
Geilo Winter School 2008

Henrik Löf
Uppsala Universitet

1

http://www.uu.se/
http://www.uu.se/

Optimizing parallel applications

• Low latencies (locality of reference)
– Cache memories
– Remote Accesses (NUMA)

• Low parallel overhead
– Minimize communication and synchronization

• Load Balance
– Partitioning
– Each thread has an equal amount of work

http://www.uu.se/
http://www.uu.se/

Uniform Memory Access (UMA)

CPU

€

CPU

€

CPU

€

MEM

• Server
– Few dozen CPU/cores
– Easy to administrate

• Volume product
• Uniform access time

– “Easy” to understand

•Examples
– SMP
– CMP

• Scalability problems
– Limited interconnect

bandwidth

NETWORK

http://www.uu.se/
http://www.uu.se/

Non-Unifrom Memory Access (NUMA)

Network

• Physically Distributed Memory
– Shared memory programming

• Cluster of UMA nodes
– CPU boards
– Multi socket CMP systems

• Better scalability
– Maintaines simpler shared

memory programming model

• Examples
– Sun Fire 15K, 25K
– SGI Origin/Altix
– HyperTransport (AMD)
– QuickPath (Intel)

• Expensive

CPU

€

MEM

CPU

€

CPU

€

CPU

€

CPU

€

MEM

CPU

€

CPU

€

CPU

€

Nodes

http://www.uu.se/
http://www.uu.se/

Sun WildFire, a Distributed Shared
Memory (DSM) System

CPU CPU CPU

Memory

Network

CPU CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

Sun WildFire, a Distributed Shared
Memory (DSM) System

CPU CPU CPU

Memory

Network

CPU CPU CPU

Memory

Network

IF IF

http://www.uu.se/
http://www.uu.se/

Sun WildFire
what it looks like

http://www.uu.se/
http://www.uu.se/

Local access – fast!

CPU CPU IF

Memory

Network

IF CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

Local access – fast!

CPU CPU IF

Memory

Network

IF CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

Remote access – slower!

CPU CPU IF

Memory

Network

IF CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

Remote access – slower!

CPU CPU IF

Memory

Network

IF CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

NUMA-ratio

CPU CPU IF

Memory

Network

IF CPU CPU

Memory

Network

http://www.uu.se/
http://www.uu.se/

Implementing Conjugate Gradients
in OpenMP

http://www.uu.se/
http://www.uu.se/

Analyzing CG

€

Given an initial guess x0,
store r0 = b − Ax0 and set p0 = r0.
do k = 0,1,K
(1) Store Apk
(2) Store pk,Apk

(3) αk =
rk,rk
pk,Apk

(4) xk+1 = xk +αk pk
(5) rk+1 = rk −αkApk
(6) Store rk+1,rk+1

(7) βk =
rk+1,rk+1

rk,rk
(8) pk+1 = rk+1 + βk pk

http://www.uu.se/
http://www.uu.se/

3 Vector Ops.

Analyzing CG

€

Given an initial guess x0,
store r0 = b − Ax0 and set p0 = r0.
do k = 0,1,K
(1) Store Apk
(2) Store pk,Apk

(3) αk =
rk,rk
pk,Apk

(4) xk+1 = xk +αk pk
(5) rk+1 = rk −αkApk
(6) Store rk+1,rk+1

(7) βk =
rk+1,rk+1

rk,rk
(8) pk+1 = rk+1 + βk pk

http://www.uu.se/
http://www.uu.se/

3 Vector Ops.

2 Inner Products

Analyzing CG

€

Given an initial guess x0,
store r0 = b − Ax0 and set p0 = r0.
do k = 0,1,K
(1) Store Apk
(2) Store pk,Apk

(3) αk =
rk,rk
pk,Apk

(4) xk+1 = xk +αk pk
(5) rk+1 = rk −αkApk
(6) Store rk+1,rk+1

(7) βk =
rk+1,rk+1

rk,rk
(8) pk+1 = rk+1 + βk pk

http://www.uu.se/
http://www.uu.se/

3 Vector Ops.

2 Inner Products

1 Sparse Matrix-Vector
Product (SpMxV)

Analyzing CG

€

Given an initial guess x0,
store r0 = b − Ax0 and set p0 = r0.
do k = 0,1,K
(1) Store Apk
(2) Store pk,Apk

