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Preface

The work that comprises this thesis has been performed as part of the EU-project Shapes, Ge-

ometry and Algebra (SAGA) under grant agreement n◦ PITN-GA-2008-214584. The SAGA

network consists of 10 partners including industrial companies, research institutes and universi-

ties, based throughout Europe. The broad aims of the project are to exploit mathematical results

from fields such as Algebraic Geometry, Numerical Analysis and Computer Algebra, in the

applied field of Computer Aided Design and Manufacturing (CAD/CAM). The majority of the

work in this thesis is related to Work Package I in the SAGA project, whose aim is to investigate

methods for change of representation.

Acknowledgements

I would first like to express my thanks to the main source of funding for this project, which

was through my early-stage researcher (ESR) fellowship in the SAGA project. I would also

like to thank the Research Council of Norway for the extra funding they provided (IS-TOPP,

Project number 201280). I want to express my gratitude to SINTEF for providing a stimulating

workplace for me for the past three years. I would also like to thank the other institutions

I have been involved with including Center of Mathematics for Applications (CMA) and the

Department of Informatics at University of Oslo, and the Institute of Applied Geometry at

Johannes Kepler University, Linz.

I would like to thank my main supervisor Dr. Tor Dokken whose previous work inspired the

thesis and who provided continual support and insight during the project. He should also receive

great credit for the effort he put in to coordinate the SAGA project. Thanks also go to Professor

Bert Jüttler who guided me well during my time in Linz, and with whom I collaborated on a

paper along with Dr. Tino Schulz.

At SINTEF, I am grateful to all those in the Department of Applied Mathematics. Particular

thanks go to Johan Seland for his help in installing his software for algebraic surface visuali-

sation, which has been useful in my research. Also to those in the Geometry group including

Jan Thomassen and Vibeke Skytt whose help has been valuable throughout. During my time at

SINTEF I have also had the pleasure of working alongside several colleagues from the SAGA

project including Jayasimha Bagalkote, Thien Nguyen, Peter Nørtoft, Dang Manh Nguyen, Tat-

jana Kalinka and Heidi Dahl, who have all contributed to a brighter workplace.

There are many other people I would like to thank for making the whole experience more

enjoyable. At CMA, everyone who attended the Geometry seminar, where I learnt a lot about

many different topics. Thanks to everyone who was involved in the SAGA project; the SAGA

meetings have always been fantastic experiences both professionally and socially. A big thanks

iii



also to everyone in Linz who made me feel so welcome for the three months I spent there.

Last but not least, I would like to thank my family for their support and encouragement, and

for putting up with me living abroad for so long. And my greatest thanks go to Elisabeth for her

constant support and for being there for me throughout.

iv



Abstract: In modern computer aided design (CAD) systems, there are two main representa-

tions of curves and surfaces: parametric and implicit representations. The two representations

complement each other in the sense that their properties can be used to solve different geometric

problems. Parametric curves are well suited to point generation, whereas implicit representa-

tions efficiently determine whether or not a point lies on a curve or surface. The availability

of both representations is of great advantage in answering geometric queries, such as intersec-

tion and trimming problems. Methods for change of representation are thus of great practical

importance. In this thesis we present several methods for implicitization; the process of chang-

ing from the parametric to the implicit representation. The emphasis is on methods which are

numerically stable and computationally efficient on modern hardware. We present a variety of

approaches to approximate implicitization using linear algebra. In particular, we explore the

implicitization of both rational parametric representations and envelopes - a type of curve or

surface which often has no simple parametric representation. We also introduce a new method

for the implicit representation of rational cubic Bézier curves, which can be implemented using

explicit formulas.
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Chapter 1

Background

Mathematical modelling of geometric objects plays a central role in the development of many

products in modern industry. Applications include automotive and aeronautical engineering,

architecture, computer graphics, animation and robotics. To allow for the vast range of required

shapes, modern computer aided design (CAD) systems are based on representations which en-

compass a very general set of freeform curves and surfaces. Freeform representations allow

designers to model curves and surfaces of almost any shape, whilst also giving exact represen-

tations of common geometric primitives, such as lines, ellipses, planes, ellipsoids and cylinders.

There are several ways that curves and surfaces can be represented mathematically, each of

which has properties which may be better suited to certain applications than others. By far the

most prevalent representation in CAD is the parametric form. Parametric curves and surfaces

allow for easy point generation, which can be used for rendering. Moreover, the popular Bézier

and non-uniform rational B-spline (NURBS) parametric forms also give natural geometric con-

trol of the shape using a control polygon. However, it is often necessary to perform various

geometric operations between the shapes, such as intersections, unions, differences and offsets.

For such applications, the implicit form is often more suitable. The implicit form is also best

for deciding whether a given point lies inside, outside or exactly on a given curve or surface.

For these reasons, methods for change of representation are of great practical importance.

From a human perspective, identifying the point where a curve crosses itself (such as the

curve pictured in Figure 1.3), is a trivial problem. However, from a mathematical perspec-

tive, which is necessary for computational implementation, the problem resorts to polynomial

rootfinding. This highlights a connection with the classical subject of algebraic geometry. Al-

gebraic techniques tailored for use in CAD systems emerged about 30 years ago, and have

gradually gained traction in the research community. One of the main obstacles to their practi-

cal use has been the high polynomial degrees that occur when exact operations are performed.

High polynomial degrees often lead to slow algorithms, and problems with numerical stability.

To overcome this, approximate algebraic methods have been proposed.

Generally, methods for change of representation are computationally expensive. However,

the ever increasing computational power in commodity computers opens new doors for their use

in industrial systems. In previous years, increased central processing unit (CPU) speeds have

removed the barrier for the implementation of some computationally intensive methods. More

recently, the rise of the highly parallel graphics processing unit (GPU) in commodity computers

has led to an increase in research of high quality visualization methods for implicit surfaces.
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Such progressions suggest that future CAD systems have the potential to realize the benefits of

using both parametric and implicit representations.

In the majority of this thesis we investigate approximate methods for implicitization - the

change of representation from the parametric to the implicit form. We also look at efficient

methods for exact implicitization of low degree curves. The work is motivated both as a contin-

uation of recent research into approximate algebraic geometry, and a desire to construct methods

better suited for numerical computation on modern architectures.

The thesis consists of two parts. In Part I we provide an introduction to methods for im-

plicitization and their applications. In Chapter 1, we begin with a background to the subject,

providing some historical context and continuing through to modern trends. We provide a sum-

mary of the scientific work which constitutes the main part of the research in this thesis in

Chapter 2. Since the scientific papers are mainly written from a theoretical perspective, we con-

clude Part I with a chapter highlighting applications of the methods in CAD, computer graphics

and robotics. In Part II we present four scientific papers written as a part of the EU project

ShApes Geometry and Algebra (SAGA) and the Research Council of Norway project under

the same name as this thesis. The papers consist of two journal articles (one published [10],

and one under review [8]), one conference proceedings article [9] and one book chapter [11].

