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Some repetition

e Given target distribution: 7(z),z € R"

e Want to understand the properties of 7(x)

uy = Elf(z)] = / f (@) ()da

— or what is the probability distribution of f(z)?

e Generate realisations z1,...,z, from 7(x)
|
Hi = 2_1: S i)
— or make a histogram of f(z1),..., f(x,)

e Example: Ising model, z = (z!,... 2"), 2 € {0,1}

m(x) = cexp ﬁZI L ogd)

ZNJ

file) =) 1('=1) and fo ZI

1=1 1~]

— Note: because of symmetry E|[f(z)] =1/2



Some repetition (cont.)

e Note: In principle we can compute

E[fy(z)] = Z fo(x)m(2)
— but the sum has 2200200 ~ 101204l {eprmg

— and to find the normalising constant of 7(z) we
need to compute a sum with the same number
of terms

e So in practice it is not possible (in my lifetime)



Some repetition (cont.)

e Realisations from 7(x) with g = 0.87

e Emperical mean values

i, =05034 and Jig, = 0.665

e Histograms
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Some repetition (cont.)

e Metropolis—Hastings transition kernel
P(ylz) = Qylr)alylr) , y #

_ [ m@)Qely)
a(ylz) = {LW(y)Q(y\x)}

e Metropolis—Hastings algorithm

— generate initial state xy ~ f(xg)
—for:=1,2,...
* propose potential new state y; ~ Q(y;|z;_1)
* compute acceptance probability o(y;|z;_1)
* generate u; ~ Uniform(0, 1)
* if u; < a(y;|r;_1) accept y;, i.e. set x; = y;,
otherwise reject y; and set x; = r; 1

e Next question: What Q(y|r) to use?

— simple choices is often ok — but not always



Independent proposal MH
e Target density: 7(z), 2z € RY

e Proposal density: Q(y|z) = ¢(y)

— does not depend on current state x

— q(y) is an approximation to 7(x)

e Toy example

— target distribution: x ~ Nos(0, 1)
— proposal distribution: y|z ~ Nas(0,0.9% - I)
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— trace plot of z!
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Independent proposal MH (cont.)

e Another toy example

— target distribution: x ~ Nos,(0, 1)
— proposal distribution: y|z ~ Nas(0,1.1%- 1)

00 01 02 03 04

— trace plot of z!
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e Experience:

— Except in low dimensional spaces: Convergence
of independent proposal MH is either very good
or very bad, usually very bad

— The tails of the proposal distribution must at
least be as heavy as the tails of the target dis-
tribution



Random walk proposal MH
e Target density: 7(z),z € RY

e Proposal density: Q(y|z) = ¢ (£2)

— typically: Gaussian proposal
— proposal mean is current state

— tuning parameter: o

e Toy example

— target distribution: x ~ Nos(0, 1)
— proposal distribution: y|z ~ Naso(z, 0% - )

— trace plot and acf of z!

o = 0.05, acceptance rate = 0.69
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Random walk proposal MH (cont.)

o = 0.01, acceptance rate = (0.94
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Random walk MH (cont.)

e Result (Roberts et al., 1997):

— let .
rla) = [ )

where f(-) fulfil some conditions

— use Gaussian random walk MH algorithm to
sample 7(x)

— asymptotically, as n — oo, the optimal tuning
parameter o gives acceptance rate 0.234.

e Rule of thumb for random walk MH:

— tune o to get acceptance rate 0.234
— between 0.15 and 0.5 is ok.
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Langevin proposals

e Intuition: Should more oftenly propose new val-
ues in high probability area

e Suboptimal to have z as proposal mean

e Proposal mean should be shifted in the gradient
direction

e Langevin proposal

Q(y|lr) = N(z + hVr(x), h*I)

e Can also be motivated from stochastic differential
equation theory when h — 0

e For us h should not be too small

e Again one can ask how to choose h, or what is the
optimal acceptance rate

e The answer is acceptance rate about 0.5
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Combination of strategies

e Target distribution: 7(x)
e Two proposal distributions: Q;(y|z) and Qs(y|z)
e How to combine the proposal distributions?

