)

The data grain size
– a set of XX (e.g. numbers 1 to N) is divided into n smaller sets
– a 1D array is divided into n (equal) parts (smaller 1D arrays)
– a 2D matrix is divided into its rows (or. columns)
– a 2D matrix is partitioned into separate blocks
– a 3D matrix is partitioned into separate 2D matrices

12

O
M

S 2005

How parallel is your problem?

Embarrassingly :
– seq – parallel – seq

Some:
– seq1 – parallel1 – seq2- parallel2 – seq3,..., - paralleln – seqn+1

None:
– seq

13

O
M

S 2005

Other issues
Scaling
– With n CPUs you want n times faster program (perfect scaling)

Load balancing on n CPUs
– If you don’t divide your algorithm wisely into ‘equal parts’, or if some of the

CPUs are slower, you might not get perfect scaling .
Fault tolerance
– One, two, many of the CPUs, or parts of the net goes down

Avoiding (most of) the communication delay:
– MultiCore CPU
– SMPs
– PC clusters
– A Grid (clusters of clusters, at different locations)

Shared memory (R&W)
– Start and end of program OK
– When running program (potentially huge bottleneck)

Distribution, monitoring progress

14

O
M

S 2005

PRP Overview
The idea and the project
– Type of recursion supported and demand on net and machines

Transforming a program to a PRP program
What kind of problems can be solved
– Performance figures for 3 problems

Some implementation features
– The pre-processor and runtime system
– Almost eliminating delay
– Workload, unbalanced problems and fault tolerance
– Portability

Conclusion

15

O
M

S 2005

PRP, basic idea:

1. Take a sequential program with recursion
2. Put two comments into the program
3. Let the PRP-system compile & run it
4. Voila: The program goes n times faster on n CPUs

Does it work that way?

YES, with some limitations ...

16

O
M

S 2005

The basic idea (cont.)
Take sub-trees of the recursion tree and automatically perform them on
connected machines in usual fashion.

a

b c d e

f

recursion
tree

a,b,f,....
Multicore CPU and/or
Grid/cluster machines on
LAN/ Web

a

b c d e

f

a
b

d
e

f

c

single
machine

17

O
M

S 2005

The PRP project
Eleven master thesis, all made working code & improvements
over previous efforts (simplifications and/or speed
improvements) .
– Initial idea, Maus (1978)
– Torfinn Aas, C over RPC (1994)
– Yan Xu, C over MPI, shared memory (1997)
– Arne Høstmark, C over PVM, fault tolerant, 100+ machines (1997)
– Viktor Eide, C over PVM, adm/worker(1998)
– Tore A. Rønningen, Java over RMI, buffered parameters (2003)
– André Næss, Parallel execution of STEP/EXPRESS (2004)
– Christian O. Søhoel, Parallel chess (2005)
– Mats Bue, PRP on .Net in C# (2005)
– Bjørn Arild Kristiansen, GUI and online monitoring (2006)
– Cuong Van Truong, fault tolerant, unbalanced recursion trees (2007)
– Jørn Christian Syvertsrud, Load balancing, repeated recursion (2007)
– [Kristoffer Skaret, Multicore CPU (2008)]
– [Daniel Treidene, , Loop-parallelization (2008)]

18

O
M

S 2005

Demand on recursive
PRP-procedure/method

1. The recursive call is textually only one place (in some loop)
2. No return value from a method can be used to determine

parameters to another call
3. All information used by a PRP-method must be in

parameters (no global variables – except for multicore), but
constants can be declared and used in local class and local
data can be declared and used.

4. Code in the procedure from start to recursive call must be
repeatable (same result second time performed).

5. Any parameter and return type possible from a the PRP-
method - also objects. But if these classes are declared in
your program, they must be stated as: ‘implements
Serializable’.

6. Obvious: The fan-out (number of recursive calls) per method must
be (on the average) >1

19

O
M

S 2005

JavaPRP - The pre-processor and runtime system
The original program is tagged with 2 or 3 comment-tags:

/*PRP_PROC*/ - meaning: next line is declaration of the recursive
procedure

/*PRP_CALL*/- meaning: next line is the recursive call (in a loop).
/*PRP_FF*/ - if on first line in program, signals that the recursive proc.

only has one recursive level (full fan-out).
Optimizing option only.

The pre-processor splits the Program into two versions:
– Manager: The master node, starts program, splits the recursion tree,

generates parameter sets, receives return values.
Has two versions of the recursive procedure, one for ‘breaking up’ the recursive
tree , one for collecting results and finish the calculations.
Handles also: Initial distribution of code to workers, load balancing, fault
recovery, GUI monitoring, termination.

– Worker code: Receives in succession a number of parameter sets from
Manager, computes (ordinary recursion, top-down), returns answer.

