§ £9°% UNIVERSITY

Ji

P> oF osLO

Automatic parallelization and Parallel Recursive
Procedures (PRP) — a parallel package and its
Implementation

Arne Maus,
with Torfinn Aas, Yan Xu, Arne Hgstmark, Viktor Eide,
Tore André Rgnningen, André Naess, Mads Bue,
Christian O. Sghoel, Bjgrn Arild Kristiansen, Coung Van
Truong, Jarn Christian Syvertsrud

Dept. of Informatics,
Univ. Oslo

S #9% UNIVERSITY
2O 2 oF osLO

Overview

1. Problems, promises and limitations in parallel
programming.

2. PRP -aprogramming package for ‘automatic’
parallel programming

3. A few results

4. How to implement PRP

§ 47 UNIVERSITY
« ¢ 5 oF osLO

sequential vs. parallel program

[problem | __problem |
t "dream” - 1 _
| seq. algorithm | this done 1a) seg.algorithm]
t automatically?
[program] [1b) parallel algorithm]
[Progr. language } [Parallel program]
compiler + runtime/VM ’ \
¥

[Progr. language H 2) Parallel package, J

compiler + runtime/VM preprocessor, runtime

/

[deployment, communication}

!

[net + computer/cluster}

99 UNIVERSITY

P> oF osLO

1. Limitations of Parallel programming

How fast a computer can you ever build, how large a problem
can ever be solved with PP ?

— Today's fastest (top 500)
— How many instruction can ever be performed (in all history) ?
— , and in practice
— In your office ‘soon’
Can all algorithms be parallelized?
— How much speedup: Amdahl's law
— Can all problems be parallelized:
= 20% (yes) + 60% (some parts) + 20 % (no)
— How to transform a sequential to a parallel algorithm
Matching the algorithm to the CPU/GPU/ computer/cluster
= Little or no shared memory
» Net delay

» |oad balancing
= fault tolerance

ﬁbﬁﬂﬂ'L Projected Performance Development

TSP SIS

100F Flops
- #1
10 PFlops - O #5200
- Sum
1 FFlops — #1 Trend
Line
100 THops S — #5300 Trend
- Line
S 10 TFops 7 2524 — Sum Trend
Line
; el
= 1 TFlops DJ:I-D _
4 1000 times faster every 10 year.
100 GFops S
For how long?
10 GFlops
4 :
o Spat CPU :100 times faster every 10 year.
1 GFlops 1
e
lII:":Ir'|'1FI|:|F:|3III|III|III|III|III|III|III|III|III|III|III|III
7 L - (5] — L L - (5] — Ly L -
(5] (5] (5] (5] = = = = = — —_ — —
(5] (5] (5] (5] = = = = = = = = =
— — — = | | | | | | | | |
/1172007 http:/'www top500.0mg/

5
AAS O3

7 %)

e

2

id

i

o

Ay A
cccr

#

B HIVE

UNIVERSITY
OF OSLO

TOPS500 List - November 2007 (1-100)

Rmax and Rmkvalues are in GFlops. For more details about other fields, check the TOPS00

description.

Rank

Site

DOE/MNSAS/LLNL
United States

Forschungszentrum
Juelich (FZJ)
Germany

SGI/New Mexico
Computing Applications
Center (NMCAC)
United States

Computational

Research Laboratories,

TATA SONS
India

Government Agency
Sweden

Computer

BlueGene/L - eServer
Blue Gene Solution
IBM

JUGEMNE - Blue Gene/F
Solution
IBM

SGI Altix ICE 8200,
Xeon quad core 3.0
GGHz
SGl

EKA - Cluster Platforn
3000 BLAGOC, Xeon
adxx 3GHz, Infiniband
Hewlett-Packard

Cluster Platform 3000
BL4AGOC, Xeon 53xx

2 BBGHzZ, Infiniband
Hewleti-Packard

Processors

212992

65536

14336

14240

13728

Year

2007

2007

2007

2007

2007

LB

475200

167300

126900

117900

102800

ne:

peak

296378

222822

172032

170880

146430

l UNIVERSITY
</ OoF osLO

How many instruction can ever be performed?

