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Optimizing parallel applications

• Low latencies (locality of reference)
– Cache memories
– Remote Accesses (NUMA)

• Low parallel overhead
– Minimize communication and synchronization

• Load Balance
– Partitioning
– Each thread has an equal amount of work
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Uniform Memory Access (UMA)
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• Server
– Few dozen CPU/cores
–  Easy to administrate

• Volume product
• Uniform access time

– “Easy” to understand

•Examples
– SMP
– CMP

• Scalability problems
– Limited interconnect 

bandwidth
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Non-Unifrom Memory Access (NUMA) 

Network

• Physically Distributed Memory
– Shared memory programming

• Cluster of UMA nodes
– CPU boards
– Multi socket CMP systems

• Better scalability
– Maintaines simpler shared 

memory programming model

• Examples
– Sun Fire 15K, 25K
– SGI Origin/Altix
– HyperTransport (AMD)
– QuickPath (Intel)

• Expensive
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Sun WildFire, a Distributed Shared 
Memory (DSM) System
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Sun WildFire
what it looks like
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Local access – fast!
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Remote access – slower!
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Remote access – slower!
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NUMA-ratio
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Implementing Conjugate Gradients 
in OpenMP

http://www.uu.se/
http://www.uu.se/


Analyzing CG

  

€ 

Given an initial guess x0,  
store r0 = b − Ax0 and set p0 = r0.
do k = 0,1,K
(1)    Store Apk
(2)    Store pk,Apk

(3)    αk =
rk,rk
pk,Apk

(4)    xk+1 = xk +αk pk
(5)    rk+1 = rk −αkApk
(6)    Store rk+1,rk+1

(7)    βk =
rk+1,rk+1

rk,rk
(8)    pk+1 = rk+1 + βk pk
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3 Vector Ops.
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3 Vector Ops.

2 Inner Products

1 Sparse Matrix-Vector 
Product (SpMxV)
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Basic parallelization of CG
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    cg_iter_count = 1

   do

       call SpMxV(A,p,temp)
  

       pAp_norm = 0.0_rfp

       do i = 1, matrix_size
          pAp_norm = pAp_norm + p(i)*temp(i)
       end do

       alpha = r_old_norm/pAp_norm

       x(:) = x(:) + alpha * p(:)
       r_new(:) = r_old(:) - alpha * temp(:)

                          .
                          .

Basic parallelization of CG
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!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(cg_iter_count)

    cg_iter_count = 1

   do

       call SpMxV(A,p,temp)
  
!$OMP SINGLE
       pAp_norm = 0.0_rfp
!$OMP END SINGLE
====================================
!$OMP DO REDUCTION(+:pAp_norm)
       do i = 1, matrix_size
          pAp_norm = pAp_norm + p(i)*temp(i)
       end do
!$OMP END DO
====================================

!$OMP SINGLE
       alpha = r_old_norm/pAp_norm
!$OMP END SINGLE
====================================
!$OMP WORKSHARE
       x(:) = x(:) + alpha * p(:)
       r_new(:) = r_old(:) - alpha * temp(:)
!$OMP END WORKSHARE NOWAIT

Basic parallelization of CG
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Parallel CG
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Geographical Locality

• Property of an application
– ”How many memory accesses are node-local?”
– Communication

• Dependent on many things
– Data distribution (source code/OS)
– Thread scheduling (OS)

• Thread-data affinity: Minimize the amount of 
remote accesses by co-location of threads and 
data
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Problems of initialization

• FEM assembly process serial

• First-touch strategy

– All data allocated on a single node 

• Access pattern stored in the data

– Compressed Sparse Row (CSR)

– Efficient parallel initialization not possible

• We need ways of redistributing data during 
runtime
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Code modifications

• Inserted affinity-on-next-touch call before 

the first CG iteration

• Access pattern is static cross the iterations

– Only need to redistribute once

• Used hardware counters to quantify effect
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Effect of affinity-on-next-touch
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Analysis, affinity-on-next-touch

• Proper data distribution important

– Every iteration 2.61 times faster

• Overhead

– Cold start effects

– Cost of migration

• Overhead is amortized over iterations

• Scalability better, still poor

– Speedup 9 on 28 threads 
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Overall effect of affinity-on-next-
touch
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Two generations, again
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Algorithmic Optimizations (CG)