20

O
M

S 2005

How to compile and run PRP
You are logged on the Manager machine and on (say by ‘telnet’) on M
worker machines and have started the worker-runtime system on each
worker.
Then start Manager program, who will spread code to Workers, start
recursion in main, send sub problems to Works, collect answers, print
result,.. as specified in the original program.

Original
program
with
recursive
method

Tagged
Original
program
/*PRP_proc*/,

...

PRP-
Preprocessor

Worker:
Java prog with
original
recursive
method

...

Manager:
Java prog. with 2 versions
of recursive method:

- Generate parameters (A)

- Collect answers from calls
(from PRP-array) and
compute own answer (B)

Java compile
on Manager

22

O
M

S 2005

Travelling Salesman – 17 cities with local cutoff value in
each Worker machine

17 cities with local cutoff

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

m achines

Se
co

nd
s

Homgen. machines
Heterogen. machines

23

O
M

S 2005

I) Two other simple problems
- scaling test (# machines = 2 to 32)

Number of distinct Hamiltonian Circuits in a Graph:
– 20 nodes, each with from 3 to 9 edges.
– Recursive decent,

Goldbach’s hypothesis:
– How many distinct pair of primes , p1 + p2 = n, are there for all

even numbers n = 2, 4,6,..., 1300 000
– Takes almost as long time as the Ham. Circuit instance on one

machine
– Data partition – full fan-out from first method called

Compare to Ideal curve (perfect scaling):
– TimeOnOneMachine/(# machines -1)

 Data partition/full fanout (Goldbach) and recursive decent (Hamiltonian) problems
compared with IDEAL: T1 / (#machines - 1)

0

500

1000

1500

2000

2500

3000

S 1 2 4 8 16 32

Worker machines

Se
co

nd
s

Hamiltonian
IDEAL
Goldbach 2-1300000

25

O
M

S 2005

PRP Implementation – overview:

1. Generate enough parameter sets in one machine
(the Manager)

2. Parallelize
Send out these parameter sets to different CPUs (Workers)
Get answers back and put results in a result array until all
parameter sets are solved

3. Perform in Manager those calls that generated the
parameters – the top of the rec. tree

and return the result from the top call to the original call (in main)

26

O
M

S 2005

1. Implementation: catch parameter sets:

0. Make a variant A of the recursive call where the recursive call
are substituted with a method call to: stealParameters – with
the same parameters (and the rest of the code is removed).

1. The parameter set to the first call (from main to the recursive
procedure) is put in a FIFO-queue.

while (<not enough parameter sets in the FIFO>) {
2. Remove first element in FIFO, and put this parameter set on a

software call-stack. Then call A with this parameter set.
3. This generates more calls to stealParameters and each call will

put its parameter set in the FIFO(=tasks for parallelization)
}

Now those calls that generated parameters for parallelization are
on the call-stack (the top of the tree).

The parameters for parallelization are in the FIFO

27

O
M

S 2005

Manager: To deal with different machines (fast & slow), varying
workload and unbalanced problems:
– Generate lots of parameter sets to workers (20*numWorkerMachines)
– Run procedures up to recursive call – put parameter sets on FIFO
– One thread per worker (send parameters <-> receive result)

Worker Worker Worker

Worker
factory

Worker
factory Worker

factory

Start of system

n +1 threads
in Manager

2 in each
Worker

29

O
M

S 2005

Why do more parameter sets help?

Since, on the average there are 20 sub-problems per Worker-
machine, we get workload balancing:
– Those who finishes one parameter set, starts a new set from the buffer

immediately,
– and get a next parameter in the buffer as soon as return values are

received by Manager for previous sub problem
– If ‘data transfer time’ < ‘CPU-time’ for the sub-problems, the

net does not matter for the total compute time because of buffering.
When there are no more new problems to fan out:
– Those calls who hasn’t answered yet, are re-sent to fastest, idle machine

so far (solves error on net & machines problems)
– The first returned answer to a problem is taken – other calls with the

same parameter set are then ‘killed’.

Worker Worker Worker

2. System running

Workers performing
the ordinary

recursive procedure
with the parameters

sent over the net

31

O
M

S 2005

Avoiding delay from the net – buffering of 2 tasks.

A) Usual send/receive (Worker waits two net delays: 3-5)
1) M: Send task1
2) W: receive & do task1
3) W: Send result1
4) M: Receive result1
5) M: Send task2
6) W: receive & do task2
.........

Manager Worker

B) Buffered send/receive (send two tasks first time)
after start up, no wait on net if compute time > transfer time

Manager

1) M: Send task1& task2
2) W: receive1&2 & do task1
3) W: Send result1& do task2
4) M: Receive result1& send task3
5) W: Send result2& do task3
.........