= Assume that each elementary particle in the universe
IS turned into a CPU:
— connected as a perfect parallel machine :108° CPUs

— cycle time = the time it takes light to pass an atom nucleus: 3*10°
km/sec /10 m= 3*10% Hz

— duration of computation: The Earth is destroyed by the Sunin 5
billion years = 60*60*24*365*5000 000 000 sec. < 1,57 * 101° sec

= |n total < 10121 gperations at 101% flops

Easy to construct problems larger than 10%41 operations,
l.e. the 100 queens problem, or The Travelling Salesman
(using the naive recursive decent algorithm) for 100 cities.

l/ 9 UNIVERSITY
«f/ OoF osLO

More 'realistic’ assumptions:

a) 1000 ton of CPUs each 0.1 gram at 1000 GHz gives
1024 flops

b) PC with 10°-10°% multi-core CPU

(line width =0.5 - 0.1 nm =50-10 atoms) at your
desktop,

each at 10 -100 GHz gives:

101>- 107 flops or 1 - 100 Petaflops

And if you will only wait for a week (<10° sec.), then
anything more than 102°-103%° operations for solving a
problem, are unrealistic

S #9% UNIVERSITY
20 5 oF osLo

Amdahl's law and a conclusion

= Amdahl:

If the problem has a fixed sequential part of p %, then 100/p is the
maximum speedup you get — assuming the rest of the computation is
performed in O time in parallel (p=1% gives max. 100x speedup).

= Parallelism will ‘only’ help you solving problems with a fixed
speedup, at most 10°-10°times faster, but always limited by:

— the time you can wait for the answer

— your parallel algorithm

— the number of CPUs

— the frequency of a single computing element

Conclusion: Faster calculations need:
1. Better sequential algorithms transformed into
2. Better parallel algorithms, and first then:
3. A ’big parallel machine’

) UNIVERSITY
/5 OF OSLO

How to parallelize a problem

= Partition
a) The program
« ‘Different’ parts of the algorithm on each CPU

b) The data
 Every CPU has its own part of the data set, but same program

c) Partition both program and data

= Communication

— Asynchronous calls
= Send (don’t wait for answer)
= \Wait for someone to call you
= Best: use a separate thread to communicate at both ends

— Synchronous calls (send and wait for answer = no parallelism)

10

$#9% UNIVERSITY
«U 5 oF osLO

When parallelizing — how to partition program & data

= The program grain size:

(neighbouring instructions, done by the CPU)
the inner part of a loop (HPF, openMP)

a procedure call (PRP)

an object (Proactive)

a process / subprogram (MPI, PVM)

* The data grain size

a set of XX (e.g. numbers 1 to N) is divided into n smaller sets
a 1D array is divided into n (equal) parts (smaller 1D arrays)
a 2D matrix is divided into its rows (or. columns)

a 2D matrix is partitioned into separate blocks

a 3D matrix is partitioned into separate 2D matrices

11

S #9% UNIVERSITY
+U 5 oF osLo

How parallel is your problem?

= Embarrassingly :

— seq — parallel — seq
= Some:

— seq, — parallel; — seq,- parallel, — seqs,..., - parallel, — seq,,.,
= None:

— seq

12

£ 9% UNIVERSITY
. 5 OF OSLO

Other issues

Scaling
— With n CPUs you want n times faster program (perfect scaling)
Load balancing on n CPUs

— If you don’t divide your algorithm wisely into ‘equal parts’, or if some of the
CPUs are slower, you might not get perfect scaling .