• Bandwidth minimization
– Increases cache utilization

• Load Balance
– Graph partitioning (MeTiS)

• Removing barriers
– Reduces parallel overhead

• How do they interact with data 
distributions?
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Removing Barriers

• Standard implementation uses 7 barriers
• 4 barriers can be removed

– Privatizing scalars
– Reording initializations of reduction variables
– 3 global barriers in total

• S-step methods (Chronopoulos/Gear)
– Introduces another vector to calculate two 

iterations simultaneously
– Only one reduction necessary
– 2 global barriers in total
– No numerical problems
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Bandwidth Minimization

• Graph theoretical method
– Reverse Cuthill-McKee
– Gibbs-Poole-Stockmayer (GPS)

• Permutes matrix to minimize bandwidth
• Small bandwidth increases locality

– Larger part of RHS cache blocks utilized

xx x
xxx

x x      x x
x

x
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Load Balance, example
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Load Balance, example
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Load Balance and Partitioning

• In OpenMP partitions are linear
– A chunk of rows (indeces) is associated with a 

thread
– No care is taken to the number of non-zeros

• Graph partitioning partitions the non-zeros 
more evenly
– Used in message-passing applications

• Results:
– Graph partitioning increased matrix bandwidth 

which led to poor locality
– Bandwidth minimization toghether with 

standard OpenMP produced very good 
partitions
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Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/


Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/


Load balance of SpMxV

0

125000

250000

375000

500000

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

F
re

q
u

e
n

cy

Number of non-zeros per row

16 partitions Base GPS MeTiS

Max(non_zeros)/Avg(non_zeros) 1.24 1.01 1.15

http://www.uu.se/
http://www.uu.se/


Uniform system, E10K
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Non-uniform system (SF15K) with 
data distribution
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Conclusions, algorithmical 
optimizations

• Locality most important
– Bandwidth minimization

• Bandwidth minimization also produced load 
balanced partitions

• Graph partitioning increased the amount of 
remote accesses

• Load balance and synchronization overheads 
are of secondary importance
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Dynamic access patterns

• Many applications exhibit dynamic and/or 
unstructured access patterns
– Commercial Software
– Adaptive Mesh Refinement (AMR)

• For these applications, clever initializations will not be 
optimal
– We need some kind of migration/replication mechanism



Model problem

•  

• Periodic boundaries

• Finite differences
– 2nd order in space
– 4th order R-K in time

• Blockwise AMR

• Written in Fortran 90/95

• Parallelized using OpenMP



AMR movie
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Solver Algorithm

do t=1,Nt
 if (t mod adaptInterval=0) then
  Estimate error per block.
  Adapt blocks with inappropriate resolution.
  Repartition the grid.
  Migrate blocks (if migration is activated).
 end if
 F1=Diff(u);
 F2=Diff(u+k/2*F1)
 F3=Diff(u+k/2*F2)
 F4=Diff(u+k*F3)
 u=u+k/6*F1+k/3*F2+k/3*F3+k/6*F4
end do



Partitioning and locality

• The blocks needs to be assigned to threads in a way 
that balance the work (partitioning)
– Domain based partitioning won’t do the job since the pulse 

moves across the domain
– We used the Jostle diffusion partitioner

• Our problem:
– We need to make sure that the data in each partition is 

physically allocated on the node where the corresponding thread 
executes



Experimental Setup

• Four nodes
– Four CPUs per node

• Bound threads
1. UMA
2. NUMA
3. NUMA-MIG

• The amount of remote accesses 
quantifed using CPU hardware 
counters
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Results

UMA NUMA NUMA-MIG

Total time 4.09 h 6.64 h 3.99 h

L2 miss rate 4.3% 3.9% 4.2%

Remote 
accesses

0.2% 62.9% 8.1%

• Geographical locality has a significant effect!

• Dynamic page migration works!



