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A general method, suitable for fast computing machines, for investigating such properties as equations of state for 
substances consisting of interacting individual molecules is described.  The method consists of a modified Monte Carlo 
integration over configuration space.  Results for the two-dimensional rigid-sphere  system have been obtained on the 
Los Alamos MANIAC and are presented here.  These results are compared to the free volume equation of state and to a 
four-term virial coefficient expansion.

The Metropolis algorithm from1953 has been cited as among the 
top 10 algorithms having the "greatest influence on the 
development and practice of science and engineering in the 20th 
century." 



MANIAC

The MANIAC II

1952

Multiplication 
took a milli-
second.

(Metropolis choose the name MANIAC in the hope of stopping the rash of ”silly”
acronyms for machine names.) 



Some MCMC milestones
1953 Metropolis

Heat bath, dynamic Monte Carlo

1970 Hastings

1984 Geman & Geman Gibbs Sampler

1987 Swendsen-Wang Auxiliary MC

1990     Gelfand & Smith  Bayesian Statistics

1993 Besag & Green, MCMC

1994 Grenander & Miller 

1995 Green Transdimensional MCMC

1996 Propp & Wilson Exact Sampling

NOW from Riemann to Lebesgue MCMC 

Political Analysis, 10:3 (2002) Society for Political Methodology

Location, Location, Location: 
An MCMC Approach to Modeling the Spatial Context of War and Peace

Michael D. Ward and Kristian Skrede Gleditsch



The MCMC idea

• Design a Markov Chain on a state space 
S, such that when simulating a trajectory 
of states x1, x2, … xt, from it, you will 
explore the state space S spending more 
time in the most important regions, where 
importance is given by a probability p(x)
on S, which is the ergodic limit of the 
chain. (i.e. you will stay most where p(x) is 
large)



PageRank
• Supposing you browse this for 

infinitely long time, what is the 
probability to be at page xi.

• No matter where you started.

Google vs. MCMC

p T = p • Google: given T Google finds p(x)
• MCMC: given p MCMC finds T







Examples of M-H simulations with q a Gaussian 
with variance sigma







Ising model
- on each site/pixel i there is a random variable Xi talking values +1 or -1
- there is a preference for each variable to be like its neighbours



Signal: X, with c colours, on a 2D grid, with prior Ising model

Data: Y

Posterior: 

MAP estimate of X, obtained by maximisation of the posterior. 
(X is in c10000 • 10000 dimensional space)



Data: Y

4 codings to a 2 colour image

• Solve four 2-colours MAP 
problems.

• Each is a min-cut problem.
• Can be solved in O(N2) 

0 → 0 , 1,2,3 → 1
1 → 0 , 0,2,3 → 1
2 → 0 , 0,1,3 → 1
3 → 0 , 0,1,2 → 1

N=number of sites

Parallel versions.



• Solve four 2-colours MAP problems.
• Whenever the solution corresponds to 0 in one of the 2-colour reductions, 

then it is also globally optimal
• Pixels that are not resolved, call them “grey”, are “difficult”

and need a second look

Second look:

• Work in parallel on each “grey” island, with given boundary conditions
• Do full enumeration if island is small, simulated annealing on island otherwise.

0 → 0 , 1,2,3 → 1
1 → 0 , 0,2,3 → 1
2 → 0 , 0,1,3 → 1
3 → 0 , 0,1,2 → 1

Parallel versions.



Islands are mostly border areas
between resolved parts. 
They are “long”, with much boundary
(since otherwise they would 
have been easy to resolve).
Hence easy to solve exactly.



Ising model

- Variables on “even” sites are conditional independent given the 
variables on the odd sites. (Colouring of the graph)

- Hence we can put a processor on each site and update each even
variable in parallel.



Can we do full parallel updating?



steps

Theorem: Does not converge!

N sites
N processors



steps

N sites
N processors

p-pertubed fully parallel MCMC

At each step, each processor 
is silenced with probability p,
independent of every others.

••

•

•
•

••

• •

• •

Theorem: Does converge for every p, so small as you like !



Making MCMC parallel for 
huge data sets

Marit Holden
Norsk Regnesentral



TransCount
• MCMC
• Estimates of absolute transcript 

concentrations from spotted microarray data
• Hierarchical Bayesian model for microarray 

experiments
• MCMC to sample from the posterior model

Arnoldo Frigessi, Mark A. van de Wiel, Marit Holden, Debbie H. Svendsrud, 
Ingrid K. Glad and Heidi Lyng. 
Genome-wide estimation of transcript concentrations from spotted 
cDNA microarray data. 
Nucleic Acids Research, 2005;33(17):e143. 



TransCount
• Huge data sets 

– Estimate lots of parameters - typically 106

• Main problem with the TransCount method
– Not memory usage, but CPU-time
– CPU-times of several days or weeks

• A typical MCMC run:
– 105-106 iterations - each with 106 updates

• Mixing and convergence
• Sufficiently many samples from the posterior

• Difficult to test program and model, debug



The hierarchical model
(gaussian approximation)
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• A single-update random-walk Metropolis-
Hastings sampler

• Uniform proposals
– Each parameter has its own interval

• Interval includes the current parameter value 
• New parameter value drawn from this interval

– Interval lengths updated adaptively before burn-in 
• Acceptance rates around 0.3 

