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Historical viewpoints on mathematics in chemistry

“Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational. If mathematical analysis should ever hold
a prominent place in chemistry—an aberration which is happily impossible—it would
occasion a rapid and widespread degradation of that science.”
Auguste Comte, Cours de philosophie positive, 1830
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occasion a rapid and widespread degradation of that science.”
Auguste Comte, Cours de philosophie positive, 1830

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.”
Paul Dirac, Quantum mechanics of many electron systems, 1929
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“Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational. If mathematical analysis should ever hold
a prominent place in chemistry—an aberration which is happily impossible—it would
occasion a rapid and widespread degradation of that science.”
Auguste Comte, Cours de philosophie positive, 1830

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.”
Paul Dirac, Quantum mechanics of many electron systems, 1929

“Quantum chemistry is today used within all branches of chemistry and molecular
physics. As well as producing quantitative information on molecules and their interac-
tions, the theory also affords deeper understanding of molecular processes that cannot
be obtained from experiments alone.”
The Royal Swedish Academy of Sciences, Press release: The 1998 Nobel Prize in
Chemistry
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Our vision for the future

The Center of Theoretical and Computational Chemistry

Theory and modelling
Bioinorganic chem.

Organic and organo-

metallic chemistry

Solid-state systems Spectroscopy

Heterogeneous and
homogeneous catalysisChemical biology

Materials science Atmospheric chem.

Evenly split between the Universities of Oslo and Tromsø

10 theoretical and computational scientists including 2 YFFs and
Norways most highly cited chemist
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The quantum-mechanical view of a molecule

An instantaneous pictures of the interactions present in the water
molecule (3 nuclei and 10 electrons)

O

H H
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The electronic Schrödinger equation

The electrons in the molecule are described by a wave function Ψ
determined by solving the electronic Schrödinger equation:

H Ψ = E Ψ
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The electronic Schrödinger equation

The electrons in the molecule are described by a wave function Ψ
determined by solving the electronic Schrödinger equation:

H Ψ = E Ψ

H is the electronic Hamiltonian operator

H = −
e2

2me

∑
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∇2
i − e2

∑
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+

e2

2

∑

ij

1
rij

+ VNUC

Kenneth Ruud (UiT) A new future for finite-element methods in Quantum Chemistry?Geilo, 29/1 2007 5 / 39



• 
U

N
IV

ERSITETE
T

 •

I  TROMSØ

The electronic Schrödinger equation

The electrons in the molecule are described by a wave function Ψ
determined by solving the electronic Schrödinger equation:

H Ψ = E Ψ

H is the electronic Hamiltonian operator

H = −
e2

2me

∑

i

∇2
i − e2

∑

iK

ZK

RiK
+

e2

2

∑

ij

1
rij

+ VNUC

The wave function Ψ is a function of 3N variables (where N is the
number of electrons in the molecule)
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The quantum-mechanical challenge 1

The Schrödinger equation is a complicated many-particle equation

The only atom we can solve exactly (non-relativistic) is the hydrogen
atom (one electron and one nucleus)

Even a small organic molecule such as caffeine contains 136 particles
(24 nuclei and 102 electrons)

All particles interact with each other, and we can only determine
approximative solutions to the Schrödinger equation
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The quantum-mechanical challenge 2

Chemists are demanding customers
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The quantum-mechanical challenge 2

Chemists are demanding customers

The total molecular energy of caffeine is 1 800 000 kcal/mol.

The energy of the chemical bond (which we would like to
determine with an accuracy of 1% ) is 300-400 kcal/mol—that is,
the bond energy is 0.02% of the total energy
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The quantum-mechanical challenge 2

Chemists are demanding customers

The total molecular energy of caffeine is 1 800 000 kcal/mol.