(3) αk =
rk,rk
pk,Apk

(4) xk+1 = xk +αk pk
(5) rk+1 = rk −αkApk
(6) Store rk+1,rk+1

(7) βk =
rk+1,rk+1

rk,rk
(8) pk+1 = rk+1 + βk pk

http://www.uu.se/
http://www.uu.se/

Basic parallelization of CG

http://www.uu.se/
http://www.uu.se/

 cg_iter_count = 1

 do

 call SpMxV(A,p,temp)

 pAp_norm = 0.0_rfp

 do i = 1, matrix_size
 pAp_norm = pAp_norm + p(i)*temp(i)
 end do

 alpha = r_old_norm/pAp_norm

 x(:) = x(:) + alpha * p(:)
 r_new(:) = r_old(:) - alpha * temp(:)

 .
 .

Basic parallelization of CG

http://www.uu.se/
http://www.uu.se/

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(cg_iter_count)

 cg_iter_count = 1

 do

 call SpMxV(A,p,temp)

!$OMP SINGLE
 pAp_norm = 0.0_rfp
!$OMP END SINGLE
====================================
!$OMP DO REDUCTION(+:pAp_norm)
 do i = 1, matrix_size
 pAp_norm = pAp_norm + p(i)*temp(i)
 end do
!$OMP END DO
====================================

!$OMP SINGLE
 alpha = r_old_norm/pAp_norm
!$OMP END SINGLE
====================================
!$OMP WORKSHARE
 x(:) = x(:) + alpha * p(:)
 r_new(:) = r_old(:) - alpha * temp(:)
!$OMP END WORKSHARE NOWAIT

Basic parallelization of CG

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

Sun SF15K

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

Sun SF15K

Serial

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s

Sun SF15K

Serial

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s

Sun SF15K

Serial Serial

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

200ns

Sun SF15K

Serial Serial

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

200ns

Sun SF15K

5x
Serial Serial

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

200ns

Sun SF15K

5x
Serial Serial

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s

200ns

Sun SF15K

5x
Serial Serial

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s

200ns

Sun SF15K

5x

28x

Serial Serial

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s

200ns

Sun SF15K

5x

28x

Serial Serial

Parallel,
28 threads

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s

400ns
200ns

Sun SF15K

5x

28x

Serial Serial

Parallel,
28 threads

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s 9.5s

400ns
200ns

Sun SF15K

5x

28x

Serial Serial

Parallel,
28 threads

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s 9.5s

400ns
200ns

Sun SF15K

5x

28x 5x

Serial Serial

Parallel,
28 threads

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Parallel CG

€

DRAM DRAM

CPU

€

CPU

€

CPU

€

CPU

DRAM

Sun E10K

400MHz US-II + UMA 900MHz US-III + NUMA

550ns

220s 45s

8s 9.5s

400ns
200ns

Sun SF15K

5x

0.8x
28x 5x

Serial Serial

Parallel,
28 threads

Parallel,
28 threads

http://www.uu.se/
http://www.uu.se/

Geographical Locality

• Property of an application
– ”How many memory accesses are node-local?”
– Communication

• Dependent on many things
– Data distribution (source code/OS)
– Thread scheduling (OS)

• Thread-data affinity: Minimize the amount of
remote accesses by co-location of threads and
data

http://www.uu.se/
http://www.uu.se/

Problems of initialization

• FEM assembly process serial

• First-touch strategy

– All data allocated on a single node

• Access pattern stored in the data

– Compressed Sparse Row (CSR)

– Efficient parallel initialization not possible

• We need ways of redistributing data during
runtime

http://www.uu.se/
http://www.uu.se/

Code modifications

• Inserted affinity-on-next-touch call before

the first CG iteration

• Access pattern is static cross the iterations

– Only need to redistribute once

• Used hardware counters to quantify effect

http://www.uu.se/
http://www.uu.se/

Effect of affinity-on-next-touch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

750

1500

2250

3000

Ex
ec

ut
io

n
T

im
e

(m
s)