We include a single bibliography for the first three chapters at the end of Part I, and separate

bibliographies for each of the papers in Part II.

1 Freeform curve and surface representation

A large proportion of the curves and surfaces used in CAD have very simple forms that also

exhibit simple mathematical representations. In 2D, these include lines, ellipses, parabolas and

hyperbolas, all of which come under the common term of conic sections. In 3D, such surfaces

include planes, spheres, cylinders and other shapes known as quadrics. In both the 2D and

3D cases, these shapes can be represented both parametrically and implicitly. However, more

advanced models, such as those seen in automobile design, aircraft wings, ship hulls and wind

turbines require more general freeform representations. The development of systems for the

design of freeform curves and surfaces has a long history. Before computer aided design had

been popularized, early methods for curve representation in design applications utilized conic

sections [33, 45]. Motivated by the increased availability of affordable computing power, more

advanced techniques for curve and surface representation appeared around the 1960s. Com-

puter aided geometric design (CAGD) was the term given to the research of such techniques.

In this section we describe two of the most popular methods for freeform curve and surface

representation in CAGD.

1.1 Parametric representations - Bézier and Splines

Since the conception of CAGD in the 1960s and 1970s, the parametric representation of curves

and surfaces has been the staple of CAD systems. De Casteljau and Bézier independently

developed methods for the representation of a particular type of polynomial parametric curve,

known today as Bézier curves. Bézier curves, of a given degree n, can be defined in terms of

Bernstein polynomials (Bi(t))
n
i=0 and a set of control points (ci)

n
i=0. The univariate Bernstein

4
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Figure 1.1: Cubic Bernstein basis functions and a polynomial cubic Bézier curve

polynomials of degree n have the following definition:

Bn
i (t) =

(

n

i

)

ti(1− t)n−i, t ∈ R.

The Bézier curve, normally defined for t ∈ [0, 1], is represented by

p(t) =
n

∑

i=0

ciB
n
i (t).

Figure 1.1 shows an example of the Bernstein basis functions for the cubic case (n = 3), and a

cubic Bézier curve. An important generalization of the polynomial1 Bézier curve is the rational

Bézier curve. These have a similar definition, but weights are defined that adjust the influence

each control point has on the curve. The rational curve is given by,

r(t) =

∑n
i=0wiciB

n
i (t)

∑n
i=0wiBn

i (t)
.

Rational curves are necessary for the exact parametric representation of certain shapes, such as

circles in the plane and spheres and cylinders in 3D.

The wide adoption of Bézier curves is mainly due to their geometric properties - the curve

naturally approximates the piecewise linear interpolant of the control points, known as the con-

trol polygon. Moreover, Bernstein polynomials have been shown to have superior numerical

properties, and there exist stable recursive algorithms for their evaluation, such as the de Castel-

jau algorithm. Many of these properties result from the polynomials forming a non-negative

partition of unity; that is

n
∑

i=0

Bn
i (t) = 1 and Bi(t) ≥ 0, for all t ∈ [0, 1].

However, when using Bézier curves, if more control points are required, the degree must be

raised. For higher degrees the control polygon exhibits less influence on the curve, and the

1Polynomial Bézier curves are also known as non-rational or integral Bézier curves.
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Figure 1.2: Bicubic tensor-product spline surface of a propeller blade

algorithms become more computationally intensive. Although there are several applications of

higher degree curves, curves of degree three or less are most prevalent.

To provide more design flexibility without increasing the degree, spline curves have been

introduced. These curves can be thought of as piecewise Bézier curves, where the continuity

between any two pieces is automatically ensured. The definition is given in terms of the B-spline

basis, a generalization of the Bernstein basis, which shares many properties such as partition

of unity and the existence of a recursive algorithm for their evaluation, known as the Cox-de

Boor algorithm. In the most widely used form, splines appear as non-uniform rational B-splines

(NURBS). Like for Bézier curves, the extension from splines to NURBS provides the possibility

to model circles and other geometric objects exactly. NURBS curves can always be split into

a series of rational Bézier segments by a process known as knot insertion. For this reason, the

majority of this thesis will deal with only the case of rational Bézier curves and surfaces.

The development of parametric surfaces has followed essentially the same path as for curves,

with two main generalizations - triangular and tensor-product surfaces. The polynomial bases

for these surfaces are given respectively by,

Bn
i,j,k(s, t, u) =

(

n

i, j, k

)

sitjuk, i+ j + k = n, s+ t+ u = 1,

where s, t and u denote barycentric coordinates, and

Bn1,n2

i,j (s, t) =

(

n1

i

)(

n2

j

)

Bn1

i (s)Bn2

j (t), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, (s, t) ∈ Ω

whereBn1

i (s), andBn2

j (t) denote univariate Bernstein basis functions and Ω = [s0, s1]× [t0, t1].

The surfaces are defined by a linear combination of these basis functions with control points in

R
3. Tensor-product surfaces have received the most attention since their definition is much

simpler than the triangular case, and properties can often be determined by considering the

two univariate cases separately. Figure 1.2 shows an example of how tensor-product NURBS

surfaces can be used in the design of industrial parts.

Planar curves and surfaces in 3D are examples of hypersurfaces in dimensions 2 and 3

respectively. In a general dimension n, a hypersurface is defined as a manifold of dimension
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n−1. Although for CAGD applications we are normally interested only in curves and surfaces,

applications in robotics, for example, often require higher dimensional consideration.

The parametric form is best suited for point generation. In particular, using rational parametriza-

tions, one can easily generate points along a curve or surface using only a few arithmetic op-

erations. Other parametrizations, such as those using trigonometric functions, are possible;

however, rational parametrizations have found most use since they can represent a large class

of shapes and can be evaluated accurately and efficiently.

1.2 Implicit representations

Implicit curves and surfaces (in R
2 or R3 respectively), are represented as the set of points that

satisfy some equation

q(x) = 0,

for a scalar valued function q, and variables x = (x1, . . . , xd), where d = 2, 3. When the

function q is a polynomial, the curve or surface thus defined is termed an algebraic curve or

surface. In this thesis we restrict our attention to algebraic curves and surfaces, although those

defined by other functions (e.g., radial basis functions) have also found a number of applications

[52]. It is also possible to define space curves implicitly, by the intersection of two implicit

surfaces in R
3, however this requires two polynomials.

A polynomial of total degree n in two variables x and y can be given in power or monomial

form as

q(x, y) =
∑

0≤i+j≤n

bi,jx
iyj.