The energy of the chemical bond (which we would like to
determine with an accuracy of 1% ) is 300-400 kcal/mol—that is,
the bond energy is 0.02% of the total energy

Quantum-mechanically we thus have to determine the weight of a
boat captain by weighing the boat with and without the captain

Ye, god’s. You’re right, Captain. We are in a bottle!
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The electron density

The wave function itself is not observable, but the electron density
of the molecule is:

ρ (r) =

∫

ν2

∫

ν3

. . .

∫

νN

Ψ (r1, r2, . . . , rN)∗ Ψ (r1, r2, . . . , rN) dr2dr3 . . . rN

Ψ thus contains too much information whereas ρ (r) is a function
of only three variables
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Kohn-Sham formulation of DFT

ρ(r) = 2
N
∑

i=1

|φi(r)|
2 (1)

[

−
1
2
∇2 + Vnuc + Vcoul (ρ) + Vxc (ρ)

]

φi(r) = ǫiφi(r) (2)

Vnuc =

N
∑

i=1

Zi/ |r − Ri | (3)

Vcoul =

∫

dr ′
ρ(r ′)
|r − r ′|

(4)

Vxc = f (ρ(r)) (5)
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The Traditional Quantum Chemical Approach

Express the MOs as a linear combination of AOs located on the
nuclei of the molecule

φi(r) =
∑

j

Cijχj χj = xm
A yn

Azo
A exp

(

−α
(

x2
A + y2

A + z2
A

))

(6)

Represent the operators and density in terms of the AOs

Rewrite the Kohn-Sham equations as an SCF problem:

F (C) C = SCǫ (7)

Possible problems:

Scaling with the system size (at least N2 or N3)

Non-orthogonality of the basis-set

Expensive evaluation of integrals
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Why argue with success?

Quantum-chemical methods do not show the expected linear
scaling

In order to achieve linear scaling, the methods should ideally be
inherently sparse and banded

Delocalized molecular orbitals and symmetry-adapted atomic
orbitals not optimal

It would also be convenient to be able to easily do
divide-and-conquer methods
Potential problems in supersystem calculations are:

Arbitrary boundaries between QM and MM systems
BSSE errors between QM systems
Important interaction mechanisms can be lost with different
computational methods between interaction systems

A possible new pathway: multiwavelet bases?
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Integral formulation of the K-S equations

We can rewrite the KS equations in an integral formulation

φi(r) = −2
∫

dr ′Gµ(r , r ′)V (r ′)φi(r
′) (8)

where

Gµ(r , r ′) =
1

4π
e−µ|r−r ′|

|r − r ′|
µ =

√

−2ǫi (9)

The standard K-S equations are recovered noticing that

(−∇2
r + µ2)Gµ(r , r ′) = δ(r , r ′) (10)

The integral formulation important to avoid divergencies due to ∇2

in finite-element methods
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Scaling functions: 1-D basis in [0,1]

Scaling functions: Legendre polynomials of order k in [0,1]

φk (x) = (2k + 1)1/2Pk(2x − 1) 0 ≤ x ≤ 1 (11)

Translation and dilation

φn
k ,l(x) = 2n/2φk (2nx − l) 2−nl ≤ x ≤ 2−n(l + 1) (12)

Orthonormality (Legendre polynomials + disjoint support)

∫ 1

0
dxφn

k ,l(x)φn
k ′,l ′(x) = δkk ′δll ′ (13)

“Ladder” of spaces: V0 ⊂ V1 ⊂ V2 ⊂ . . .Vn ⊂ . . .
This basis is complete in L2[0,1] both in the limit of infinite n and
infinite k
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Example: scaling functions up to order k = 3

-3

-2

-1

 0

 1

 2

 3

 0  0.25  0.5  0.75  1

s0
s1
s2
s3

Kenneth Ruud (UiT) A new future for finite-element methods in Quantum Chemistry?Geilo, 29/1 2007 14 / 39



• 
U

N
IV

ERSITETE
T

 •

I  TROMSØ

Example: scaling functions up to order k = 3 at n = 2
and different translations

-6

-4

-2

 0

 2

 4

 6

 0  0.25  0.5  0.75  1

s0 l=0
s1 l=1
s2 l=2
s3 l=3
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Projection of a function in 1-D