Fault tolerance

— One, two, many of the CPUs, or parts of the net goes down
Avoiding (most of) the communication delay:
— MultiCore CPU

— SMPs

— PC clusters

— A Grid (clusters of clusters, at different locations)
Shared memory (R&W)

— Start and end of program OK

— When running program (potentially huge bottleneck)
Distribution, monitoring progress

13

\E[

S #7% UNIVERSITY

P> oF osLO

PRP Overview

* Theidea and the project
— Type of recursion supported and demand on net and machines
= Transforming a program to a PRP program
= What kind of problems can be solved
— Performance figures for 3 problems
= Some implementation features
— The pre-processor and runtime system
— Almost eliminating delay
— Workload, unbalanced problems and fault tolerance
— Portability
= Conclusion

14

2 UNIVERSITY

2 5 OF OSLO

PRP, basic idea:

B w N e

Take a sequential program with recursion

Put two comments into the program

Let the PRP-system compile & run it

Voila: The program goes n times faster on n CPUs

Does it work that way?

YES, with some limitations ...

15

S 49 UNIVERSITY
«U 5 oF osLO

The basic idea (cont.)

= Take sub-trees of the recursion tree and automatically perform them on
connected machines in usual fashion.

b C /\ e —
NN

/|

~~——
single a,b.f,.... - (/
_ Multicore CPU and/or 0 f
machine OO O O Grid/cluster machines on d O/e/ O

LAN/ Web - O

16

£ f99 UNIVERSITY

S S ———

= Eleven master thesis, all made working code & improvements
over previous efforts (simplifications and/or speed
Improvements) .

— Initial idea, Maus (1978)

— Torfinn Aas, C over RPC (1994)

— Yan Xu, C over MPI, shared memory (1997)

— Arne Hgstmark, C over PVM, fault tolerant, 100+ machines (1997)
— Viktor Eide, C over PVM, adm/worker(1998)

— Tore A. Rgnningen, Java over RMI, buffered parameters (2003)

— André Neess, Parallel execution of STEP/EXPRESS (2004)

— Christian O. Sghoel, Parallel chess (2005)

— Mats Bue, PRP on .Net in C# (2005)

— Bjarn Arild Kristiansen, GUI and online monitoring (2006)

— Cuong Van Truong, fault tolerant, unbalanced recursion trees (2007)
— Jgrn Christian Syvertsrud, Load balancing, repeated recursion (2007)
— [Kristoffer Skaret, Multicore CPU (2008)]

— [Daniel Treidene, , Loop-parallelization (2008)]

S 47% UNIVERSITY
20 5 oF osLo

Demand on recursive
PRP-procedure/method

1.
2.

3.

The recursive call is textually only one place (in some loop)

No return value from a method can be used to determine
parameters to another call

All information used by a PRP-method must be in
parameters (no global variables — except for multicore), but
constants can be declared and used in local class and local
data can be declared and used.

Code in the procedure from start to recursive call must be
repeatable (same result second time performed).

Any parameter and return type possible from a the PRP-
method - also objects. But if these classes are declared in
your program, they must be stated as: ‘implements

Serializable’.

Obvious: The fan-out (number of recursive calls) per method must
be (on the average) >1

18

S 49 UNIVERSITY
«U 5 oF osLO

JavaPRP - The pre-processor and runtime system

= The original program is tagged with 2 or 3 comment-tags:
PRP_PROC/ - meaning: next line is declaration of the recursive
procedure
PRP_CALL/- meaning: next line is the recursive call (in a loop).

[*PRP_FF*/ - if on first line in program, signals that the recursive proc.
only has one recursive level (full fan-out).
Optimizing option only.

= The pre-processor splits the Program into two versions:
— Manager: The master node, starts program, splits the recursion tree,
generates parameter sets, receives return values.

= Has two versions of the recursive procedure, one for ‘breaking up’ the recursive
tree , one for collecting results and finish the calculations.

» Handles also: Initial distribution of code to workers, load balancing, fault
recovery, GUI monitoring, termination.

— Worker code: Receives in succession a number of parameter sets from
Manager, computes (ordinary recursion, top-down), returns answer.

19

UNIVERSITY
OF OSLO

How to compile and run PRP

= You are logged on the Manager machine and on (say by ‘telnet’) on M

worker machines and have started the worker-runtime system on each
worker.

= Then start Manager program, who will spread code to Workers, start
recursion in main, send sub problems to Works, collect answers, print
result,.. as specified in the original program.

