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Schedule, Thursday 
09:00 - 09:40 
Introduction to stream processing  Trond Hagen
09:50 - 10:30 
Introduction to stream processing cont’d  Trond Hagen 
 
15:00-15-40
CUDA programming    Johan Seland
15:50-16-30
CUDA programming cont’d   Johan Seland

17:00-18-30
Examples of applications   André Brodtkorb, 

      Johan Seland, 
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Schedule, Friday
09:00 - 09:45 
Introduction to Cell BE    Trond Hagen

10:00 - 10:45 
Programming Cell BE    André Brodtkorb

11:00-12:00
“Birds of a feather” – parallel processing  Johan Seland
Summary and discussion 
 



ICT 4

Thursday evening

 Don’t miss the quiz in the bar after the dinner!

 Chance to win a ~10 000,- NOK HPC graphics card 
sponsored by NVIDIA
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Outline

 Introduction to Stream Processing
 Introduction to Graphics Processing Units (GPUs)
 GPU Architecture
 GPU Programming Models
 Examples
 Looking Forward
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What is Stream Processing?

 A stream is a set of input and output data

 Stream processing is a series of operations (kernel 
functions) applied for each element in a stream

 Uniform streaming is most typical. One kernel at a time is 
applied to all elements of the stream

 Single Instruction Multiple Data (SIMD) 
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Instruction-Based Processing
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During processing, the data required for an instruction’s 
execution is loaded into the cache, if not already present.

Very flexible model, but has the disadvantage that the 
data-sequence is completely driven by the instruction 
sequence, yielding inefficient performance for uniform 
operations on large data blocks.
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Data Stream Processing
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The processor is first configured by the instructions that 
need to be performed and in the next step a data-stream 
is processed.

The execution is distributed among several pipelines.
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Different Computing Paradigms

 Data stream processing is advantageous when large data blocks 
undergo the same operation, because this allows the memory efficient 
streaming and parallel processing of the data.

 Example: Matrix-matrix addition C = A+B

// instruction based             // data stream
for(i=0; i<numRows; i++)          setInputArrays(A, B);
  for(j=0; j<numCols; j++)        setOutputArrays(C);
    C[i][j]=A[i][j]+B[i][j];      loadKernel(”return a+b”);
                                  execute();                                                                      
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Hardware Evolution

 “The number of transistors on an integrated circuit for minimum 
component cost doubles every 24 months” - Moore’s Law

 Moore’s law still seems to hold true

 Increases in transistor density have driven roughly proportional 
increases in processor performance

 Performance gains have also relied heavily on the increase of clock 
frequency, which is closely related to transistor size
 Smaller transistors can switch faster 
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Hardware Evolution (cont’d)

 Higher frequency gives easy and instant performance 
benefits
 Software runs faster without any modification
 This has allowed the computing industry to realize increasing 

value from their existing code base, with relatively little effort

 In the resent years we have not seen the traditional 
increase in core frequency

 Increasing the frequency has several implications:
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Memory Problem

 Memory speeds have not increased as fast as core 
frequencies
 A processor can wait through hundreds of clock cycles if it has to 

get data or instructions from main memory

 Larger caches combined with instruction level parallelism 
can reduce the memory-wait time
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Longer Instruction Pipelines

 Longer instruction pipelines allow for higher core 
frequencies

 Longer pipelines results in more cache-miss penalty and 
lower the number of completed instructions per cycle

 The Intel Pentium 4 Prescott had a pipeline length of 31 
stages and a frequency > 3 GHz

 Industry seems to converge between 9 and 11 stages
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Power Consumption Problem

 When the frequency increases, the power consumption 
increases disproportionately

 The dependency between core frequency and power 
consumption is often said to be quadratic
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Multi-Core Processors

 Multi-core can be used to take advantage of the 
continuously increase in transistor density

 Doubling the number of cores and halving frequency gives 
roughly the same performance, while the power 
consumption is reduced drastically

 Adding cores makes it possible to get higher performance 
without increasing the power density
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Intel Core 2 Duo

Two “fat” cores



ICT 17

General-purpose CPUs

 ~50 % of the die area is cache

 An addition to that a lot of the area is used for instruction 
level parallelism
 Instruction pipelining (execution of multiple instructions can be 

partially overlapped)
 Superscalar (parallel instruction pipelines)
 Branch prediction (predict outcome of decisions)
 Out-of-order execution

 The amount of transistors doing direct computation is 
shrinking relative to the total number of transistors
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Solution: Heterogeneous Architectures?

 Heterogeneous computing is the strategy of using multiple types of 
processing elements within a single workflow, and allowing each to 
perform the tasks to which it is best suited.

 Do not need only “fat” general purpose cores. 

 Instead one can design smaller and simpler computational units, 
which can very effectively perform special tasks, e.g. floating point 
operations.

 Two most important heterogeneous systems:
 Graphics Processing Units
 Cell BE
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Cell Broadband Engine

One “fat” core and eight “thin” cores
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Graphics Processing Units (GPUs)
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What is a GPU?