Given a function f (x) defined in [0,1], its projection on Vn can be
written as:

f̃ (x) =

2n−1
∑

l=0

k
∑

j=0

sn
jlφ

n
j ,l(x) (14)

sn
jl =

∫ 2−n(l+1)

2−nl
f (x)φn

j ,l(x) (15)

Quadrature employed to evaluate the integral

sn
jl =

k
∑

i=0

wi f (xi)φ
n
i ,l(xi ) (16)

The projection at level n is in general only approximate.
What is the error in the projection?
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Wavelet functions

Definition: W n
k is the orthogonal complement of V n

k in V n+1
k

V n ⊕ W n = V n+1 (17)

Recursively::
V n = V0 ⊕ W 1 ⊕ . . .W n−1 (18)

The functions [ψn
k ,l(x)], constituting a basis for Wn, are called

wavelet functions.
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Properties of the wavelet functions

Translation and dilation:

ψn
i ,l(x) = 2n/2ψi(2

nx − l)

k + 1 vanishing moments:
∫

xαψn
i ,l(x) dx = 0 α = 0,1 . . . k

Orthogonality:
∫

ψn
i ,k (x)ψm

j ,m(x) dx = δijδklδnm

Choice of wavelets is not unique unless additional constraints are
added
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Example: wavelet functions up to order k = 3
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Example: wavelet functions up to order k = 3 at n = 2
and different translation

-6

-4

-2

 0

 2

 4

 6

 0  0.25  0.5  0.75  1

w0 l=0
w1 l=1
w2 l=2
w3 l=3

Kenneth Ruud (UiT) A new future for finite-element methods in Quantum Chemistry?Geilo, 29/1 2007 20 / 39



• 
U

N
IV

ERSITETE
T

 •

I  TROMSØ

Two-scale relations and filters

Both scaling and wavelet functions at scale n can be constructed
from the scaling functions at scale n + 1:

φn
i ,l(x) = 21/2

∑

j

h0
ijφ

n+1
j ,2l (x) + h1

ijφ
n+1
j ,2l+1(x) (19)

ψn
i ,l(x) = 21/2

∑

j

g0
ijφ

n+1
j ,2l (x) + g1

ijφ
n+1
j ,2l+1(x) (20)

More concisely, we can write this as a wavelet filter involving
matrix-vector products

(

φn
l (x)
ψn

l (x)

)

= 21/2
(

H0 H1

G0 G1

)

·

(

φn+1
2l (x)

φn+1
2l+1(x)

)

(21)
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Multiwavelet decomposition

Once f (x) has been projected on the finest scale n, the scaling and
wavelet coefficients at coarser scales (m < n) are obtained by applying
the filters:

(

sn−1
l

dn−1
l

)

=

(

H0 H1

G0 G1

)

·

(

sn
2l

sn
2l+1

)

(22)

w3

w2

w1

w0

s0

s1

s2

s3

s4
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Representations of a function in 1-D

Projected (or reconstructed) representation

f̃ (x) =

2n−1
∑

l=0

k
∑

j=0

sn
jlφ

n
j ,l(x) (23)

Compressed representation obtained by recurring along the “ladder”:

f̃ (x) =
k
∑

j=0

(

s0
j ,0φj(x) +

n−1
∑

m=0

2m−1
∑

l=0

dm
jl ψ

n
j ,l(x)

)

(24)

In practice both the scaling (sn
il ) and the wavelet (dn

il ) are stored.
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Accuracy and adaptive refinement

We require arbitrary and predefined accuracy:
∣

∣

∣
f̃ (x) − f (x)

∣

∣

∣
< ǫ ∀0 ≤ x ≤ 1 (25)

We need an algorithm to obtain the representation of a function
In practice the following algorithm is used:

1 For a given node n, l compute sn
j ,l and dn

j ,l ;