Manager:
Java prog. with 2 versions
of recursive method:

- Generate parameters (A)
Original Tagged <; ‘ - Collect answers from calls
program Original (from PRP-array) and
. PRP- compute own answer (B)
with |::> program |::> Java compile
recursive /*PRP_proc*/, Preprocessor on Managelfr)
method

@ Worker: &

Java prog with
original
recursive
method

20

OO0] T O e L

=

e
M

bublic class tsCutoff {

public =tatic int byer[][] =
T40,.633, 257,91 ,412,150,80,134, 259, 505,353,324, 70,211, 268,246,121},

FEi

}public =tatic boolean[] brukteByer = new boolean[17]:
public =tatic int kortest = Integer MHAE WVALUE:

~<®PHEF PROC*."

public =tatic int t=Cut{int denne., boolean[] brukt, int lengde)q
int swvar:
boolean sisteBy = true;
1f{ lengde:=korte=zt) return Integer MAX VALIE;

foriint 1=0;1<17;1++)1

if{ lbrukt[1]){
brukt[i1]=true; =istebBy = fal=e;
~®PHRP_CATLL*~
svar = t=Cut(i.brukt, lengde+byer[denne]|[1]);
brukt[1i]=fal=e;
1f (=var<korte=t) kortest==var:

T

if (=1=teBy) return lengdet+byer|[dennse][0];
elze return kortest;

¥

public =tatic woid main(Stringl[] arg=s)
long =startTid;
startTid=Syv=ten.currentTineMilli=();
brukteByer[0]=tru=s;
Sv=temn.out .println{t=Cutil,brulkteByer. 0));
Sy=temn.out . printlni{Sy=sten. currentTimedilli=s(i—=tartTid);

gﬁg_l UNIVERSITY

o« 5/ OF OSLO

\
=

Travelling Salesman — 17 cities with local cutoff value in
each Worker machine

17 cities with local cutoff
10000 -
8000 1 —e— Homgen. machines
—m— Heterogen. machines
» 6000 -
©
c
o
o
& 4000 -
—e
0 I I I I I I !
0 5 10 15 20 25 30 35
machines

22

S 49 UNIVERSITY
«U 5 oF osLO

) Two other simple problems
- scaling test (# machines = 2 to 32)

= Number of distinct Hamiltonian Circuits in a Graph:
— 20 nodes, each with from 3 to 9 edges.
— Recursive decent,

» Goldbach’s hypothesis:

— How many distinct pair of primes , pl + p2 = n, are there for all
even numbers n = 2, 4,6,..., 1300 000

— Takes almost as long time as the Ham. Circuit instance on one
machine

— Data partition — full fan-out from first method called

= Compare to Ideal curve (perfect scaling):
— TimeOnOneMachine/(# machines -1)

23

Seconds

Data partition/full fanout (Goldbach) and recursive decent (Hamiltonian) problems
compared with IDEAL: T1/ (#machines - 1)

3000
- @ = Hamiltonian
2500 IDEAL
—¢ — Goldbach 2-1300000
2000
1500
1000
500
0

Worker machines

2|
71?\

AhS

q—"\ “ g
= foel]
2

b

4

()
$ +"’

UNIVERSITY
OF OSLO

PRP Implementation — overview:

1.

Generate enough parameter sets in one machine
(the Manager)

Parallelize

= Send out these parameter sets to different CPUs (Workers)

= Get answers back and put results in a result array until all
parameter sets are solved

Perform in Manager those calls that generated the
parameters —the top of the rec. tree
= and return the result from the top call to the original call (in main)

25

S 49 UNIVERSITY
c¢l 5 OF OSLO

1. Implementation: catch parameter sets:

0. Make a variant A of the recursive call where the recursive call
are substituted with a method call to: stealParameters — with

the same parameters (and the rest of the code is removed).

1. The parameter set to the first call (from main to the recursive
procedure) is put in a FIFO-queue.

while (<not enough parameter sets in the FIFO>) {
2. Remove first element in FIFO, and put this parameter set on a
software call-stack. Then call A with this parameter set.