Execution Time



Streamline Simulation
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Streamline Tracing
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Streamline Storage

• The geometry of the streamlines is stored as a 
sequence of coordinates

• To store the streamlines we have several 
options

1. Allocate huge array and hope for the best

2. Use a dynamic array or a linked list

3. Trace once to count the segments, allocate an 
array and trace again

40

1

2

3

4

5

6

7



1-D Solves. Illustration
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Segment Mapping, illustration
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Streamlines and Shared Memory

• To extract parallelism we trace, solve and map for several 
streamlines concurrently
–You can extract fine-grained parallelism from a single 

streamline
• We call a set of streamlines a streamline bundle or 

simply bundle
• We seek a parallel algorithm that minimizes parallel 

overhead
– Communication
– Load imbalance
– Synchronization
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Parallel Algorithm

17

The tracer equation is discretized using the standard single-point
upwinding (SPU) scheme

Cn+1
i = Cn

i −
∆tn+1

sl

∆τsl
(Cn

i − Cn
i−1).

We note that in compositional problems, the relative costs of the trans-
port solves will generally be higher because of the increased memory
pressure caused by solving for many components and the addition of
flash computations. To mimic the memory characteristics of a compo-
sitional solver, we solve for three identical transport equations. These
equations are uncoupled and simulate the same physics. However, from
a memory management and software performance point of view they
will exhibit similar characteristics as a fully compositional simulator
as we need to allocate memory for three separate grids along each
streamline.

In the following sections we discuss the details of our parallel al-
gorithm and motivate our design choices. To support this discussion
we propose two algorithms, Algorithm 1 which is unbalanced, and
Algorithm 2 load balanced.

Algorithm 1 Parallel Streamline Simulation
Require: Tend ← simulation end time
Require: dt ← global timestep
Require: T ← dt
1: repeat
2: Solve pressure equation
3: Calculate velocity field
4: repeat
5: Select launch points for streamlines and build bundle
6: Assign launch points in bundle to threads
7: for all streamlines in bundle do
8: 1:st trace, count segments
9: 2:nd trace, pick up pressure grid data, store the segments

10: Build streamline grids from segment and pressure grid data
11: Solve the corresponding 1-D transport equations
12: end for
13: Map new values of the transport variables to the pressure grid
14: until Domain is sufficiently covered
15: T ← T + dt
16: until T ≥ Tend

In these algorithms the transport solver corresponds to the inner
loop starting at line 4. We call this the coverage loop. At every step

parallel_sls.tex; 9/10/2007; 16:20; p.17
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Parallel Mapping, illustration
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Hamster

• Single-phase tracer flow
• Uniformly refined CCAR grid
• Streamlines are implemented in a way comparable to most 

industrial codes (3DSL, FrontSim)
– SPU upwinding scheme for 1-D solves

– Simple averaging scheme for mapping
– Dual trace for storing segments
– 2-point flux approximation (7-point stencil)
– GMRES solver preconditioned using BoomerAMG from the HYPRE 

package
– Tracing using Pollock’s method
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Test Case #1, SPE10

• We cut out a domain of 
size 32x128x32 from the 
bottom 32 layers of SPE10

– 131,072 cells

• One global time step of 
2000 days (~5 years)

• 10,096 streamlines

Production well at 
constant BHP of 4000 psi
Injection well at constant 
BHP of 10000 psi
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Streamline Statistics, SPE10

Min Max Median Average Std.Dev

Number of 
Segments

77 203 103 107 106

Number of 
Iterations

1 6296 19 119 244
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Performance on 4 way dual-core 
Opteron

Threads Execution 
Time (s)

Speedup

1 12.01 1.00
2 6.64 1.82
4 3.74 3.23
8 2.21 5.70
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Scalability Problems

• Did not take NUMA into 
account
– Linux does not yet support page 

migration

• Cell and face ordering on 
unstructured grids
– Every cache line should be used
– Communication
– False sharing
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Performance on Sun Niagara 2 
(UltraSPARC-T2)

Threads Execution Time (s) Speedup

1 84.40 1.00

2 42.44 1.99

4 21.36 3.95

8 10.91 7.73

16 6.27 13.47

32 3.81 22.15

64 157.88 0.53
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Manual (Optimal) Load Balancing

• In the static case, we can improve load balance by 
assigning a weight representing the compute time

• We then formulate a discrete optimization problem using 
these weights

• Possible parameters for load balancing weights
1. Rock properties (segment counts)
2. Total time of flight (iterations)
3. Well placement (segment count)
4. Size of multi-phase region (flash calculations)
5. Cache misses and communication costs (hardware)
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Load Balanced Algorithm
19