Iteration Number

NO_AFF AFF

16 threads

http://www.uu.se/
http://www.uu.se/

Effect of affinity-on-next-touch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

750

1500

2250

3000

Ex
ec

ut
io

n
T

im
e

(m
s)

Iteration Number

NO_AFF AFF

16 threads

http://www.uu.se/
http://www.uu.se/

Effect of affinity-on-next-touch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

750

1500

2250

3000

Ex
ec

ut
io

n
T

im
e

(m
s)

Iteration Number

NO_AFF AFF

16 threads

http://www.uu.se/
http://www.uu.se/

Analysis, affinity-on-next-touch

• Proper data distribution important

– Every iteration 2.61 times faster

• Overhead

– Cold start effects

– Cost of migration

• Overhead is amortized over iterations

• Scalability better, still poor

– Speedup 9 on 28 threads

0

750

1500

2250

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ex
ec

ut
io

n
T

im
e

(m
s)

Iteration Number

NO_AFF AFF

http://www.uu.se/
http://www.uu.se/

Overall effect of affinity-on-next-
touch

-50.0%

12.5%

75.0%

137.5%

200.0%

2 4 8 12 16 22 28

N
o

 d
at

a
d

is
tr

ib
u

ti
o

n
 s

p
e

e
d

u
p

Number of Threads

AFF8kB
AFF64kB

http://www.uu.se/
http://www.uu.se/

Two generations, again

220s 45s

8s 9.5s

5x

0.8x
28x 5x

Serial Serial

Parallel Parallel

http://www.uu.se/
http://www.uu.se/

Two generations, again

220s 45s

8s 9.5s

5x

0.8x
28x 5x

Serial Serial

Parallel Parallel

affinity-on-next-touch + 64Kb

http://www.uu.se/
http://www.uu.se/

Two generations, again

220s 45s

8s 9.5s

5x

0.8x
28x 5x

Serial Serial

Parallel Parallel

3saffinity-on-next-touch + 64Kb

http://www.uu.se/
http://www.uu.se/

Two generations, again

220s 45s

8s 9.5s

5x

0.8x
28x 5x

Serial Serial

Parallel Parallel

3saffinity-on-next-touch + 64Kb

15x

http://www.uu.se/
http://www.uu.se/

Two generations, again

220s 45s

8s 9.5s

5x

0.8x
28x 5x

Serial Serial

Parallel Parallel

3saffinity-on-next-touch + 64Kb

2.7x

15x

http://www.uu.se/
http://www.uu.se/

Algorithmic Optimizations (CG)

• Bandwidth minimization
– Increases cache utilization

• Load Balance
– Graph partitioning (MeTiS)

• Removing barriers
– Reduces parallel overhead

• How do they interact with data
distributions?

http://www.uu.se/
http://www.uu.se/

Removing Barriers

• Standard implementation uses 7 barriers
• 4 barriers can be removed

– Privatizing scalars
– Reording initializations of reduction variables
– 3 global barriers in total

• S-step methods (Chronopoulos/Gear)
– Introduces another vector to calculate two

iterations simultaneously
– Only one reduction necessary
– 2 global barriers in total
– No numerical problems

http://www.uu.se/
http://www.uu.se/

Bandwidth Minimization

• Graph theoretical method
– Reverse Cuthill-McKee
– Gibbs-Poole-Stockmayer (GPS)

• Permutes matrix to minimize bandwidth
• Small bandwidth increases locality

– Larger part of RHS cache blocks utilized

xx x
xxx

x x x x
x

x

http://www.uu.se/
http://www.uu.se/

Bandwidth Minimization

• Graph theoretical method
– Reverse Cuthill-McKee
– Gibbs-Poole-Stockmayer (GPS)

• Permutes matrix to minimize bandwidth
• Small bandwidth increases locality

– Larger part of RHS cache blocks utilized

xx x
xxx

http://www.uu.se/
http://www.uu.se/

Load Balance, example

http://www.uu.se/
http://www.uu.se/

Load Balance, example

1

2

3

4

http://www.uu.se/
http://www.uu.se/

Load Balance and Partitioning

• In OpenMP partitions are linear
– A chunk of rows (indeces) is associated with a

thread
– No care is taken to the number of non-zeros

• Graph partitioning partitions the non-zeros
more evenly
– Used in message-passing applications