• Parallel random number generator
– SPRNG - The Scalable Parallel Random Number 

Generators Library for ASCI Monte Carlo 
Computations



Parallelization
• Parallelized the program using Message-Passing 

Interface (MPI)
• The first half of the processes computes expressions, 

probabilities etc. for d=1
– The other half computes those for d=2 

• a-indexes divided between processes for d=1
– Similarly for d=2 

• Expressions for one (d,a)-pair computed by only one 
process

• If each process has the same number of (d,a)-pairs: 
– Each process performs approximately the same number of 

computations between each process synchronization or inter-
process communication



Titan Cluster

• A 380 CPU Intel Xeon cluster
• The 64 bits CPUs are 3.4 GHz
• Each dual CPU node has 

– 2 or 4 Gb memory
– Two 80 Gb local disks
– Option for InfiniBand interconnect
– A central GPFS based storage capacity of 4.5 

Tb are connected to all nodes



Example

• d ∈{1,2}, a ∈ {1,2,…,40}, s ∈
{1,2,…,14000}

• There are around 1.2·106 unknown 
parameters

• Local disks were used 
• InfiniBand and 1 gigabit interconnect
• Obtain around eight times less time usage



Number of 
processors 
used 

Observed time 
usage for 80 
iterations

Estimated time 
usage for 250 000 
iterations

Per cent of observed 
time usage for the 
one-processor run

1 110 
seconds

95.5 hours 100%

2 59 seconds 51.2 hours 53.6%
4 35 seconds 30.4 hours 33.6%
8 23 seconds 20.0 hours 20.9%
20 14 seconds 12.2 hours 12.7%
40 14 seconds 12.2 hours 12.7%



Why not more speed-up?

• Between each process synchronization or inter-
process communication:
– Approximately the same number of computations

• Discover new bottlenecks in the code when 
parallelizing

• For 20 and 40 processors:
– Improved results with InfiniBand
– Communication between processes a bottleneck?



(BUT: This makes MCMC possible at all for large problems!) 



More unsupervised parallel MCMC 

Parallel Tempering, 
Simulated Tempering, 
Multicanonical Monte Carlo,
Equi-Energy sampler,  
Nested Sampling



Slow mixing due to multimodality

××
××

××



Gibbs models – Exponential family

p(x,T) = (1 / Z(T) ) exp ( - h(x) / T),

h(x) energy function, h > 0
T temperature
Z(T) partition function

x

h(x)

energy barriers, that make 
local MCMC moves hard



p(x,T) = (1 / Z(T) ) exp ( - h(x) / T),

h(x) energy function, h > 0
T temperature
Z(T) partition function

x

h(x)

less serious energy barriers

Higher T temperature smoothes energy landscape!



Extended space

fast mixing
high temperature

slow mixing
low temperature



Parallel Tempering

• Simulate many “replica” in parallel at different
temperatures

• Switch states between samples, to help the 
chains that are stuck

• MCMC in a Product Space

Geyer (1991), 
Kimura and Taki (1991)



Exchange of Replicas

K=4

Uses faster mixing of the high temperature chains to achieve faster 
mixing of the low temperature chains, including the original one.

Easy to parallelize. 
But care to synchronize is needed.
(though different time scales are ok.)

easy, high T

harder ↓

original chain
with T=1



Simulated Tempering

Marinari & Parisi, 1992

Uses just one chain, that switches between easy and harder temperatures. 
Use samples generated when using the original temperature for inference 
at the end.

Not easy to parallelize!



Density of States D(h0)

The number of states x such that 
h(x) = h0.

The conditional distribution of x, given
h(x) = h0 is uniform on the equi-energy
set { x : h(x) = h0 }.



Density of States D(h0)

Suppose that the infinitesimal volume  of the 
energy slice { x : h < h(x) = h + dh} is 
D(h) du. Then D(h) is the density of 
states. 

from Riemann to Lebesgue MCMC



Equi-Energy Sampler

Kou, Zhou, Wong, Annals of Statistics, 2006

Sample from 

p(x,T=1) = (1 / Z ) exp ( - h(x)),

to approximate 

E(g(X)) = ∑ g(x) p(x)



Equi-Energy Sampler
Auxiliary models (again) 

p(x,T) = (1 / Z(T) ) exp ( - h(x) / T)

Introduce a sequence of energy levels and associated temperatures

H0 <  H1 < H2 < … < HK
T0=1 < T1 < T2 < … < TK

where H0,< min {h(x)} 

Auxiliary models:

pi(x,T) = (1 / Z(Ti) ) exp ( - max { h(x), Hi } / Ti )

Note that p0(x,T=1) is the original model of interest!

HARD EASY!



Equi-Energy Sampler

H0 <  H1 < H2 < … < HK
T0=1 < T1 < T2 < … < TK

pi(x,T) = (1 / Z(Ti) ) exp ( - max { h(x), Hi } / Ti )

Note that p0(x,T=1) is the original model of interest!

EE uses K MCMC chains, each targeting an auxiliary model pi(x,T).

The higher the value of i, the easier the mixing.

EE makes a special step, the EE-jump, to help chains with low i  to move.
It is a jump to a state somewhere else with similar energy value.

EE-sets S(h0 ) = { x : h(x) = h0 }.

EE-sets are such for every auxiliary model. Hence they can be shared 
between MCMC chains.



x

H0

H1

H2

EE set

•

From here … … to here!

•



Parallel Equi-Energy Sampler

Each EE MCMC chains can go in parallel, with sharing of  EE sets.

Not necessary that the chains are synchronous.  

But EE-jumps should be avoided, if EE-sets are not well approximated yet.



Improved parallel strategies

Task decomposition and assignment
Orchestration
Load Balancing
Communication
Asymmetric parallel algorithm
… and much more to come
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