Algorithm 2 Load Balanced Streamline Simulation
Require: Tend ← simulation end time
Require: dt ← global timestep
Require: T ← dt
1: repeat
2: Solve pressure equation
3: Calculate velocity field
4: repeat
5: Select launch points for streamlines and build bundle
6: Assign launch points in bundle to threads
7: for all streamlines in bundle do
8: 1:st trace, count segments
9: 2:nd trace, pick up pressure grid data, store the segments

10: end for
11: Load balance bundle
12: for all streamlines in bundle do
13: Build streamline grids from segment and pressure grid data
14: Solve the corresponding 1-D transport equations
15: end for
16: Map new values of the transport variables to the pressure grid
17: until Domain is sufficiently covered
18: T ← T + dt
19: until T ≥ Tend

4.2. 1-D Solves

We parallelize the 1-D solvers using the owner model. Our primary
reason for choosing the owner model is to reduce communication and
increase data reuse by matching the partitioning from the tracing. An-
other important reason is that the owner model allows us to reuse code
from an existing sequential implementation. If we use a distributed
model we may need to reimplement the 1-D solves, especially for the
implicit or adaptive-implicit cases.

After the tracing, each thread regularizes the irregular 1D stream-
line grids defined by the streamline segments picked up by the tracing
algorithm, step 10 of Algorithm 1. In the regularization we use a first-
order interpolation scheme. The final number of grid points along each
streamline is chosen to be twice that of the original number of segments.
After the regularization, we call the actual transport solve (step 11 of
Algorithm 1) and step through time, using a time step size determined
by the local stability criteria, until we reach the end of the global time
step.

parallel_sls.tex; 9/10/2007; 16:20; p.19
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Reassignment problem, 16 streamlines

Tracing

58



Reassignment problem, 16 streamlines
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Reassignment problem, 16 streamlines

Tracing

No Load Balancing
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Reassignment problem, 16 streamlines

Tracing

No Load Balancing

Load Balancing
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Reassignment problem, 16 streamlines

Tracing

No Load Balancing

Load Balancing
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Percentage of all streamlines moved

8 Threads 16 Threads

SPE10 28.9% 40.9%

ANOTHER CASE 15.6% 31.0%
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Origins of non-zero structure 

• Every row in the matrix corresponds to a set 
of cells, a small sub-domain

• The non-zero pattern can be controlled by 
reordering of the unknowns (cells)
– Graph partitioning, Space Filling Curves, Reverse 

Cuthill-Mckee, ..

• Load balance can be achieved if we replace the 
simple N/num_threads scheme
– Assumes an efficient a-priori load estimator
– Area and connectivity of the sub-domains control 

the amount of communication needed
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Domains and Streamlines

• Consider a partitioning of the pressure grid into 
three partitions
– This is needed for extracting parallelism from the 

pressure solver
– Each sub-domain corresponds to set of cells or 

equivalently, a set of rows of the iteration matrix

1
2

3
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Naive “Parallel” Solution

• Collect the entire velocity field of the sub-domains to a 
master node

• Trace all the streamlines on the master node
• Copy the streamline grids back to the other nodes

– Scheduling and load balancing
• Do local transport solve
• Map back
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Analysis

• The entire velocity field must fit in the memory of the 
master node
– No chance for giga-cell models

• A node generates lots of communication and the 
communication will be localized in time (bursty)
– Very bad for slow interconnects

• A node can only map back streamline data to the sub-
domain that it owns
– More communication needed to pass all the streamlines 

around in the mapping step
• Probably not very scalable
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A Pipelined Solution

• For simplicity assume that we trace 
from left to right

• The segments of an individual 
streamline may cross all three domains
– Sub-domains 2 and 3 must wait until the set 

of streamlines crossing sub-domain 1 have 
reached the boundary

– While domains 2 and 3 trace the 
continuation of this set we can start tracing a 
new set in sub-domain 1

• In this way we can overlap or pipeline 
the tracing of the streamlines

1
2

3
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Pipelined Algorithm

• For each processor (sub-domain), repeat:
1. Wait for start points
2. Trace all local streamlines
3. Hand-off exit points to neighbor

• Think of the sub-domains as grid cells in a 
coarse grid.

• Every sub-domain contains one segment
– Which consist of smaller segments based on 

the actual grid cells 

1
2

3
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Domain Graph
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