• Results:
– Graph partitioning increased matrix bandwidth

which led to poor locality
– Bandwidth minimization toghether with

standard OpenMP produced very good
partitions

http://www.uu.se/
http://www.uu.se/

Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/

Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/

Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/

Uniform system, E10K

0.8750

1.0563

1.2375

1.4188

1.6000

2 4 8 12 16 22 28

S
p

e
e

d
u

p

Number of Threads

Base S-step GPS
OPT MeTiS

http://www.uu.se/
http://www.uu.se/

Non-uniform system (SF15K) with
data distribution

0

1.25

2.50

3.75

5.00

2 4 8 12 16 22 28

S
p

e
e

d
u

p

Number of Threads

Base S-step GPS
OPT MeTiS

http://www.uu.se/
http://www.uu.se/

Conclusions, algorithmical
optimizations

• Locality most important
– Bandwidth minimization

• Bandwidth minimization also produced load
balanced partitions

• Graph partitioning increased the amount of
remote accesses

• Load balance and synchronization overheads
are of secondary importance

http://www.uu.se/
http://www.uu.se/

Dynamic access patterns

• Many applications exhibit dynamic and/or
unstructured access patterns
– Commercial Software
– Adaptive Mesh Refinement (AMR)

• For these applications, clever initializations will not be
optimal
– We need some kind of migration/replication mechanism

Model problem

•

• Periodic boundaries

• Finite differences
– 2nd order in space
– 4th order R-K in time

• Blockwise AMR

• Written in Fortran 90/95

• Parallelized using OpenMP

AMR movie

32

Solver Algorithm

do t=1,Nt
 if (t mod adaptInterval=0) then
 Estimate error per block.
 Adapt blocks with inappropriate resolution.
 Repartition the grid.
 Migrate blocks (if migration is activated).
 end if
 F1=Diff(u);
 F2=Diff(u+k/2*F1)
 F3=Diff(u+k/2*F2)
 F4=Diff(u+k*F3)
 u=u+k/6*F1+k/3*F2+k/3*F3+k/6*F4
end do

Partitioning and locality

• The blocks needs to be assigned to threads in a way
that balance the work (partitioning)
– Domain based partitioning won’t do the job since the pulse

moves across the domain
– We used the Jostle diffusion partitioner

• Our problem:
– We need to make sure that the data in each partition is

physically allocated on the node where the corresponding thread
executes

Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses
quantifed using CPU hardware
counters

P P

P P

P P

P P

P P

P P

P P

P P

Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses
quantifed using CPU hardware
counters

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses
quantifed using CPU hardware
counters

P P

P P

P P

P P

P P

P P

P P

P P

Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses
quantifed using CPU hardware
counters

P P

P P

P P

P P

P P

P P

P P

P P

P P

PP

Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses
quantifed using CPU hardware
counters

P P

P P

P P

P P

P P

P P

P P

P P

P P

PP

Migration

Results

UMA NUMA NUMA-MIG

Total time 4.09 h 6.64 h 3.99 h

L2 miss rate 4.3% 3.9% 4.2%

Remote
accesses

0.2% 62.9% 8.1%

• Geographical locality has a significant effect!

• Dynamic page migration works!