 Graphics rendering device

 Efficient at displaying computer 
graphics

 Their highly parallel architecture 
makes them very effective for a 
range of complex algorithms

 Driven by demand for increased 
realism in games

  All PCs have a GPU

NVIDIA GeForce 8800 GTX
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GPU-Design Premises 

 Games typically renders 10 000s triangles @ 60 fps

 Screen resolution is typically 1600 x 1200
 Each pixel is recalculated every frame

 A pixel loosely corresponds to a lightweight thread

 This corresponds to creating, running and destroying 
 115 200 000 threads per second

 GPUs are designed to make these operations fast
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State of the art real-time rendering
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State of the art real-time rendering
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GPU Versus CPU Performance
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GPU vs. CPU Performance (cont’d)

 Nr. 1 top 500 November 2007: BlueGene /L
  212 992 processors
 ~596 TFLOPS

 Theoretically the same processing power as ~1150 high-
end GPUs

 http://www.top500.org
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Power / Performance Ratio

 “If the performance per watt of today’s computers doesn’t improve, the 
electrical costs of running them could end up far greater than the initial 
hardware price tag” - google

 CPU – Intel Core 2 Duo “Conroe” 
 65 W / 20 GFLOPs  = 3.25 Watt / GFLOPS

 GPU
 150 W / 500 GFLOPs = 0.3 Watt / GFLOPS

 Cell BE
 70 W / 250 GFLOPs = 0.28 Watt / GFLOPS
(5 W per SPE)
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State of the art real-time rendering (cont’d)
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State of the art real-time rendering (cont’d)
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3D Navier-Stokes Fluid Simulator
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3D Navier-Stokes Fluid Simulator
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Deformable Skin Demo
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Deformable Skin Demo
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More Simulation and Physics in Games 

 Human head: Sum-of-Gaussian algorithm for realistic real-
time images of human skin
 Gaussian convolution filter for blurring, image processing.

 Smoke: Fluid simulator for smoke
 More realistic simulations in future games

 Frog: Real-time mesh deformation in combination with 
rendering is not possible on a CPU.

 Real-time simulations require heavy computational power
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GPU Architecture
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Overall System Architecture
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NVIDIA GeForce 8800 GTX

 Price: 3000 NOK.
 ~520 GFLOPS performance
 Core clock: 675 MHz
 681 million transistors
 Internal bandwith: 86.4 GB/s
 128 stream processors

 1.35 GHz
 Memory

 GDDR3
 768 MB
 1.8 GHz

 Programmable in high-level language
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GeForce 8800 Architecture Overview

Image courtesy of rage3d.com
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GeForce 8800 Architecture Overview (cont’d)

 16 stream processors in 
each multiprocessor

 128 stream processors in 
total.

 L1 cache shared between 
all stream processors in a 
multiprocessor

Image courtesy of rage3d.com
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GPU Programming Models
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Traditional Problems with GPU 
Programming

 The user must be an expert in computer graphics and its 
computational idioms to make effective use of the 
hardware

 The programming model is unusual

 Debugging is difficult

 Few libraries
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Graphics Processing Pipeline

 This is the abstraction the 
user is exposed to by the 
DirectX and OpenGL 
graphics APIs

 Hard to understand for 
non-graphics programmers
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Compute Unified Driver Architecture (CUDA)

 Software interface for utilizing the GPU as a data-parallel 
computing device developed by NVIDIA.

 No need for graphics API

 Available for NVIDIA GeForce 8000-series GPUs and the 
HPC Tesla-series.
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CUDA – Software Layers
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CUDA – Programming Model

 The GPU is viewed as a device that operates as a 
coprocessor to the CPU (host).

 A kernel is a function that is executed on the device as 
many different threads, doing the same type of operations.

 The batch of threads that executes a kernel is organized 
as a grid of thread blocks.
 A thread block is a batch of threads that can communicate with 

each other. 
 All threads in a block runs on the same multiprocessor.
 A block can contain a maximum number of threads, but blocks that 

execute the same kernel can be batched together into a grid of 
blocks.
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CUDA – Programming Model
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CUDA – Memory Model
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Cuda Libraries

 BLAS library
 Basic linear algebra subprograms

 FFT library
 Fast Fourier Transform

 CUDPP
 Parallel sum, sort and reduction algorithms
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CTM / Brook+ from AMD

 Close to the Metal API
 AMD’s GPU programming model
 HAL: Hardware Abstraction Level

 device specific, driver like interface
 CAL: Compute Abstraction Level

 Core API device independent
 Optimized multi-core implementation as well as optimized GPU 

implementations
 Heterogeneous computing

 Brook+
 Brool+ is an implementation by AMD of the Brook GPU spec on 

AMD’s CAL. Higher level of abstraction. 
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Rapidmind 

 Program multi-core systems using standard C++ / C. No specialized 
or vendor specific software development is required. 

 Maps a single programming model to multiple hardware platforms.
 GPUs, CPUs and the Cell processor.