— first alternative

Qylz) = pQilylx) + (1 — p)Qa(y|z)

alylr) =

— second alternative (notation for discrete x)

P(y|z) = pPi(ylz) + (1 — p) Pa(y|z)
where

il — ] Qilylr)aily|z) if y 2
Filele) = { 1= Z#x Qi(z|x)a;(z|x) ify==x

ot e {4 TWQiely)
a;(y|z) {1’7r(af)Qz(y’$)}

e first alternative give higher acceptance rate
e second alternative cost less per iteration

e is the second alternative correct?
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Proof of correctness

e The Q:(y|x) gives P;(y|x) for which

=3 n(a) Pilyl)

€

e The Q:(y|x) gives P(y|x) for which

= 7(z)Palyle)

zel

e For P(y|x) = pPl(y\:U) (1 —p)Ps(y|x), need to verify

ZT{' P(y|x)

zef)

e Start with the sum on the right

Y w@)Pylz) = > w(x)(pPiylz) + (1 — p)Pa(y|x))

zef) e

= pY_7(@)Pi(yle) + (1 —p) Y _ 7w(z)Pay|a)

zef) zel)

= pr(y) + (1 —p)r(y) = 7(y)

P(y|x) fulfils detailed balance if P;(y|z) and P»(y|x) do
(@) P(y|r) = m(y) P(z|y)
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Combination of strategies - example

e Target distribution 7(z),z = (z',2?) € R?

e Proposal distributions, p = 1/2
= Qu(ylx):

* propose y' ~ N(z!,0?)

* keep y* = z° unchanged
— Qa(y|2):

* propose y> ~ N (22 0?)

* keep y' = 2! unchanged

e Note: Q:(y|r) and Q(y|r) don’t give irreducible
Markov chains separately, together they do.
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Combination of strategies - example

e Target distribution 7(z),z = (2!, 2?) € R?

e Proposal distributions, p = 1/2

— Q1 (y|):
* propose y' ~ N(z!,0.3?)

* keep y?> = 2> unchanged
— Qa(ylz):

* propose y> ~ N (22, 0.3?)

* keep y' = 2! unchanged

e Note: Qi(y|r) and Qy(y|r) don’t give irreducible
Markov chains separately, together they do.
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Combination of strategies - Ising

e Probability distribution

m(x) =c-exp ﬁZI L))

i~]

e N proposal distributions, Q;(y|z) is
— propose y' =1 — 2!
— keep 3" = 2%, k # i unchanged
— thus

(1 ify'=1—2"and y* =" k # 1,
Qilylz) = { 0 otherwise

aulyhe) = min {1, 70}

()
e In each iteration: draw i € {1,...,n} at random

e Note:

— same algorithm as before

— don’t need to be any randomness in Q;(y|z)

e Can we “visit” the nodes sequentially in stead?
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Combination of strategies
e Target distribution: 7(x)
e Two proposal distributions: Q;(y|x) and Qy(y|z)
e How to combine the proposal distributions?

— third alternative

P(ylz) = Pi(z|z)Py(yl2)

ze)

x update z!, update z?, update z' and so on

e Is this third alternative correct?
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Proof of correctness

e The Q:(y|x) gives P;(y|x) for which

= 3 n(a) Pilyl)

€

e The Q;(y|x) gives P(y|x) for which

=3 w(a) Palyla)

zeld

e For P(y|x) = ZZEQ Pi(z|z)Py(y|z), need to verify

Zﬂ' P(y|x)

zef)

e Start with the sum on the right

> m(@)Plyle) = Z (z) > Py \l“sz!
rel e} L z€()
= Z h(y|2 Z?T )Py ( \x
z€Q) rE
= ZP2 ylz)m(z) = m(y)
z€Q)

e P(y|x) does not fulfil detailed balance even if P;(y|z)
and P»(y|r) do
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Gibbs sampler

o Let z = (z!,...,2")

e N proposal distributions, Q;(y|x) is

1—1 i+l : xn)

— propose ¥y’ ~ w(y'|xt, ... 7 2t

— keep y* = 2¥, k # i unchanged

e Notation: ' = (x!,... 7L 2! .. 2"

e Acceptance probability

a;(y|r)

e Thus:

always accept
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Gibbs for Ising

e Ising probability distribution

w(x)=c- exp{ ﬁZI }

k~l

e Full conditional distribution
ﬂ-(xi7 x_i) 7

m(x'|z™") = TR x m(x',x™") = ()

= eXp{—ﬁZI(fEk # ')

)
)

ki
Thus
m(x'|z™") = cexp {—ﬁz (" azz)}
ki
where

e Should we here prefer Gibbs, or always propose
to change the value of z,?