Execution Time

Streamline Simulation

38

Streamline Tracing

39

Segments

Streamline Tracing

39

1

Segments

1

Streamline Tracing

39

1

2

Segments

1 2

Streamline Tracing

39

1

2

3

Segments

1 2

3

Streamline Tracing

39

1

2

3

4

Segments

1 2

3

4

Streamline Tracing

39

1

2

3

4

5

Segments

1 2

3

4 5

Streamline Tracing

39

1

2

3

4

5

6

Segments

1 2

3

4 5

6

Streamline Tracing

39

1

2

3

4

5

6

7

Segments

1 2

3

4 5

6 7

Streamline Storage

• The geometry of the streamlines is stored as a
sequence of coordinates

• To store the streamlines we have several
options

1. Allocate huge array and hope for the best

2. Use a dynamic array or a linked list

3. Trace once to count the segments, allocate an
array and trace again

40

1

2

3

4

5

6

7

1-D Solves. Illustration

41

1-D Solves. Illustration

41

1

2

3

4

5

6

7

Segments

1-D Solves. Illustration

41

1

2

3

4

5

6

7

Segments Regularized Grid

1-D Solves. Illustration

41

1

2

3

4

5

6

7

Segments Regularized Grid Upwinding Solve

1-D Solves. Illustration

41

1

2

3

4

5

6

7

Segments Regularized Grid

1

2

3

4

5

6

7

New SegmentsUpwinding Solve

Segment Mapping, illustration

42

Segments

1

2

3

4

5

6

7

Segment Mapping, illustration

42

Segments

1

2

3

4

5

6

7

Segment Mapping, illustration

42

Segments

1 2

3

4

5

6

7

Segment Mapping, illustration

42

Segments

1 2

34

5

6

7

Segment Mapping, illustration

42

Segments

1 2

3

4

5

6

7

Segment Mapping, illustration

42

Segments

1 2

3

4 5

6

7

Segment Mapping, illustration

42

Segments

1 2

3

4 5

6

7

Segment Mapping, illustration

42

Segments

1 2

3

4 5

6 7

Streamlines and Shared Memory

• To extract parallelism we trace, solve and map for several
streamlines concurrently
–You can extract fine-grained parallelism from a single

streamline
• We call a set of streamlines a streamline bundle or

simply bundle
• We seek a parallel algorithm that minimizes parallel

overhead
– Communication
– Load imbalance
– Synchronization

43

44

Parallel Algorithm

17

The tracer equation is discretized using the standard single-point
upwinding (SPU) scheme

Cn+1
i = Cn

i −
∆tn+1

sl

∆τsl
(Cn

i − Cn
i−1).

We note that in compositional problems, the relative costs of the trans-
port solves will generally be higher because of the increased memory
pressure caused by solving for many components and the addition of
flash computations. To mimic the memory characteristics of a compo-
sitional solver, we solve for three identical transport equations. These
equations are uncoupled and simulate the same physics. However, from
a memory management and software performance point of view they
will exhibit similar characteristics as a fully compositional simulator
as we need to allocate memory for three separate grids along each
streamline.

In the following sections we discuss the details of our parallel al-
gorithm and motivate our design choices. To support this discussion
we propose two algorithms, Algorithm 1 which is unbalanced, and
Algorithm 2 load balanced.

Algorithm 1 Parallel Streamline Simulation
Require: Tend ← simulation end time
Require: dt ← global timestep
Require: T ← dt
1: repeat
2: Solve pressure equation
3: Calculate velocity field
4: repeat
5: Select launch points for streamlines and build bundle
6: Assign launch points in bundle to threads
7: for all streamlines in bundle do
8: 1:st trace, count segments
9: 2:nd trace, pick up pressure grid data, store the segments

10: Build streamline grids from segment and pressure grid data
11: Solve the corresponding 1-D transport equations
12: end for
13: Map new values of the transport variables to the pressure grid
14: until Domain is sufficiently covered
15: T ← T + dt
16: until T ≥ Tend

In these algorithms the transport solver corresponds to the inner
loop starting at line 4. We call this the coverage loop. At every step