 Higher level of abstraction, but also a performance penalty

 http://www.rapidmind.net
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Examples of GPU Implementations
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GPU Activities at SINTEF Applied Mathematics

View-dependent tessellation Preparation of finite element models (~5x)

Soliving partial differential equations (~25x) Marine aqoustics (~20x)
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GPU Activities at SINTEF Applied Mathematics

Self-intersection detection of NURBS surfaces 
(~10x)

Silhouette refinement

Registration of medical data (~20x) Visualization of algebraic surfaces
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GPU Activities at SINTEF Applied Mathematics

Navier-Stokes: Fluid dynamics

Inpainting (~400x matlab code)
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GPU Activities at SINTEF Applied Mathematics

Water injection in a fluvial reservoir (20x)

Volume visualization

Electric activity in a human heart.
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GPU Activities at SINTEF Applied Mathematics

Cluster of GPU’sMatlab Interface to the GPU

Linear algebra / load balancing CPU - GPU
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Shallow-Water Equations (~25x)
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Shallow-Water Equations (~25x)
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TV-Stokes Inpainting

 Demo: GPU-application running on the laptop

input image result
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Looking Forward

Next generation architectures
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NVIDIA SLI / AMD Crossfire

 Multiple graphics cards on 
a single motherboard

3-way SLI

Crossfire
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Tesla – High Performance Computing

C870 – 1 GPU D870 – 2 GPUs

S870 – 4 GPUs
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AMD FireStream 9170

 First GPU with double precision 
floating point

 320 stream processors
 Up to 500 GFLOPs single 

precision performance
 2 GB on-board memory
 Less than 150 W power 

consumption
 55 nm process technology
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What about NVIDIA and double precision?

 At Supercomputing November 2006 NVIDIA announced a 
GPU with double precision support by the end of 2007

 NVIDIA now say they are going to release GPUs with 
double precision in 2008

 Only the Tesla HPC cards and the high-end Quadro cards 
will support double precision
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AMD HD3870X2

 Released within a week

 Two GPUs on one 
graphics card

 Early benchmarks: 
 ~40% faster than 

GeForce 8800 Ultra
 (3DMark06)
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GeForce 9800 GX2

 Launch in february / march
 GeForce 9800 GX2, two GPUs

 Two 65nm 8800 cores
 256 stream processors
 1 GB on board memory

 30% faster than GeForce 8800 Ultra
 No new functionality
 Next generation GPUs probably in Q3 2008. 
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Intel’s Larrabee GPU Project

 Uses a derivative of the x86 instruction set for its GPU 
cores instead of a traditional graphics-oriented instruction 
set
 Expected to be more flexible than traditional GPUs
 Designed for GPGPU or stream processing

 Will probably be released in late 2008 or early 2009

 Intel have never been able to compete with NVIDIA or 
AMD / ATI when it comes to processing power. Will they 
succeed this time?
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Intel’s Larrabee GPU Project (cont’d)

 Ten or more cores per die
 Each core have its own L1 cache (instruction / data)
 Each core supports four simultaneous threads
 Subset of the x86 instruction set architecture + GPU 

specific extensions
 All cores will share a large L2 cache

 The L2 cache will be used for communication between cores
 Fixed-function unit

 Will vary between the different Larrabees
 A rasterizer in the GPU-based chip 
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80-Core Terascale Project  

 Terascale chip is not a product, but a research initiative 

 The goal of this initiative is not to produce a shipping 
product, but to explore and develop various technologies 
that might eventually find their way into future, as-yet-
undesigned Intel products 
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AMD’s Fusion Project

 Heterogeneous multi-core processor combining GPU and 
CPU in one chip

 The FireStream GPU is one step towards AMD’s Fusion 
project. 

 Target release 2009

“The introduction of graphics processing engines into 
AMD’s chips is the biggest microprocessor evolution since 
the introduction of x86-64 concept back in 1999” – Phil 
Hester, chief technology officer at AMD
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AMD’s Fusion Project (cont’d)

Information transfer between CPU and GPU will be 
significantly faster because the information will not need to 
travel on the PCIe bus. 
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AMD’s Fusion Project (cont’d)
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Conclusion

 Use all available resources!
 If you have a GPU in your machine, you cannot let 500 GFLOPS stay idle.

 Heterogeneous architectures offers the most scalable solution. 
 Either as different type of cores inside the same chip
 Or as dedicated accelerator cards like GPUs now

 Will GPUs be the data-parallel accelerators of the future?
 Probably, because the game industry demands more computational 

power. 
 High demand for GPUs gives lower prices. 

 We should start to redesign our algorithms now ... 
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Further Reading 

 GPU Gems 2 & 3

 http://www.nvidia.com/cuda

 http://www.gpgpu.org

http://www.amazon.com/GPU-Gems-3-Hubert-Nguyen/dp/0321515269/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1201045649&sr=8-1
http://www.amazon.com/GPU-Gems-3-Hubert-Nguyen/dp/0321515269/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1201045649&sr=8-1
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Thank You!