20



Ising: Gibbs or propose to change?

e Probability for a changed value:

— Gibbs

. e_ﬁ D i ](xk?él_xi)

e=0 Lini Il #ah) 4 o=B Y pn I(ah#1-2")

e_ﬁ' (# equal)

e—ﬂ(# unequal) + e—ﬁ-(# equal)

e—ﬁ-(# equal — # unequal)

1+ e—ﬁ-(# equal — # unequal)

— always propose to change

alylr) = min{1,e_ﬁiji[f(ﬂfj#l—xi)—l(xﬂ'#xi)]}

— min {1 e—ﬁ'(# equal — # unequal)}
)

e See that -
(1l —2'|27") < ay|z)

e Better always to propose a change

21



Gibbs for a bivariate normal

e Toy example, you should never use MCMC here!

e Target distribution

1 1 1 :
m(x) = — exp{——;cTzla:} ,r€R? Y= [ Lo 7]

0.7 1

2

2D

e Full conditional distributions
— otz ~ N(0.722,0.51)
— 2?2t ~ N(0.721,0.51)

e Note:

— Gibbs contains no tuning parameter

— in Gibbs we must be able to find (and sample
from) the full conditionals

—in Gibbs: waist of time to update the same
coordinate two times in a row
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Gibbs for a bivariate normal

e Toy example, you should never use MCMC here!

e Target distribution

1 1 1 :
m(x) exp{——:cTzla:} ,r€R? Y= [ Lo 7]

TN 9 0.7 1

e Full conditional distributions
— otz ~ N(0.722,0.51)
— 2?2t ~ N(0.721,0.51)

e Note:

— Gibbs contains no tuning parameter

— in Gibbs we must be able to find (and sample
from) the full conditionals

— waist of time to update the same coordinate
two times in a row
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Plan

e The Markov chain Monte Carlo (MCMC) idea
e Some Markov chain theory

e Implementation of the MCMUC idea

— Metropolis—Hastings algorithm

e MCMUC strategies

— independent proposals
— random walk proposals
— combination of strategies

— Gibbs sampler

e Convergence diagnostics

— trace plots
— autocorrelation functions

— one chain or many chains?

e Typical MCMC problems — and some remedies

— high correlation between variables
— multimodality

— different scales
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Convergence diagnostics

e When has the Markov chain converged?
e Several theoretical results exist: for a given ¢ > 0
|7(-) — P"(-)|| <€ for all n > M(e)
where (¢) can be computed.

— bounds too weak to be of any practical value

e Standard start to evaluate convergence:

— look at trace plots

* Ising example:

# 1’s # 0-1 neighbours
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e Result:
P() — ()
)
/f(')dPn — /f(')dTF for all

bounded real-valued (u-measurable) functions f(-)
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One chain or many chains?

e With fixed cpu-time available, should we

— use all time in one long Markov chain run, or

— run several shorter Markov chain runs?

® One long Markov chain run

o 10000 20000 30000 40000 50000

— only one burn-in period to discard

— more likely that you really have converged

e Several shorter Markov chain runs

o o o
o o o
1 1 1

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

— easier to evaluate the convergence
— easier to estimate estimation variance

* the chains are independent
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Convergence diagnostics

e many more formal convergence diagnostics exists

— some based on a single Markov chain run

— some based on several Markov chain runs

e To see when a chain has convergence, we need to
simulate much longer than to convergence

e If some properties of the target distribution is
known: use it to check convergence!

e All convergence diagnostics can (and do) fail

— we can construct situations where it fails
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Compare algorithms

e Assume: have two (or more) Markov chains with
limiting distribution = (z)

e Which one should we prefer?
e Estimate and compare autocorrelation functions

— ignore burn-in periods!
— assume stationary time series
— must again consider scalar functions f(x)

— random walk proposal example, choice of tun-
ing parameter

o = 0.05, acceptance rate = 0.69
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Variance estimation in MCMC

e Standard Monte Carlo gives independent samples
Ty, ...,o, ~ w(r) and independent

— unbiased estimator for p; = [ f(z)n(x)dx
. _1y¢
Hf= n Z f (i)
i=1

— variance estimation is easy

Var(fi] — - ZVar (2,)] = ~ Var(f(z)]

_— 1 R
Varf(x)] = —— 3" (f(w:) - i)
i=1
e MCMUC gives dependent samples
ry,..., o, ~ w(r) and dependent

— unbiased estimator for j ¢
1 n
fif = n Z f (i)
1=1
— variance estimation is not so easy

Var|jis] = ZVar (x;) +ZZCOV x;),

=1 j#
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Variance estimation in MCMC (cont.)