parallel_sls.tex; 9/10/2007; 16:20; p.17

45

Static Assignment

46

Thread 1 Thread 2

Static Assignment

46

1
Thread 1

1
Thread 2

Static Assignment

46

1

2

Thread 1

1

2

Thread 2

Static Assignment

46

1

2

3

Thread 1

1

2

3

Thread 2

Static Assignment

46

1

2

3

4

Thread 1

1

2

3

4

Thread 2

Static Assignment

46

1

2

3

4

5

Thread 1

1

2

3

4

5

Thread 2

Static Assignment

46

1

2

3

4

5

6

Thread 1

1

2

3

4

5

Thread 2

6

Static Assignment

46

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

Static Assignment

46

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

8WAIT

Static Assignment

46

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

8

9

WAIT

WAIT

Static Assignment

46

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

8

9

WAIT

WAIT
Waiting will limit scalablility

Dynamic Assignment

47

Thread 1 Thread 2

Dynamic Assignment

47

1
Thread 1

1
Thread 2

Dynamic Assignment

47

1

2

Thread 1

1

2

Thread 2

Dynamic Assignment

47

1

2

3

Thread 1

1

2

3

Thread 2

Dynamic Assignment

47

1

2

3

4

Thread 1

1

2

3

4

Thread 2

Dynamic Assignment

47

1

2

3

4

5

Thread 1

1

2

3

4

5

Thread 2

Dynamic Assignment

47

1

2

3

4

5

6

Thread 1

1

2

3

4

5

Thread 2

6

Dynamic Assignment

47

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

Dynamic Assignment

47

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

81

Dynamic Assignment

47

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

8

9

1

2

Dynamic Assignment

47

1

2

3

4

5

6

7

Thread 1

1

2

3

4

5

Thread 2

6

7

8

9

1

2
No waiting. We can start on
the next SL directly

Parallel 1-D Solves, illustration

48

Owned

SL1 SL2 SL3

Parallel 1-D Solves, illustration

48

Load Imbalance

Owned

SL1 SL2 SL3

Parallel 1-D Solves, illustration

48

Load Imbalance

Owned

SL1 SL2 SL3

Distributed

SL1

Parallel 1-D Solves, illustration

48

Load Imbalance

Fine-grained Communication

Owned

SL1 SL2 SL3

Distributed

SL1

Parallel Mapping, illustration

49

Thread 1

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

Thread 2

Parallel Mapping, illustration

49

Thread 1

1

2

3

4

5

6

7
1

2

3

4

5

6

7

8

9

Thread 2

Parallel Mapping, illustration

49

Thread 1

1 2

3

4

5

6

7
1

2

3

4

5

6

7

8

9

Collision
!

We have to enforce mutual exclusion

Thread 2

Parallel Mapping, illustration

49

Thread 1

1 2

3

4 5

6 7

1

2 3 4 5

67

8 9

We have to enforce mutual exclusion

Thread 2

Hamster

• Single-phase tracer flow
• Uniformly refined CCAR grid
• Streamlines are implemented in a way comparable to most

industrial codes (3DSL, FrontSim)
– SPU upwinding scheme for 1-D solves

– Simple averaging scheme for mapping
– Dual trace for storing segments
– 2-point flux approximation (7-point stencil)
– GMRES solver preconditioned using BoomerAMG from the HYPRE

package
– Tracing using Pollock’s method

50

Test Case #1, SPE10

• We cut out a domain of
size 32x128x32 from the
bottom 32 layers of SPE10

– 131,072 cells

• One global time step of
2000 days (~5 years)

• 10,096 streamlines

Production well at
constant BHP of 4000 psi
Injection well at constant
BHP of 10000 psi

51

Streamline Statistics, SPE10

Min Max Median Average Std.Dev

Number of
Segments

77 203 103 107 106

Number of
Iterations

1 6296 19 119 244

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000

Re
la

tiv
e

fre
qu

en
cy

Iterations
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 80 100 120 140 160 180 200

Re
la

tiv
e

fre
qu

en
cy

Segments

52

Performance on 4 way dual-core
Opteron

Threads Execution
Time (s)

Speedup

1 12.01 1.00
2 6.64 1.82
4 3.74 3.23
8 2.21 5.70

53

Scalability Problems

• Did not take NUMA into
account
– Linux does not yet support page

migration

• Cell and face ordering on
unstructured grids
– Every cache line should be used
– Communication
– False sharing

54

Performance on Sun Niagara 2
(UltraSPARC-T2)

Threads Execution Time (s) Speedup

1 84.40 1.00

2 42.44 1.99

4 21.36 3.95

8 10.91 7.73

16 6.27 13.47

32 3.81 22.15

64 157.88 0.53

55

Manual (Optimal) Load Balancing

• In the static case, we can improve load balance by
assigning a weight representing the compute time

• We then formulate a discrete optimization problem using
these weights

• Possible parameters for load balancing weights
1. Rock properties (segment counts)
2. Total time of flight (iterations)
3. Well placement (segment count)
4. Size of multi-phase region (flash calculations)
5. Cache misses and communication costs (hardware)

