The Node Edge Arc Routing Problem
- applications and heuristics

Geir Hasle, Truls Flatberg, Oddvar Kloster, Eivind J. Nilssen, Morten Smedsrud
Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

EURO XXIII
23rd European Conference on Operational Research

Bonn, Germany, July 5-8, 2009
Outline

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
- Newspaper and media product distribution
- The Node Edge Arc Routing Problem (NEARP)
- Conclusions
Messages

- Many challenges for routing technology
- Computational complexity is one of them
- Several strategies for containing complexity
- The Node Edge Arc Routing Problem (NEARP, or the Multi-vehicle Capacitated General Routing Problem on a Mixed Graph) is scientifically interesting and highly relevant to industry
Challenges for Routing Technology

- Industrial awareness
- Information accessibility
- User interfaces
- Model adequacy and flexibility
- Software engineering
- Robustness
- Solution quality for large-size and complex problems
- Computational complexity
- Newspaper distribution
- City of Oslo
- 500k inhabitants
- 200k households
- 35k modules
Applied Mathematics
How to contain complexity?

- Good algorithms
- Decomposition
- Abstraction, problem reduction
- Parallel computing
- Search reduction
Abstraction

- Ignoring detail, bottom-up
- Always done, modelling
 - Euclidean distances
 - Cost is distance
 - Constant speeds
 - Identical vehicles
 - Triangle inequality
 - Linearization
 -
 - May reduce industrial relevance ...
- Aggregation
Aggregation of demand

- Collection of transportation demand
- Use of road topology
- Capacity threshold
- Other constraints

- De-aggregation and further improvement
- Multi-level aggregation / refinement

- < 10 papers in the literature
Demand aggregation based on road topology, proximity

- Oppen & Løkketangen [C&OR 2006]
- Distance/time, capacity may stop aggregation
- Issues on traversal possibilities, constraints
- Typical reduction factor of 5-20
- Needs extention to arc model (Node Edge Arc Routing Problem, NEARP)
Aftenposten 33.200 orders -> 5.600 aggregates
<table>
<thead>
<tr>
<th>Bestemmelser</th>
<th>Verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall aar</td>
<td>205</td>
</tr>
<tr>
<td>Antall aar og andre</td>
<td>0</td>
</tr>
<tr>
<td>Antall pressede Sone</td>
<td>0</td>
</tr>
<tr>
<td>Antall aar og andre</td>
<td>0</td>
</tr>
<tr>
<td>Avstand</td>
<td>3,3 km a kr.</td>
</tr>
<tr>
<td>Avstand</td>
<td>200 etasjer</td>
</tr>
<tr>
<td>Avstand</td>
<td>0 lev. i enebolig</td>
</tr>
<tr>
<td>Avstand</td>
<td>0 lev. 1 rekonstruksjon</td>
</tr>
<tr>
<td>Avstand</td>
<td>4 lev. I FK (lute)</td>
</tr>
<tr>
<td>Avstand</td>
<td>0 fellesleveringer</td>
</tr>
<tr>
<td>Totalt</td>
<td>15 min</td>
</tr>
<tr>
<td>Totalt</td>
<td>15 min</td>
</tr>
<tr>
<td>Totalt</td>
<td>0 min</td>
</tr>
<tr>
<td>Kostnad gr. abonnement</td>
<td>246,13 min</td>
</tr>
</tbody>
</table>

Kostnader:
- 0 min

Avstander:
- 3,3 km
- 12,00 km
- 0,35 km
- 0,15 km
- 0,20 km
- 0,15 km
- 0,00 km

Beregnet tid:
- 12,00 min
- 72,10 min
- 0,00 min

Resultater:
- 246,13 min

Beregning:
- Beregnet tid: 246,13 min

Beregning:
- Beregnet tid: 246,13 min

Beregning:
- Beregnet tid: 246,13 min

Beregning:
- Beregnet tid: 246,13 min
Node and Arc Routing

- For "Household routing problems" demand is really located in a node
 - mail delivery
 - newspaper and other media products
 - waste collection
 - typically modelled as CARP in the literature
- "Real" arc routing problems
 - snow removal, road cleaning, road maintenance
 - gritting, salting, ...
- Abstraction, aggregation of demand
 - mix of nodes, arcs, edges
 - travel cost (deadheading), service cost
- Node Edge Arc Routing Problem (NEARP)
 - Christian Prins and Samir Bouchenoua 2004
 - Generalization of the CVRP, CARP, General Routing Problem
 - Multi-vehicle Capacitated General Routing Problem on a Mixed Graph
 - Definition, test problems, memetic algorithm
Aftenposten 33.200 orders -> 5600 aggregates
VRP solver - Spider