2 Check if ‖dn
j ,l‖ ≤ ǫ;

3 If fulfilled keep the node (no subdivision);
4 If not fulfilled, subdivide the node and go to n.1 for (n + 1,2l) and

n + 1,2l + 1.
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Uniform Refinement

scale = 0

scale = 1

scale = 3

scale = 4

Kenneth Ruud (UiT) A new future for finite-element methods in Quantum Chemistry?Geilo, 29/1 2007 25 / 39



• 
U

N
IV

ERSITETE
T

 •

I  TROMSØ

Adaptive Refinement

scale = 0

scale = 1

scale = 3

scale = 4
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An example of an adaptive grid

The projection of f (x1, x2, x3) = c−1e−500((x1−0.5)2+(x2−0.5)2+(x3−0.5)2),
up to relative precision ‖f − f̂‖2/‖f‖2 < ǫ = 10−8

A total of 649 grid point needed
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NS-form of an operator

Given an operator T such that

g(y) = T · (f (x)) (26)

Projection:
T n = PnTPn (27)

We can express the project using both scaling and wavelet functions

T n+1 = Pn+1TPn+1 =
(

Pn + Qn)T
(

Pn + Qn) (28)

We can then write write a telescopic series

T n+1 = T 0 +

n
∑

m=1

(

QmTQm + QmTPm + PmTQm)

= T 0 +

n
∑

m=1

(

Am + Bm + Cm)
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Application of an operator

A3B3

C3

B2 A2

C2

B1 A1

C1

B0

C0

r3

w3

w2

r2

w1

r1

w0

r0

d3

s3

s2

d2

d1

s1

d0

s0

A0

T0

= x

A, B, and C are very narrow banded along the main diagonal
(thresholding).
T is dense but needed only at the coarsest scale (one node only!).
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3d application of the banded operator

g node

f nodes

BW x

BW y

BW z

 Ox Oy Oz
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On the cost of applying an operator

For a given polynomial order k :

In 1-D the speed is O(k2) (fast!).

In 3-D the speed is O(k6) (too expensive!) for a straightforward
implementation

Exploiting kernel separability K (x , y , z) = K ′(x)K ′(y)K ′(z) O(k4)
(feasible).

Problem: the kernels needed are not separable (formally) but ...

KP(x − y) =
1

|x − y |
KH(x − y) =

e−µ|x−y |

|x − y |
(29)
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Separated representation of the Poisson and
Helmholtz kernels

The MW approach is feasible only if it is possible to write the kernel of
an operator as

K (x − y) =

M
∑

I=1

cIKI(x1 − y1)KI(x2 − y2)KI(x3 − y3) (30)

For DFT in its integral formulation, the kernels to be used are:

The Poisson kernel: KP(x − y) = 1/ |x − y |

The Helmholtz kernel: KH(x − y) = e−µ|x−y |/ |x − y |

For a predefined precision ǫ it is possible to obtain an expansion such
that:

∣

∣

∣

∣

∣

K (x − y) −

M
∑

I=1

cIe
−ωI(x−y)2

∣

∣

∣

∣

∣

≤ ǫ (31)
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Separated Poisson kernel: relative error

70 terms, accuracy 10−8

-2e-08

-1.5e-08

-1e-08

-5e-09

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 1e-05  0.0001  0.001  0.01  0.1  1

e(x)
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Poisson kernel for different accuracies
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Poisson kernel for fixed resolution ǫ = 10−3
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Poisson kernel for fixed resolution ǫ = 10−6
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Poisson kernel for fixed resolution ǫ = 10−8
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Summary

A new approach with several interesting properties: scaling,
orthonormality, predefined accuracy

Inherently linear scaling, and probably quite parallelizable

Many open questions concerning feasibility for “real world”
chemistry problems

We currently have the “integral” program, now we need to
determine the wave function/density (nonlinear optimization
problem)

Our goal: QM/QM, possibly with interfacing to continuum-like
models which also solve the Poisson problem at a boundary
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