We can also use the more general form

q(x, y) =
∑

0≤i+j≤n

ci,jBi,j(x, y),

where the set {Bi,j(x, y) : 0 ≤ i + j ≤ n} is a basis for polynomials of total degree n. The

implicit curve is then given by

I = {(x, y) ∈ R
2 : q(x, y) = 0}.

In modern CAGD the Bernstein basis is often chosen for implicit representations, whereas more

theoretical work in algebraic geometry often uses the monomial basis. The use of the Bernstein

basis for implicit representations was apparently first suggested by Sederberg [61, 62], and

advocated by Dokken for finding numerically stable implicit approximations [26, 27]. It has

also been used by Floater for an explicit method for rational cubic curve implicitization [37].

Classical results from algebraic geometry were generally considered in projective space over

the complex numbers, as opposed to affine space over the real numbers, which is the standard

in CAGD. As a result, theorems such as Bézouts theorem, give upper bounds on the number of

intersections of real curves in affine space [28].

For surfaces we need to define polynomials in three variables. The monomial basis has a

simple trivariate extension. The Bernstein basis can also be extended in a natural way to either

tetrahedral or tensor-product domains.
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Figure 1.3: Bicubic tensor-product Bernstein basis functions and an implicit curve defined by a

bicubic tensor-product Bernstein polynomial with the stated coefficients.

The set of implicit algebraic curves and surfaces encompasses a much wider range of curves

and surfaces than can be defined parametrically. For example, in an algebraic surface of total

degree six, there are 83 degrees of freedom, giving a huge amount of flexibility to model a large

class of surfaces, including freeform surfaces. In Figure 1.4 it can be seen that implicit surfaces

even of low degree can represent relatively complex geometries and topologies. Moreover, the

implicit representation is closed under several geometric operations such as intersection, union,

difference and offset. If parametric representations are used, approximation of such operations

is necessary, whereas implicit representations have the potential of giving exact results [40, 63].

Despite the useful properties it exhibits, the implicit representation has found limited use

in CAD systems. There are several practical reasons for this. A major drawback of implicit

curves and surfaces is that it is difficult to directly control the geometry by manipulating the

coefficients of the defining polynomial. Although using a Bernstein representation gives some

geometric control of the implicit form, the mechanism for design is still a great deal less intuitive

than the parametric control polygon. Moreover, the paradigm of design using control polygons

is ubiquitous in modern CAD systems. Thus to be of practical use, implicit representations

should be viewed as a complement to the parametric form, rather than an alternative. Other

problems with the implicit form include the high polynomial degrees often present when using

exact implicit representations of parametric forms, particularly when it comes to surfaces. This

leads to problems with computational efficiency and numerical stability.

These challenges mean that algorithms dealing with implicit representations still generate

a great deal of research interest. For example, visualization of implicit surfaces has been the

subject of several recent research papers [46, 47, 67]. Using such techniques, algebraic surfaces

of moderately high degree can be visualized in real-time on today’s graphics hardware. These

techniques were not possible on previous generations of commodity computers which mainly

utilized serial CPU computations, and rely heavily on the possibility to compute in parallel.

The extension to piecewise implicit representations is less natural than the spline represen-

tation for parametric curves, not least in defining regions for where the representation should be

defined. However, some results in that direction, such as A-splines, are available [5, 7, 44, 61].

We will only consider implicit representations using a single polynomial.
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Figure 1.4: An implicitly defined surface of total degree four, visualized using the POV-Rayray

tracer [53].

1.3 Change of representation

It is well known that any rational parametric curve or surface can be written in implicit form, the

process of which is known as implicitization. The conversion in the opposite direction, known as

parametrization, is not always possible, since the implicit representation encompasses a larger

class of shapes. Methods for parametrization of algebraic curves and surfaces have generated

some research interest. In [1, 2, 3] methods for computing rational parametrizations of curves

and surfaces are given, whenever the curve or surface is rational (that is, has genus zero). A

method for approximating any algebraic surface by a rational parametrization is discussed in

[77]. As mentioned in the previous sections, parametric forms have become the prevalent repre-

sentation at the design stage of an application. It is therefore the problem of implicitization that

has received most attention from the research community. The main focus of this thesis is on

methods for implicitization. In the following section we give an overview of existing methods

for implicitization.

Another important problem in CAGD is that of inversion. Inversion formulas are used

to determine the parameter value of a particular point which is known to lie on the curve or

surface. These are of particular use in intersection algorithms, for finding the parameter values

corresponding to intersection in affine space. Inversion formulas are undefined at singularities

and are not useful for points which are not known to lie on the curve or surface.

1.4 Alternative curve and surface representations

Although implicit and parametric representations define the majority of geometric objects in

CAGD, there also exist alternative representations. For example, in computer animation, sub-

division surfaces are the representation of choice. In a similar way to Bézier curves, a control

polygon is defined which gives geometric control of the curve or surface to the designer. Pre-

viously subdivision surfaces were not regarded as compatible with NURBS representations.

However, recent work on defining such compatibilities was presented in the thesis of Cashman

[17]. Since the main applications of implicitization are within CAGD and robotics, we do not
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consider subdivision curves and surfaces here.

As well as rational parametric forms, there exist geometric objects which may not be given

explicitly in either parametric or implicit form. Examples of these include offsets, envelopes and

point clouds. Although some rational curves and surfaces have rational offsets, this is not true

in general. However, square-root parametrizations of offsets can always be defined. Envelopes,

which define a superset of offsets, usually have no simple parametric representation. A planar

envelope curve is defined as a curve which touches all members of a given family of curves in

the plane. They are useful, for example, in defining boundaries. In Paper III of this thesis we

discuss a method for the implicitization of envelope curves. Implicitization of point clouds is

also possible using the methods in Paper II. In the case when the points are generated from a

rational parametrization, we give results on the quality of the approximation depending on the

point distribution in the parameter domain.

In the following section we give an overview of several classical and modern approaches to

the problem of implicitization.

2 Methods for implicitization of rational curves and surfaces

Research into implicitization has an interesting history that goes back at least as far as the early

part of the nineteenth century. In this section we look at how several approaches have been

developed from the point of view of both algebraic geometry and CAGD. We will discuss both

methods that require symbolic computation as well as those more suited to numerical imple-

mentations. A more in depth review of exact implicitization methods in symbolic computation

can be found in [43]. For the sake of simplicity, in the majority of this section we will discuss

implicitization of curves. However, most methods are directly extensible to surfaces, although

some of the resultant based methods do become more complicated.

2.1 Elimination theory

One approach to implicitization is to think of it as the elimination of the parametric variables.

For example, consider the parametric curve given in a Cartesian coordinate system by

p(t) = (x(t), y(t))T = (t, t2 − t+ 1)T , t ∈ R.