56

Load Balanced Algorithm
19

Algorithm 2 Load Balanced Streamline Simulation
Require: Tend ← simulation end time
Require: dt ← global timestep
Require: T ← dt
1: repeat
2: Solve pressure equation
3: Calculate velocity field
4: repeat
5: Select launch points for streamlines and build bundle
6: Assign launch points in bundle to threads
7: for all streamlines in bundle do
8: 1:st trace, count segments
9: 2:nd trace, pick up pressure grid data, store the segments

10: end for
11: Load balance bundle
12: for all streamlines in bundle do
13: Build streamline grids from segment and pressure grid data
14: Solve the corresponding 1-D transport equations
15: end for
16: Map new values of the transport variables to the pressure grid
17: until Domain is sufficiently covered
18: T ← T + dt
19: until T ≥ Tend

4.2. 1-D Solves

We parallelize the 1-D solvers using the owner model. Our primary
reason for choosing the owner model is to reduce communication and
increase data reuse by matching the partitioning from the tracing. An-
other important reason is that the owner model allows us to reuse code
from an existing sequential implementation. If we use a distributed
model we may need to reimplement the 1-D solves, especially for the
implicit or adaptive-implicit cases.

After the tracing, each thread regularizes the irregular 1D stream-
line grids defined by the streamline segments picked up by the tracing
algorithm, step 10 of Algorithm 1. In the regularization we use a first-
order interpolation scheme. The final number of grid points along each
streamline is chosen to be twice that of the original number of segments.
After the regularization, we call the actual transport solve (step 11 of
Algorithm 1) and step through time, using a time step size determined
by the local stability criteria, until we reach the end of the global time
step.

parallel_sls.tex; 9/10/2007; 16:20; p.19

57

Reassignment problem, 16 streamlines

Tracing

58

Reassignment problem, 16 streamlines

Tracing

58

Reassignment problem, 16 streamlines

Tracing

No Load Balancing

58

Reassignment problem, 16 streamlines

Tracing

No Load Balancing

Load Balancing

58

Reassignment problem, 16 streamlines

Tracing

No Load Balancing

Load Balancing

58

Percentage of all streamlines moved

8 Threads 16 Threads

SPE10 28.9% 40.9%

ANOTHER CASE 15.6% 31.0%

59

Origins of non-zero structure

• Every row in the matrix corresponds to a set
of cells, a small sub-domain

• The non-zero pattern can be controlled by
reordering of the unknowns (cells)
– Graph partitioning, Space Filling Curves, Reverse

Cuthill-Mckee, ..

• Load balance can be achieved if we replace the
simple N/num_threads scheme
– Assumes an efficient a-priori load estimator
– Area and connectivity of the sub-domains control

the amount of communication needed

60

Domains and Streamlines

• Consider a partitioning of the pressure grid into
three partitions
– This is needed for extracting parallelism from the

pressure solver
– Each sub-domain corresponds to set of cells or

equivalently, a set of rows of the iteration matrix

1
2

3

61

Naive “Parallel” Solution

• Collect the entire velocity field of the sub-domains to a
master node

• Trace all the streamlines on the master node
• Copy the streamline grids back to the other nodes

– Scheduling and load balancing
• Do local transport solve
• Map back

62

Analysis

• The entire velocity field must fit in the memory of the
master node
– No chance for giga-cell models

• A node generates lots of communication and the
communication will be localized in time (bursty)
– Very bad for slow interconnects

• A node can only map back streamline data to the sub-
domain that it owns
– More communication needed to pass all the streamlines

around in the mapping step
• Probably not very scalable

63

A Pipelined Solution

• For simplicity assume that we trace
from left to right

• The segments of an individual
streamline may cross all three domains
– Sub-domains 2 and 3 must wait until the set

of streamlines crossing sub-domain 1 have
reached the boundary

– While domains 2 and 3 trace the
continuation of this set we can start tracing a
new set in sub-domain 1

• In this way we can overlap or pipeline
the tracing of the streamlines

1
2

3

64

Pipelined Algorithm

• For each processor (sub-domain), repeat:
1. Wait for start points
2. Trace all local streamlines
3. Hand-off exit points to neighbor

• Think of the sub-domains as grid cells in a
coarse grid.

• Every sub-domain contains one segment
– Which consist of smaller segments based on

the actual grid cells

1
2

3

65

Domain Graph

66