Worker

32

O
M

S 2005

3. Last step of a PRP computation:
Perform the top of the recursion tree (now on the stack):

A second variation of the recursion procedure, B, is made in
the Manager where the recursive call is substituted with a call
to pickUpAnswerInResultArray()

while(<more calls on software stack>) {
1. Remove top of software stack.
2. Call B with its parameters (this is the second time this recursive

procedure is called).
3. This generates calls to pickUpAnswerInResultArray were its

answers are found.
4. The rest of B is performed and its answer is put into the Result Array.

}

The result from the first call (the bottom last on the call-stack & in pos
1 in Result Array) is returned to the call from main

33

O
M

S 2005

What kind of problems can be solved (n = amount of data)

The problem has to be execution time O(n1.5) or harder
(and running time > 1 minute)
– No point in parallelizing easier problems !
NP-problems in graphs or trees (branch and bound):
– Example Travelling Salesman, Hamiltonian Circuit,
– With or without ‘global’ variables for cut off.
Data division problems in general:
1. If we have to run through data: d1,d2,....dn, then recursively divide the

dataset into 20*(number of machines) equal parts and call each in a
loop (=full fan-out recursion).

2. Solve problem on each part in a PRPproc instance – then return and
combine

3. Example : Optimal binary search tree – O(n1.5) (M.A.Weiss, p. 379)
Other CPU intensive problems:
– Prime number counting, Goldbach’s hypothesis (2i = p1+p2, i =2,3,4,..)

34

O
M

S 2005

Number of parameter sets handled by each Worker machine - 24 equal machines

4
2

12
16

12

91

13 14

25

12
8

14

7
5 6 7 8

89
92

3

9
12 13 13

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Worker machine number

pa

ra
m

et
er

se
ts

35

O
M

S 2005

III) The optimal binary search tree –
(from V.Eide’s thesis & Kristoffer Skaret)

36

O
M

S 2005

Data structure – compute optimal binary search trees for all subsections of
data – finally for all data

37

O
M

S 2005

T(n,x) = work for computing next line,
= what you need to know to compute ‘p’

This problem is O(n1.5) since we have n*n= n2 data and execution time n3

38

O
M

S 2005

Results and speedup

39

O
M

S 2005

Current research: Finding PRP implementation for Multicore CPUs
Different matrix organization (twisted = row /no = diagonal)

Different synchronization (double = read, sync. write, sync/not= read&write, sync)
Pump (Central start thread, read write, return)

Optimal search tree - 5 algorithms (4000 words)
on a 8 multicore CPU (Quad + Hyperthread)

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

1 2 3 4 5 6 7 8 9 10 11 12

n - number of threads

T
(s

ec
.) Twisted DblB

Twisted B

Pump

Double Barrier

Barrier

40

O
M

S 2005

Conclusions
PRP: A package for using recursive methods in Java (and C) as a
tool for parallelizing programs.
More high level than most parallelizing libraries
Little modification to original code is needed:
– Put two comments into code, run pre-processor and compile
– Some restrictions on the recurcive procedure.

Scales (almost) ideally for NP-type problems
where ratio: Data-sent/compute-time is very small
Handles also (one) problem of O(n1.5), where data sent over net in
sum is O(n) reasonably well - scales up to factor 4-5
PRP also used on a real industrial problem with good speedup
Now, a special implementation for multicore CPU
and loop parallelization

PRP is a general tool for parallelizing a number of recursive
algorithms – or many calls to the same procedure in a loop.

	Automatic parallelization and Parallel Recursive Procedures (PRP) – a parallel package and its implementation
	Overview
	sequential vs. parallel program
	1. Limitations of Parallel programming
	How many instruction can ever be performed?
	More ’realistic’ assumptions:
	Amdahl's law and a conclusion
	How to parallelize a problem
	When parallelizing – how to partition program & data
	How parallel is your problem?
	Other issues
	PRP Overview
	PRP, basic idea:
	The basic idea (cont.)
	The PRP project
	Demand on recursive PRP-procedure/method
	JavaPRP - The pre-processor and runtime system
	How to compile and run PRP
	Travelling Salesman – 17 cities with local cutoff value in each Worker machine
	I) Two other simple problems - scaling test (# machines = 2 to 32)
	PRP Implementation – overview:
	1. Implementation: catch parameter sets:
	Why do more parameter sets help?
	Avoiding delay from the net – buffering of 2 tasks.
	3. Last step of a PRP computation:Perform the top of the recursion tree (now on the stack):
	What kind of problems can be solved (n = amount of data)
	III) The optimal binary search tree – (from V.Eide’s thesis & Kristoffer Skaret)
	Data structure – compute optimal binary search trees for all subsections of data – finally for all data
	T(n,x) = work for computing next line, = what you need to know to compute ‘p’
	Results and speedup
	Current research: Finding PRP implementation for Multicore CPUsDifferent matrix organization (twisted = row /no = diagonal
	Conclusions