Since we have x(t) = t, the parametric curve traces out the graph of y(t). Simply by substituting

t = x in the equation for y(t) we get y = x2 − x+ 1. Thus, the polynomial q(x, y), whose zero

set corresponds to the same curve is given by y − x2 + x− 1. This is a simple example of how

the parametric variable can be eliminated in order to obtain the implicit equation.

For higher degree curves and surfaces, the elimination of variables becomes more difficult.

Using a similar technique of solving for one variable, then substituting into the other, the meth-

ods quickly become complicated. This is because polynomial solving is non-linear by nature for

degrees higher than one. However, it turns out that the problem can be solved using only linear

techniques. Elimination theory provides a systematic method for the treatment of elimination

of variables in very general settings.
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Algebraic geometry and resultants

One approach to solving the elimination problem is that of resultants. A resultant can be thought

of as a tool to test whether a set of polynomials share any common roots. Resultants first ap-

peared in algebraic geometry in the mid nineteenth century [18, 72]. Original methods for com-

puting the resultant led to the definitions of the Sylvester matrix and the more compact Bézout

matrix. The following is a brief discussion of resultants for use in rational curve implicitization.

For a more extensive review, we refer the reader to [23, 39, 63].

Consider univariate polynomials f(t) = f0 + · · · + fmt
m and g(t) = g0 + · · · + gnt

n, with

fm 6= 0 and gn 6= 0. The resultant of these can be given as the determinant of the Sylvester

matrix, which is defined as follows.

Definition 1. The Sylvester matrix is given by

Syl(f, g) =































fm fm−1 · · · f0
fm fm−1 · · · f0

. . .
. . .

fm fm−1 · · · f0
gn gn−1 · · · g0

gn gn−1 · · · g0
. . .

. . .

gn gn−1 · · · g0































where all omitted entries are zero.

It can be shown that the two polynomials share a common factor if and only if the determi-

nant of the Sylvester matrix is zero [23]. An alternative method for computing resultants is via

the determinant of the Bézout matrix.

Definition 2. Let p = max(m,n). The Bézout matrix Bez(f, g) is given by (bij)
p,p
i=0,j=0 where

bij =

min(i,p+1−j)
∑

k=0

fj+k−1gi−k − fi−kgj+k−1

and fi = 0 ifm < i and gj = 0 if n < j.

The Sylvester matrix has a very simple definition in terms of the coefficients of the two

polynomials, but is in general of dimension (m + n) × (m + n). Although the Bézout matrix

is slightly more complicated in definition, the matrix has dimension max(m,n) ×max(m,n).

Thus, for polynomials with equal degree, the Bézout matrix contains one quarter of the elements

of the Sylvester matrix (although the Sylvester matrix exhibits some degree of sparsity). Since

the bottleneck in resultant computation is in computing the determinant, the smaller Bézout

matrix is often preferred in practice.

To put elimination using resultants in the perspective of implicitization, consider a rational

parametric planar curve given by

p(t) =

(

f(t)

h(t)
,
g(t)

h(t)

)T

, (1.1)
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where f(t) = f0 + · · ·+ fnt
n, g(t) = g0 + · · ·+ gnt

n and h(t) = h0 + · · ·+ hnt
n are univariate

polynomials of degree n, and GCD(f, g, h) = 1. The implicit equation of the curve is simply

given as the resultant of the polynomials xh(t) − f(t) and yh(t) − g(t) [21]. In this case,

the elements of the resultant matrices will have entries in the variables x and y. That is, the

determinant of the matrix will then define a polynomial q, in x and y which is zero whenever

the equations xh(t) − f(t) = 0 and yh(t) − g(t) = 0 are satisfied (i.e., an implicit equation

containing the parametric curve).

For the implicitization of surfaces in R
3, methods for the elimination of two variables from

a set of three polynomials are necessary. For this purpose the Macaulay and Dixon resultants,

which were developed in the early part of the twentieth century, have been used [24, 48, 51].

An alternative tool for elimination of variables is that of Gröbner bases. Gröbner bases were

developed by Buchberger in 1965 [12], and can be used to solve a variety of problems, including

implicitization and inversion. Generally, methods using Gröbner bases are slow in comparison

to resultant based methods, especially for space curves and surfaces. We will therefore not

discuss them further here, but refer the reader to [38] for details.

Reintroduction of elimination theory in CAGD

Many of the classical results on elimination theory had been lost to academic community until

the thesis of Sederberg was published in 1983 [60]. Indeed, it appeared that the CAGD commu-

nity was previously unaware that closed form solutions to the implicitization problem existed.

Motivated by applications in CAGD, Sederberg reintroduced the community to the concepts of

elimination using resultants [39, 63].

Despite the growing interest in classical methods of algebraic geometry, several obstacles

hindered the practical use of the algorithms. Some of the problems, highlighted in the papers

[26, 39, 64] among others, include the following:

• Additional solutions. It is often the case that the implicit polynomial defined by resultant

computation contains factors that are not part of the implicit equation of the curve. Thus,

polynomial factorization is required to find the irreducible polynomial of interest. Fac-

torization of polynomials is an undesirable operation in CAGD, especially when using

floating points coefficients. This is because small perturbations in the coefficients of a

reducible polynomial, which occur when approximating with floating point numbers, can

render it irreducible.

• Slow algorithms. Computation of the determinant of a matrix with symbolic entries

entails O(n!) operations, where n is the dimension of the matrix. Thus, the methods are

highly dependent on the size of the matrix, and quickly become slow for high degrees.

Often the evaluation times will be unreasonable for applications, and, moreover, symbolic

computation is not always easily available outside computer algebra systems.

• Numerical stability. For reasons of performance, it is often desirable to use floating

point numerics. In CAGD, rational parametric curves and surfaces are mostly given in

Bernstein form, whereas the traditional techniques for implicitization typically use the

monomial basis. Unfortunately, the basis transformations between Bernstein and mono-

mial bases are ill conditioned, and a loss of accuracy is to be expected [35].

12



• High polynomial degrees. As described previously, the exact algebraic degrees of sur-

faces can be undesirably high. Sometimes (e.g., if symmetries occur), the algebraic de-

gree will reduce, but extra factors in the implicit equation will occur. High degrees also

lead to issues with performance, and numerical stability.

• Base points. A base point is defined as a point where (f(t), g(t), h(t)) = (0, 0, 0). In

the case that base points occur, traditional methods for to resultant computation will fail

(the implicit polynomial will be identically zero). The existence of base points, in fact,

simplifies the implicit polynomial in the sense that it reduces the algebraic degree. It

should be noted that base points are a common occurrence even in freeform surfaces

[64].

• Unwanted branches and self-intersections. Whereas parametric curves and surfaces are

defined in a specific parameter domain, implicit curves require a 2D region of interest to

be defined. It is quite possible, and often the case, that extra branches or self-intersections

occur that are not present in the parametric definition. This is, however, a feature of exact

implicitization rather than a problem with any specific method. Further techniques such

as approximation are required in order to remove them.