e Recall .
ﬁf = %Z flx:)
Varl] = 5 |3 Varlf(e)] + 30 3 Covlf(r), f(x;)
i=1 i=1 jti
_ Varq[f(x)] 1—|—2§:p(h)]
h=1

— note: negative correlations are good!

e T'wo approaches

— estimate the correlation structure

00 02 04 06 08 10

0 1000 2000 3000 4000 500

% needs to “cut” the sum somewhere

* different strategies exist

— do several independent runs

* or divide a long run into (almost) indepen-
dent batches
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Variance estimation in MCMC (cont.)

e Do K independent MCMC runs

BEeRe
1=1

1 < (k)

—~ ~(k

_}Zﬂf
k=1

— then ﬁ?), o ,ﬁch) are independent
Var(fi}
v
ar|fiy| 7
K
Vau (5~ r)
ar[[i K 1 ; i

e Alternatively divide one long run into K batches
and treat the batches as independent

— batch lengths must be long compared to cor-
relation length
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Plan

e The Markov chain Monte Carlo (MCMUC) idea
e Some Markov chain theory

e Implementation of the MCMC idea

— Metropolis—Hastings algorithm

e MCMUC strategies

— independent proposals
— random walk proposals
— combination of strategies

— Gibbs sampler

e Convergence diagnostics

— trace plots
— autocorrelation functions

— one chain or many chains?

e Typical MCMC problems — and some remedies

— high correlation between variables
— multimodality

— different scales
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Typical MCMC problems

e Note: If you knows the solution, it is easy to solve
a problem!

e Properties of 7(x) that may make MCMC difficult

— strong dependency between variables
— several modes

— different scales on different variables

-3 -2 -1 O 1 2

-4

e In toy examples: this is not a problem

— we know how 7(z) looks like

e In real problems: this may be difficult

— we have a formula for 7(z)

— we don’t know how 7(z) looks like

e Need to iterate
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Strong dependencies

e Gibbs sampling doesn’t work
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Strong dependencies

e Blocking may solve the problem

— 2! and z? are highly correlated

— propose joint updates for z! and 2

+ block Gibbs: (y',1?)|z ~ 7(y!, 2|z {12

* random walk Metropolis—Hastings:

P~ N (| 5] R)

* in toy example:
- target: correlation 0.999

- in proposal: correlation 0.90
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Strong dependencies

e Reparameterisation may solve the problem

— 7! and z? are highly correlated

— define

and
=z fori=3,...,N

— with suitable choice of matrix A, the correla-
tion between 7' and 7? in 7(Z) will be much
lower
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Multimodal target distribution

e Random walk proposals doesn’t work

-3 -2 -1

-4

e To come from one mode to another: needs to visit
low probability area — happens very seldomly
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Multimodal target distributions

e If you know (approximately) the modes

— can combine

* independent proposals

1 1

ylz ~ 591(9) + igz(y)

* random walk proposals

ylr ~ N(z, R)

— randomly or systematically
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Multimodal target distributions

e Simulated tempering

— let
m(x) = c exp{-Ul(z)}
— introduce an extra variable, k£ € {0,1,2,... K}
— define K temperatures: 1=T, <T) <Th < ... <
Tk
— define K distributions and constants cy, ¢y, ..., cx

— define joint distribution for x and k&

m(x, k) o< mp(x)

— simulate from 7 (x, k) with Metropolis—Hastings

— keep simulated z’s that corresponds to k£ =0

e Note: the T}’s and c¢;’s must be chosen carefully
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Multimodal target distributions

e Other solutions has been proposed

— MCMCMC: Metropolis coupled MCMC

* simulate one r; for each temperate T},

* simulate each z; by standard Metropolis-
Hastings

* occasionally propose to swap two “neigh-
bour” states x; and zj,

*x accept/reject according to MH acceptance
probability

— mode-jumping

* in a Metropolis—Hastings algorithm: use lo-
cal optimisation to locate a local maximum,
then propose a new value from that mode

* more on this in an example later (?)
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Different scales

e With Gibbs: different scales are not a problem

— Gibbs finds the appropriate scale

e If Gibbs not possible: have to tune to find appro-
priate scales

equal scale tuned scales
in proposals in proposals

10 20

o

-20 -10

e Tempting to tune the proposal scales automati-
cally based on the history of the Markov chain

— careful!! it is no longer Markov

— more difficult to get the required limiting dis-
tribution

— some adaptive MCMC algorithms exist — more
later (?)
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