- Rich model
- A single algorithmic machinery
 - construction phase
 - tour depletion phase(s)
 - iterative improvement
 - VND
 - destroy and rebuild
 - different phases, each with its own objective
- Good results on a variety of benchmarks from the literature
- More computing time than focused academic solvers
- Has been commercialized through several channels
Previous situation

- Every task (pickup, delivery, tour start/end...) has a **location**
- Topology Module (Guider) provides distance, cost and time services:
 - $d(l_1, l_2)$, $c(l_1, l_2)$, $t(l_1, l_2)$
 - Possibly time dependent
 - Not necessarily symmetric
 - Triangle inequality holds
- Special location **Anywhere**
- Tasks may have alternative locations
- One is selected in plan
Extending locations

- Previously: Only Node Locations
- New type of locations: Edge Locations
- From: Node location
- To: Node location
- Reversible: bool
Impact on topology

- $d(l_1, l_2), c(l_1, l_2), t(l_1, l_2)$

- When l_1 is edge, use l_1: To

- When l_2 is edge, use l_2: From

- Triangle inequality may not hold
Impact on operators

- When reversing subtours (2-opt, 3-opt), we reverse all reversible edge locations

- That’s it
Edge locations

- Aggregation along road segments
- Modelling Arc Routing Problems, mixed problems
- All model extensions may be used
 - Non-homogenous fleet
 - Linked tours with precedences
 - Mixture of order types: Deliveries, Pickups, Direct, Single Visits
 - Multiple time windows, soft time windows
 - Capacity in multiple dimensions, soft capacity
 - Alternative locations on tours and orders
 - Periodic orders, alternative time periods
 - Non-Euclidean, asymmetric, dynamic travel times
 - A variety of constraint types and cost components ...

- Same algorithmic machinery, no ARP operators
- Performance?
<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geografi</th>
<th>04 Askar & Barum, M1-6</th>
<th>OIV gr1 Lab</th>
<th>Ant. ruter: 1</th>
<th>Lagt inn: 16:09 (28.04.2009)</th>
<th>Startet: 16:00</th>
<th>Fødde: 16:26</th>
</tr>
</thead>
</table>
NEARP experiments

- Intel Core2 Duo T7800 2.6 GHz, 3.5 Gb memory, MS Windows XP Professional version 2002 SP 2
- Neighborhood operators
 - Insert
 - Relocate
 - 2-opt
 - 3-opt
 - Cross (2-opt*)
 - Cross-exchange (2 variants)
- Diversification: destroy and repair
- 900/1800 seconds timeout
Computational tests - NEARP

- Prins & Bouchenoua CBMix (23 instances)
- No lower bounds yet, no proven optima, only one competitor
- UB error 0.94%
- 8 best known solutions (6 new), 0 incomplete ...
- 519 seconds

- Improvements needed, exploit ARP-structure
Conclusions

- Many challenges for routing technology
- Computational complexity and detailed information are two
- Aggregation heuristics provide an important remedy
 - problem reduction
 - abstraction
- The NEARP is an interesting model, more work needed
- Robust algorithms for rich node-routing problems is a good starting point
- Needs algorithmic extensions that handle ARP structure
- Work has been started to provide good lower bounds for the NEARP
The Node Edge Arc Routing Problem
- applications and heuristics

Geir Hasle, Truls Flatberg, Oddvar Kloster, Eivind J. Nilssen, Morten Smedsrud
Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

EURO XXIII
23rd European Conference on Operational Research
Bonn, Germany, July 5-8, 2009
The conference where the sun never set

Hope to see you at

TRISTAN 7
Tromsø, Norway - 20.-25. June 2010
http://www.tristan7.org
Tromsø 69°40′58″N 18°56′34″E
Seventh Triennial Symposium on Transportation Analysis
Tromsø, Norway, June 20.-25., 2010
http://www.tristan7.org/
Deadline for abstract submission: October 31, 2009
The Collab project

- High-performance transportation optimization through parallel and collaborative methods
- Rich VRP, Dynamic SPP
- 2009-2011
- Partners
 - Group of optimization, SINTEF ICT
 - Group of Heterogeneous Computing, SINTEF ICT
 - The Agora Innoroad Laboratory, University of Jyväskylä, Finland
 - ITMMA, University of Antwerp, Belgium
 - CIRRELT, Quebec, Canada
- Temporary researcher position at SINTEF
- Funded by the Research Council of Norway / SMARTRANS
- Extensions