Some of these challenges were resolved in the subsequent literature, while some remain to-

day. We will now describe existing approaches which attempt to avoid some of these problems.

Because of the complexity of computing determinants, finding more compact forms of the

resultant matrices has been a large area of research. Methods where the dimension of the matrix

is reduced and the degree of the entries is increased, were introduced in [64]. These techniques,

known as moving curves and surfaces, also deal with the cases when base points occur, and in

fact reduce in complexity in these cases. Further work in this direction has led to the definition

of µ-bases [19, 20, 69]. We now briefly summarize the concept of µ-bases, which is given in

more detail in [19]. A moving line L(x, y; t) = 0 is a one-parameter family of lines given by

L(x, y; t) = A(t)x+ B(t)y + C(t),

for univariate polynomials A, B and C. Consider again the parametric curve (1.1). Any such

curve can be shown to have a pair of moving lines p(x, y; t) and q(x, y; t) with the following

properties:

1. p and q follow the curve (i.e., the point p(t0) lies on both p(x, y, t0) and q(x, y, t0) for any

t0),

2. any other moving line r, which follows the curve can be expressed as a combination of

r = h1(t)p+ h2(t)q, for univariate polynomials h1, h2,

3. p and q have the lowest degrees of any pair of moving lines with properties 1 and 2.

Such a pair of moving lines is known as a µ-basis. A resultant of a µ-basis can be defined which

gives the implicit equation of the curve. The reason for interest in µ-basis implicitization is that

the resultant matrix is much smaller. In general, the matrix dimensions will be (n−µ)×(n−µ),
where 0 ≤ µ ≤ ⌊n/2⌋. Potentially, this can result in matrices with 16 times fewer entries than
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the Sylvester matrix. Moreover, efficient algorithms for µ-basis computation exist in the case of

curves. Unfortunately, efficient methods for µ-basis computation of general freeform surfaces

are still unavailable. There is a great deal of current interest in this research topic. µ-bases can

also be used for solving other geometric problems such as locating singularities.

Another method to avoid the costly determinant computation is to keep the implicit repre-

sentation in matrix form [16, 15]. In matrix based representations, a single matrix is defined

(with entries in the implicit variables) whose rank drops exactly when evaluated on the curve or

surface. For many problems in CAGD, such as surface intersection, these matrix representations

can be used directly, without the need for symbolic expansion [13].

2.2 Numerical methods for implicitization

As the prospect of implicitization in CAGD became more realistic, additional methods began

appearing in the literature. Closer cooperation between academia and industry was also formed

[28]. Due to the majority industrial systems using floating point arithmetic, a major focus was

on numerical methods for implicitization. The techniques that we discuss in this section have

relations to both approximation and interpolation theory, as well as the classical theory from

algebraic geometry.

Approximate Implicitization

In 1997 a new method for approximate implicitization was introduced in the doctoral thesis of

Dokken [26]. Utilizing concepts that were widely used in CAGD, such as Bézier and Bern-

stein representations, the algorithms were well suited to numerical implementation. Moreover,

guarantees for the numerical stability were proven. Dokken’s method allows the degree of

the implicit polynomial to be chosen, and the algorithm proceeds to find an algebraic approxi-

mation. Whilst being designed to provide approximations, the method also has the potential to

provide exact implicitizations if the chosen degree is high enough and exact precision arithmetic

is used. Moreover, the method exhibits very high convergence rates, justifying the suitability

for approximate approaches to implicitization.

Methods for approximate implicitization look to find a low degree implicit representation

which minimize the algebraic error to the parametric curve or surface. That is, to find a poly-

nomial q, which minimizes the value of |q ◦ p(t)| for t in some domain Ω (e.g., Ω = [0, 1] for

Bézier curves). Minimizing the error in affine space is a computationally intractable problem,

but the algebraic error provides a good approximation to the geometric error away from sin-

gularities [27]. The original approach defined an upper bound on the absolute algebraic error

over the entire domain thus giving an approximation to a uniform minimization problem. An

alternative approach, known as weak approximate implicitization, which minimized the least

squares error was introduced later [22, 29]. Both approaches use the singular value decompo-

sition (SVD) for the numerical approximation. The methods are very general, in the sense that

they can implicitize or approximate any rational-parametric hypersurface, whether or not base

points occur. The degree can be chosen freely, and constraints can be added to the approxima-

tion. It should be noted that finding the optimal choice of degree is a non-trivial problem. Since

extensive introductions to approximate implicitization are provided in Papers I and II [9, 10] of
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= 4w2
1 − w0w2

Figure 1.5: Implicit representation of quadratic Bézier curves

q(x, y) := 4w2
1L01(x, y)L12(x, y)− w0w2L02(x, y)

2 = 0.

this thesis, we omit further details here.

Alternative approaches to approximate implicitization have also been introduced. Wurm

and Jüttler introduced a method in [42, 76], which enabled approximation of scattered data by

implicit surfaces. Shen et. al. introduced the concept of approximate µ-basis, which led to a

different approach to approximate implicitization [69]. Their work also has applications to the

degree reduction of curves.

Due to many industrial CAGD problems not having exact solutions, approximation was

already a well established and accepted paradigm in the community. There exist standards for

acceptable tolerances in geometric models, which define when two points can be considered as

one [28]. Thus, the potential for the practical realization of approximate algebraic methods in

CAGD is great [41]. The previous EU project GAIA (2002-2005), confirmed feasibility of the

methods by conducting experiments using industrial data [68, 78].

Extensions to the work on approximate implicitization, particularly Dokken’s method, form

a large part of this thesis.

Explicit methods for low degree curves

For low degree curves, explicit methods for implicitization are available. By making a judicious

choice of basis (and/or coordinate system), simple expressions for the implicit polynomial co-

efficients can be found. The simplest case is of course that of a line, which has a trivial im-

plicitization. The implicit representation of any non-degenerate conic section, defined in Bézier

form as

p(t) =

∑2
i=0 ciwiB

2
i (t)

∑2
i=0wiB2

i (t)
,

is given by the following equation [34]:

4τ0τ2w
2
1 − τ 21w0w2 = 0,

where τ0, τ1 and τ2 denote the barycentric coordinates defined by the triangle with vertices

c0, c1 and c2. A diagrammatic representation of such a method is pictured in Figure 1.5. For a

clarification of the meaning of Figure 1.5, we refer the reader to Paper IV.