3. This generates more calls to stealParameters and each call will
put its parameter set in the FIFO(=tasks for parallelization)

}

Now those calls that generated parameters for parallelization are
on the call-stack (the top of the tree).
The parameters for parallelization are in the FIFO

26

"4 UNIVERSITY
5 OF OSLO

Manager: To deal with different machines (fast & slow), varying
workload and unbalanced problems

— Generate lots of parameter sets to workers (20*numWorkerMachines)
— Run procedures up to recursive call — put parameter sets on FIFO
— One thread per worker (send parameters <-> receive result)

~N

4

“Local procedure instance
N Breadth first callmg sequence

Procedure instances prepared
“ for remote execution

Start of system

n +1 threads
in Manager

Kall stack

Manager

\

Parametersett (FIFO)
2 in each
Worker s]y
1
\
. \ \
rd
/ e =,
i ! : \ \
!: ’; [| \ \\
; ’-’ : l1I \‘ "
/;’ ;’ f! i H \\ “
s / P) .
»” ’ f! b 1 ' . .
’ i 1 X .
/’ ;’] 1 \‘ \ .
Ve ’ ; h \ ‘ N .
< 4 / I 1 . .
’ / ’ j \ \ .
g ,1 K |] \\ .
! 4 ’) \ . .
2 ,/ 4 7 i 1 . \\
. ! ! 1 \ . .
Vs ,/ ,’ !] \ \\
ra
e ;/ ,; : ‘l \\\ N
‘ 3 ,l : ‘i \ \\
I’ .fJ t ‘i \\ ‘I
.
REG) | | ‘
/ / 1 ! \
/ ; ! ‘ \
I
4!1 ll‘ ‘\
\]{Votrker / fact \ \ / Worker
o actory \ \ facto ry
\
\

£ f99 UNIVERSITY

’ OF OSLO
Why do more parameter sets help?

= Since, on the average there are 20 sub-problems per Worker-
machine, we get workload balancing:

— Those who finishes one parameter set, starts a new set from the buffer
immediately,

— and get a next parameter in the buffer as soon as return values are
received by Manager for previous sub problem

— If‘data transfer time” < “CPU-time’ for the sub-problems, the
net does not matter for the total compute time because of buffering.

= When there are no more new problems to fan out:

— Those calls who hasn’t answered yet, are re-sent to fastest, idle machine
so far (solves error on net & machines problems)

— The first returned answer to a problem is taken — other calls with the
same parameter set are then ‘killed’.

29

2. System running

Workers performing
the ordinary

recursive procedure

with the parameters

sent over the net

6
Svar Array
Kall stack Bmk;rens
Manager Maskin
‘," . Parametersett (FIFO)
! ,’ \ \
! I \ \\
I i Y ~
I i A \\
! ' N
] / “
! \\\
; ‘f \\ ‘\.\
i ' X N
1 I \ \\
i) \ “\
b \ .
[1 v ~
i ! \ \\
1 I \ ~
1y \ N
7 1 \ "
1 I Y ~
|) N
] i 5 ‘\ ~
! [\ \\
! ! A ~
r \ ~
[] \ ~
l‘ J‘ \\ N
I A M
'f] \\ N
] :’ \ v
1 \ ~
Fo \ \\
[] \ ~
[\ N
I \ AN
[\ "
rT 5 T
! \ N
4
Worker ry
3
2
Buffer [Buffer Buffer

9% UNIVERSITY
W2 oF osLO

Avoiding delay from the net — buffering of 2 tasks.