How best to extend the above method to cubic and higher degree curves is an interesting

problem. For rational cubic curves, one approach, described by Floater in [37], is to choose a

Bernstein basis over the triangle defined by the points c0, c3 and the intersection point p, of the

lines L01(x, y) = 0 and L23(x, y) = 0 (see Figure 1.6). In terms of this basis, the coefficients

of the implicit polynomial can be given by explicit formulas. In particular, four of the 10
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c0

c1

c2

c3

p

Figure 1.6: Floater’s rational cubic implicitization method, q(τ0, τ1, τ2) :=
∑

i+j+k=n bijkB
3
ijk(τ0, τ1, τ2) = 0, where bijk are defined explicitly. The barycentric

coordinate system is defined by the points c0, p and c3 [37].

coefficients are immediately zero; thus, some sparsity in the implicit polynomial is exhibited.

Another approach to the implicit representation of cubic curves is presented in Paper IV of this

thesis. Floater’s method suffers from problems when the tangent lines to the curve at the end

points c0 and c3 are parallel, due to the point p being undefined. Also, if either of c1 or c2 lie

on the line between c0 and c3, the coordinate system collapses. The method of Paper IV fails

only in the collinear case.

There also exist explicit methods which associate a cubic curve with the projective image

of one of three canonical curves [46]. These methods, go back to the nineteenth century [57],

but have been utilized recently by Loop and Blinn [46] for graphics applications. They define

cubic curves in terms of a single homogeneous implicit equation

k3 − lmn = 0. (1.2)

where k, l,m, n are the equations of lines associated with the double point and inflection points.

Although for general rational cubic Bézier curves the equation is not trivial to define, there are

certain computational advantages in using this method, due to the simplicity of the equation

(1.2).

Interpolation and approximation of point data

The theory of interpolation with implicit curves and surfaces, has some interesting and non-

trivial features. Using Lagrange interpolation as a curve implicitization method can essentially

proceed in one of two ways:

The first method, which we say uses on-curve data, looks for a non-trivial polynomial which

vanishes at sufficiently many points along the parametric curve. That is, for a parametric curve

p, and sample parameters (ti)
N
i=0, we find a polynomial q : R2 → R such that q(p(ti)) = 0

for all i = 0, . . . , N. The number of nodes N, required for exact implicitization, is discussed in

Paper II.

The second, which we say uses off-curve data, is the method described by Marco and Mar-

tinez [50, 51]. In their approach, resultants are computed numerically at sufficiently many
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sample points (xi, yj)
n1,n2

i,j=0,0 in order to generate enough data to solve a multivariate Lagrange

interpolation problem. Essentially, the data generated defines the implicit polynomial in a La-

grange basis and the method proceeds to generate the monomial coefficients by using a basis

transformation matrix (i.e., a Vandermonde matrix). Computing the determinant of a numerical

matrix is much less computationally intensive than that of a symbolic matrix. One reason for

this is that for numerical matrices, LU-decomposition is possible, where the matrix is decom-

posed into the product of a lower and an upper triangular matrix. The determinant is then given

by the product of the entries on the diagonals of the matrices. It may be noted that the approach

of Marco and Martinez can be used with any type of resultant matrix.

For a given curve, an example of the two methods is shown in Figure 1.7. Using the on-

curve method, the data is all known to be zero (since it lies on the curve) but we evaluate the

parametric curve at nodes in the parameter domain, in order to find the interpolation nodes in

R
2. The implicit coefficients are then given by the solution to a homogeneous linear system.

In the off-curve method, the nodes are predetermined (e.g., on a uniform grid), but we have

to evaluate the resultant in order to generate data for the interpolation. Both methods are also

suitable for the implicitization of general hypersurfaces, although the off-curve method relies

on suitable resultants being defined.

We discuss some aspects of on-curve interpolation and approximation in Paper II, and its

connection with Dokken’s approximate implicitization. In particular, for exact implicitization,

care needs to be taken to ensure that the interpolation points lie in general position, so that the

unique implicit polynomial can be found. It is well known that any five points in the plane, with

no four collinear, determine a conic. This, is due to the fact that there are five degrees of freedom

in the implicit representation of a conic (in fact, there are six coefficients, but since implicit

representations are unchanged by scalar multiplication, one degree of freedom is removed).

The equivalent statement for cubics is complicated by the famous Cayley-Bacharach theorem

from algebraic geometry [30].

Theorem 1 (Cayley-Bacharach theorem). Consider the nine points in which two implicit planar

cubic curves, I1 and I2, intersect. Then any cubic curve I3 which passes through any eight of

the points, also passes through the ninth.

When sampling from a rational parametric curve, problems with finding points in general

position can be avoided by a small oversampling [10]. This is the reason we use 10 interpolation

points, rather than nine, in the example of Figure 1.7.

Both methods can also be used for approximate implicitization. In general, the on-curve

method provides better approximations than the off-curve method. In fact, the on-curve method,

which performs the approximation in the univariate parameter domain, can be shown to exhibit

the same high convergence rates as Dokken’s method. For the off-curve method, the approxi-

mation would be made over the entire 2D triangular domain of the basis functions. Thus, the

error should be expected to be greater in this case. In Paper II, we also show how the Lebesgue

constant from approximation theory is important in judging the quality of implicit approxima-

tions.

Hermite interpolation using implicit surfaces has also been investigated [4, 6]. These meth-

ods attempt to interpolate both position and derivative data, in order to obtain C1-continuous

curves or surfaces. Such requirements can also be met using approximate implicitization, by
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Figure 1.7: Interpolation using parameter-uniform on-curve data (left) and uniform off-curve

data (right). The basis for the implicit polynomial is a Bernstein basis over barycentric coordi-

nates of a bounding triangle.

adding constraints to the approximation [26]. The constraints can be added before or after ap-

proximation, the former via Lagrangian multipliers, and the latter by combining lower order

approximations [29, 73].

2.3 Alternative implicitization methods

Sparse implicitization

The high convergence rates of Dokken’s approach to approximate implicitization are due to

there being many degrees of freedom in the implicit polynomial. This was highlighted in the

proofs of the convergence rates given in [26, 29]. The number of degrees of freedom in a rational

parametric planar curve of degree n is much less than the number of degrees of freedom in an

implicit polynomial of total degree n (given by
(

n+2
2

)

−1). In general, there will exist a basis for

the implicit description where many of the coefficients are zero. If it is known, a priori, which

of these coefficients are zero, the complexity of the implicitization problem can be reduced; in

some cases substantially [32].

In [32], techniques were introduced which exploited sparsity in the monomial basis repre-

sentation of the implicit equations. In order to predict the support of the implicit function (i.e.,

the set of monomials which have non-zero coefficients in the implicit polynomial), the struc-

ture of the parametric functions can be analysed. The techniques refer back to the literature

on toric elimination theory and utilize the concept of the Newton polygon. Support prediction

methods are also well suited for implementation alongside approximate implicitization [10, 31].

Whereas in approximate implicitization we choose to reduce the total degree, techniques using

support prediction can remove any other monomials from the basis, even those which are not

necessarily of high degree.

However, challenges still remain in integrating the methods for data from industrial systems.

One of the main problems with using sparsity in practice is that freeform curves and surfaces

do not, in general, exhibit a high degree of sparsity in the monomial basis. Also, since current

algorithms only work in the monomial basis, basis transformations are required, which have
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potentially ill conditioned behaviour. Using a change of coordinates can introduce a certain

level of sparsity, but how best to achieve this appears to be an open problem.

Implicitization of envelope curves

Recently, there has also been an increase in interest of implicitization of envelope curves and

surfaces, which have applications in robotics [56, 59]. Consider a rational family of rational

curves defined by

p(s, t) =

(

f(s, t)

h(s, t)
,
g(s, t)

h(s, t)

)

, (s, t) ∈ [s0, s1]× [t0, t1].

Either s or t can be thought of as a time-like parameter and the remaining parameter (either t or

s, respectively), parameterizes the curves. The envelope is a curve which touches all members

of the family p. It corresponds to the parameter values (s, t), where the Jacobian becomes

singular [59]. A polynomial function h(s, t), called the envelope function, can be defined whose

zero set corresponds exactly to such points. In general, the envelope does not have a simple

parametrization so methods for implicitization of parametric curves are not relevant. Recently,

Schulz and Jüttler showed that approximate implicitization can be adapted to envelope curves

[59]. They showed that if q is the exact implicit representation of the envelope, then

q(p(s, t)) = λ(s, t)h(s, t)2

for some unknown function λ. Thus, finding polynomials q and λ which approximate this equa-

tion gives methods for approximating the envelope.

A distinctive feature of envelope curves, like surfaces, is the high degrees which occur

[25]. Envelopes are also of interest in higher dimensions, where the problem of high degrees is

exacerbated even further. Approximate implicitization is therefore an important tool in working

with such manifolds.

Recent advances

Among the aims of the EU project SAGA, is to conduct further research into methods for

change of representation. There are several considerations that should be taken into account in

the development of implicitization algorithms for modern CAD systems, and that have guided

the work in this thesis. These include:

• The algorithms should be suitable for floating point implementation, in order to obtain

satisfactory performance. This requires algorithms that are numerically stable, and avoid

reliance on symbolic computation. For ease of implementation, the methods should be

based on numerical algorithms which are available on a number of platforms (e.g., fast

Fourier transform (FFT), singular value decomposition (SVD)).

• It is generally required that the performance of the algorithms scales up with improve-

ments in modern hardware. Since the modern trend in improved computing performance

is through parallelizability (i.e., implementation on GPUs), algorithms that are parallel in

nature are desired.

19



• The methods should be robust, in the sense that they do not fail for certain examples.

In particular, all freeform NURBs based curves and surfaces should be implicitizable,

whether or not they exhibit base points. In addition, there should be the potential for

implicitization hypersurfaces in higher dimensions.

• The methods should have the potential for exact results, if implemented in the correct way.

They should also be able to produce approximations for cases where the exact degrees are

considered too high.

All methods presented in Part II of this thesis are suitable for numerical implementation

and do not rely on symbolic computations. We discuss, where relevant, how parallelism can

be exploited and have implemented this in some cases. Prototype implementations have been

tested using several programming languages including Python, C++ and CUDA.
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Chapter 2

Summary of papers

In this section we give a summary of the main contributions of the papers in Part II. We dis-

cuss the concepts within the context of the thesis, and give some supplementary details to aid

the intuition behind the approaches. For each paper we also provide some comments on the

work with the benefits of hindsight, discussing potential improvements and directions for future

research.

Paper I: Approximate Implicitization of Triangular Bézier Sur-

faces

This paper serves as an introduction to the theory of approximate implicitization, with a new

application: triangular Bézier surfaces. We revisit the existing theory of Dokken’s original and

weak approaches to approximate implicitization [26, 29]. While Dokken’s original method is

directly extensible to tensor-product domains, the extension to triangular (and more generally

simplex) domains requires a fuller formulation and discussion.

Triangular Bézier surfaces have various applications in areas such as computer graphics and

CAD, amongst others. Despite tensor-product surfaces being favoured in many systems, ra-

tional triangular surfaces have the benefit that they can represent quadrics exactly, and without

singular parametrizations. The problem of implicitization of triangular surfaces is thus a natural

one. Being based on the properties of Bernstein polynomials, the methods we discuss in this pa-

per are numerically stable. This contrasts with several previous methods which use potentially

ill-conditioned basis transformations in order to perform the implicitization in the monomial

basis [35].

In general, a rational parametric triangular surface of degree n will have implicit degree n2

[40]. Thus, even for moderate degree parametric surfaces, the implicit degree increases rapidly.

Moreover, the number of degrees of freedom in an exact implicit representation grows on the

order of O(n6), justifying approximation in all but the lowest degree cases.

In the paper, both the original and weak forms of approximate implicitization are described

in detail. We highlight symmetries in the algorithm that considerably reduce the number of

integrals required from O(m6) to O(m3), wherem is the implicit degree of the approximation.

Due to the arrangement of the algorithm, this is most useful when numerical integration is used.

We also present a hybrid method, whereby we simultaneously approximate tensor-product and
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triangular patches with the same algebraic surface.

Comments

This paper was written prior to the more general approach of Paper II [10]. Some of the methods

in that paper can also be generalized to triangular Bézier surfaces. In particular, the result

on Lebesgue constants from [10] is of interest, since good point sets on triangular, and more

generally simplex domains, are known [75]. In addition, an orthogonal basis method using

Legendre polynomials is well suited for implementation on triangular domains by exploiting

Farouki’s method for the construction of orthogonal bases using Bernstein polynomials [36].

Such a method may be expected to benefit from both the stability of the Bernstein basis (for

high degree implicitization) and the approximation power of the Legendre basis (for lower

degree approximation).

Paper II: Approximate implicitization using linear algebra

In this paper we extend the theory of approximate implicitization, starting from the original

method of Dokken [26, 27] and the more general weak approach, which uses integration [22,

29]. The method of approximate implicitization using orthogonal bases is proposed and shown,

both theoretically and experimentally, to have better approximation properties than the original

method. Whilst giving theoretically the same results as the weak approach, the method is also

shown to exhibit much better numerical conditioning. The method therefore provides a good

balance between the superior numerical properties of Dokken’s method, and the approximation

power of the weak approach. We also investigate the use of Lagrange bases in approximate

implicitization, using the Lebesgue constant to present new results which verify the quality of

approximation for well chosen point distributions. Since sets of points with small Lebesgue

constant are known on a wide variety of domains, both in the univariate and multivariate cases,

this result has great generality. The paper concludes with a discussion and examples which

show the approximation power of the method, even at low degrees.