A) Usual send/receive (Worker waits two net delays: 3-5)

Manager | 4= - 2)

B) Buffered send/receive (send two tasks first time)

M: Send task;
W: receive & do task;,
W: Send result,

M: Receive result, _———

M: Send task,
W: receive & do task,

Worker

after start up, no wait on net if compute time > transfer time

1)
2)

Manager | * ° f{g

5)

M: Send task,& task,

W: receive,z, & do task;

W: Send result,& do task,

M: Receive result;& send taskj,
W: Send result,& do task,

->

Worker

31

$#9% UNIVERSITY
«U 5 oF osLO

3. Last step of a PRP computation:
Perform the top of the recursion tree (now on the stack):

A second variation of the recursion procedure, B, is made in
the Manager where the recursive call is substituted with a call
to pickUpAnswerinResultArray()

while(<more calls on software stack>) {

1. Remove top of software stack.

2. Call B with its parameters (this is the second time this recursive
procedure is called).

3. This generates calls to pickUpAnswerlInResultArray were its
answers are found.

4. The rest of B is performed and its answer is put into the Result Array.

}

The result from the first call (the bottom last on the call-stack & in pos
1 in Result Array) is returned to the call from main

32

£ 9% UNIVERSITY
. 5 OF OSLO

What kind of problems can be solved (n = amount of data)

= The problem has to be execution time O(n*>) or harder
(and running time > 1 minute)

— No point in parallelizing easier problems !

= NP-problems in graphs or trees (branch and bound):
— Example Travelling Salesman, Hamiltonian Circuit,
— With or without ‘global’ variables for cut off.

= Data division problems in general:

1. If we have to run through data: d1,d2,....dn, then recursively divide the
dataset into 20*(number of machines) equal parts and call each in a
loop (=full fan-out recursion).

2. Solve problem on each part in a PRPproc instance — then return and
combine

3. Example : Optimal binary search tree — O(n'°) (M.A.Weiss, p. 379)
= Other CPU intensive problems:
— Prime number counting, Goldbach’s hypothesis (2i = p1+p2, 1 =2,3,4,..)

33

UNIVERSITY
OF OSLO

Number of parameter sets handled by each Worker machine - 24 equal machines

100

parametersets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Worker machine number

34

| UNIVERSITY
2 UF 5 oF osLO

lIl) The optimal binary search tree —
(from V.Eide’s thesis & Kristoffer Skaret)

@
T@EH® 06 W

Input Tree #1 Tree #2 Tree #3
Word Probability Access Cost Access Cost Access Cost
w; Di Once Sequence Once Sequence Once Sequence
a 0.22 2 0.44 3 0.66 2 0.44
am 0.18 4 0.72 2 0.36 3 0.54
and 0.20 3 0.60 3 0.60 1 0.20
egg 0.05 4 0.20 1 0.05 3 0.15
if 0.25 1 0.25 3 0.75 2 0.50
the 0.02 3 0.06 2 0.04 4 0.08
two 0.08 2 0.16 3 0.24 3 0.24
Totals 1.00 2.43 2.70 215

2 UNIVERSITY
5 OF OSLO

Data structure — compute optimal binary search trees for all subsections of
data — finally for all data

Left=1 Left=2 Left=3 Left=4 Left=5 Left=6 Left=7

, a.a am..am | and..and | egg..egg if..if the..the | two..two
[teration=1 _
22| a (.18 |am | .20 |and | .05 [egg | .25 | if | .02 | the | .08 |two
, a.am | am..and | and..egg | egg..if if..the | the..two
[teration=2 - :
S8 .2 |96 |and | .30 |and | .35 {.if . |29 L. if: b A2twe

a.and | am..egg | and.if | egg.the | if..two
1.02| am | .66 |and | .80 | if |.39| if | .47 | if
a..egg am..if | and..the | egg..two
1.17) am |1.21|and | .84 | if | .57 | if
a..if am..the | and..two
1.83)and |1.27| and | 1.02] if
a..the am..two
1.89{ and | 1.53| and
a..two
2.15| and

[teration=3

[teration=4

[teration=5

Iteration=6

Iteration=7

36

% UNIVERSITY

g OF OSLO

T(n,x) =work for computing next line,
= what you need to know to compute ‘p’

time

.

co 1 2 . . . nl n
rok

(w/2)

S e BT e

R R PR LR

(n-1)
n

ST A R S g

..

All together this adds upto T(n) =

T(n,x)

(1)(n)
§2)(n-l)

(W2)(n/2)
(n-1)(2)
+ (m)(1)
l'l3 l‘l2

Y, nc.2n
6 2 3

E

This problem is O(n1-°) since we have n*n= n2 data and execution time n3

37

Words in sequential || parallel number of hosts
instance, n. 1 | 2 4 8 16 | 32 64
500 6.7 11.7 85| 7.7 9.6 | 150 31.8| 65.2
1000 106.6 1176 | 829 | 486 | 40.2 | 50.4 | 143.0 | 213.2
2000 1068.8 1265.1 | 674.7 | 381.6 | 250.7 | 256.3 | 355.2 | 731.6
o : Relative speedup as a function of the number of hosts
Results and speedup ;
: ideal
5} e R .
: ! L.
i1 n=2000
o ~,
aF ! e 4
o S N
-g I \q\
& | # S
%3_ ‘ .\‘\
2 d ™ A
- S
& 4 o “O- \‘-"\.
i: n=1000 ~.

N

20

30
Number of hosts

40

50

70

AAS O

e Y,
L\?ﬁ‘-
El o
AR/

UNIVERSITY
OF OSLO

Current research: Finding PRP implementation for Multicore CPUs
Different matrix organization (twisted =row /no = diagonal)
Different synchronization (double =read, sync. write, sync/not=read&write, sync)
Pump (Central start thread, read write, return)

Optimal search tree - 5 algorithms (4000 words)
on a 8 multicore CPU (Quad + Hyperthread)

500,0
450,0 -
400,0 \\
350,0
~ 300,0 - Twisted DbIB
O 9
q') 3 .
@ 2500 \ Twisted B
= 200,0 N\ o
150,0 __,/ _______ - - - -Pump
100,0 T~ e - Double Barrier
50,0 - Tt i |
’ - - - -Barrier
0,0 \ \ \ \

n - number of threads

39

) UNIVERSITY
 OF 0SLO

Conclusions

= PRP: A package for using recursive methods in Java (and C) as a
tool for parallelizing programs.

= More high level than most parallelizing libraries

= Little modification to original code is needed.:
— Put two comments into code, run pre-processor and compile
— Some restrictions on the recurcive procedure.

= Scales (almost) ideally for NP-type problems
where ratio: Data-sent/compute-time is very small

= Handles also (one) problem of O(n!>), where data sent over net in
sum is O(n) reasonably well - scales up to factor 4-5

= PRP also used on areal industrial problem with good speedup

= Now, a special implementation for multicore CPU
and loop parallelization

PRP is a general tool for parallelizing a number of recursive
algorithms — or many calls to the same procedure in a loop.

40

	Automatic parallelization and Parallel Recursive Procedures (PRP) – a parallel package and its implementation
	Overview
	sequential vs. parallel program
	1. Limitations of Parallel programming
	How many instruction can ever be performed?
	More ’realistic’ assumptions:
	Amdahl's law and a conclusion
	How to parallelize a problem
	When parallelizing – how to partition program & data
	How parallel is your problem?
	Other issues
	PRP Overview
	PRP, basic idea:
	The basic idea (cont.)
	The PRP project
	Demand on recursive PRP-procedure/method
	JavaPRP - The pre-processor and runtime system
	How to compile and run PRP
	Travelling Salesman – 17 cities with local cutoff value in each Worker machine
	I) Two other simple problems - scaling test (# machines = 2 to 32)
	PRP Implementation – overview:
	1. Implementation: catch parameter sets:
	Why do more parameter sets help?
	Avoiding delay from the net – buffering of 2 tasks.
	3. Last step of a PRP computation:Perform the top of the recursion tree (now on the stack):
	What kind of problems can be solved (n = amount of data)
	III) The optimal binary search tree – (from V.Eide’s thesis & Kristoffer Skaret)
	Data structure – compute optimal binary search trees for all subsections of data – finally for all data
	T(n,x) = work for computing next line, = what you need to know to compute ‘p’
	Results and speedup
	Current research: Finding PRP implementation for Multicore CPUsDifferent matrix organization (twisted = row /no = diagonal
	Conclusions