The method of Corless et. al. [22], which is essentially similar to the weak approach of

Dokken [27, 29], is the implicitization method of choice in the computer algebra system Maple

[49]. Although the method is very general, in the sense that it can implicitize or approximate

many different curve and surface parametrizations, it suffers from a lack of numerical stability.

We present examples which show that this approach is ill-conditioned, losing several digits of

accuracy even for low degree curves, when numerical calculations are used. The Maple docu-

mentation proposes increasing the floating point accuracy prior to computation in order to gain

sufficient accuracy. While this gives satisfactory results for low degrees, it is computationally

more expensive. We propose methods in this paper which preserve the accuracy much bet-

ter, without resorting to increasing the number of floating point digits used. The methods are

therefore faster, and more suitable for implementation in systems that rely on double precision

floating point arithmetic. They do, however, rely on the possibility to express multiples of the

parameter functions in an orthogonal basis. In the case of rational parametrizations, this is

always possible.

22



=

(a) DC = UCΣCV
T
C for the Chebyshev basis

=

(b) DL = ULΣLV
T
L for the Lagrange basis

=

(c) DB = UBΣBV
T
B for the Bernstein basis

=

(d) DM = UMΣMVT
M for the monomial basis

Figure 2.1: Implicitization matrices (left) and their singular value decompositions, highlighting

the structures for the various polynomial bases. The light blue elements are zero or close to

zero.

23



We make a comparison of four implementations of approximate implicitization of rational

curves, which come under the name of different polynomial basis functions. Several of the

properties discussed in the paper can be summarized in Figure 2.1. For example, it is clear

that using the Chebyshev method, the numbers in the lower rows of the matrix become very

small, and thus contribute less to the approximation. Moreover, the approximate diagonality of

the left singular matrix shows that the error is approximately equioscillating, since the diagonal

elements correspond to Chebyshev basis functions.

When comparing the singular value matrices Σi for each basis, it is clear that the Bernstein

basis has a more even distribution of singular values. This leads to better numerical stability

(c.f., [58]). We see also that the Lagrange and Bernstein methods have very similar numerical

structures in the matrices. This is a consequence of them solving approximately the same prob-

lem, as proven in Proposition 3, Proposition 5 and Corollary 6 in the paper. As the degree is

raised, the similarities between the methods become more clear.

To conclude the paper we present an example of approximate surface implicitization using

the Chebyshev basis. We implicitize each of the 32 surface patches of the famous teapot model

[64], which exhibit exact algebraic degrees up to 18. It is shown that by choosing approximation

degrees roughly one third of the exact degree, excellent approximations can be attained. This is

a result of the high convergence rates proven in [26].

Comments

This paper highlighted the fact that the smallest singular values are highly dependent on the

choice of basis. Thus, while giving an upper bound on the algebraic error, the inequality

|q ◦ p(t)| ≤ max
t∈Ω

‖α(t)‖2σmin

for a given basis α(t) = (αi(t))
L
i=1, gives little insight into how different bases compare. One

attempt to gain such insight may be to use basis transformation matrices. Any polynomial

basis α1(t) can be transformed to another basis of the same degree, via a matrix transformation

(i.e., α2(t) = Tα1(t), for bases α1,α2 and a constant matrix T). For example, if we obtain

an approximation qC via the Chebyshev method, and the transformation matrix between the

Chebyshev and Bernstein bases is denoted T, we can say

|qC ◦ p(t)| ≤ τmaxσmin

where σmin is the smallest singular value of the Bernstein matrix, and τmax is the largest singular

values ofT.However, because we must use τmax, this upper bound may not be improved, even if

the approximation is improved. Future research, could attempt to understand better the singular

value dependence on the bases.
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Paper III: Fast approximate implicitization of envelope curves

using Chebyshev polynomials

In this paper we combine recent methods presented in [10] and [59] for the efficient approximate

implicitization of envelope curves. Envelopes of rational families comprise an important class

of curves and surfaces, which include offsets, canal surfaces and cyclides [25]. They have

applications in robotics (defining boundaries and collision detection), gearing (in order to match

pairs of tooth flanks) and CAD (defining offsets) [59]. In this paper we consider the envelope

of a rational family of rational planar curves

p(s, t) = (x(s, t)/w(s, t), y(s, t)/w(s, t))T , (s, t) ∈ [0, 1]× [0, 1].

The envelope approximation is based on minimization of a coupled objective function

min
‖c‖2=1

∫

I×J

ω(s, t)
(

(q ◦ p)(s, t)w(s, t)d − λ(s, t)h(s, t)2
)2

d(s, t),

where q (the implicit polynomial) and λ (the coupling function) are unknown, h is the envelope

function and ω the Chebyshev weight function. The envelope function h is defined by the

Jacobian determinant of the mapping p. The unknown coefficients of q and λ are contained in

the vector c and are minimized simultaneously. This method is related, yet inherently different

to weak approximate implicitization of parametric curves [29].

The original implementation of approximate implicitization of envelope curves provided

a proof of concept [59]. However, the implementation involved symbolic expansions, which

become very cumbersome for all but the lowest degrees. One intention of this paper was to

provide a purely numerical algorithm to give increased performance. In order to achieve this

we chose to adapt the Chebyshev method from [10] to envelope computation. This method

was chosen for both its superior computational and approximation properties. In addition, the

method has better numerical condition for the same reasons as given in [10].

We provide full algorithmic details of the implementation using tensor-product Chebyshev

polynomials. The algorithm utilizes the discrete cosine transform (implemented via FFT),

which gives a fast method for weighted least squares minimization of the objective function.

Whilst making approximation of envelopes possible, the introduction of the coupling func-

tion λ complicates certain theoretical investigations. For example, a major advantage of ap-

proximate implicitization of parametric curves has been the high convergence rates, which were

proven theoretically by Dokken [26, 27, 29]. However, a theoretical proof of convergence rates

for envelope curves, appears to be much more complicated. In order to generate some data

on convergence, we studied the convergence rates numerically. The results show that in the

simple case of rational envelopes, convergence rates of the same magnitude as Dokken’s were

attainable. Investigations of higher degree envelope approximations also appeared to give good

results, but were not included in the paper due to space limitations.
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Comments

The suitability for implementation on heterogeneous architectures is mentioned in the paper.

With regard to this, a simple implementation using the GPU programming language CUDA

has been attempted. Whilst giving minor improvements to the speed of computation of the

matrix, in the case of low degree curves, there is an insufficient level of parallelism to obtain

significantly better results than with a CPU. On the other hand, high degree implicitization

requires more numerical accuracy than single precision arithmetic, which has been the standard

for GPUs until recently.

The approach in this paper is very general and can be applied to tensor-product domains in

any dimension. Some applications in robotics call for envelope computation in higher dimen-

sions (i.e., surface envelopes and envelopes of k-parameter families of curves, k > 1). Typi-

cally, implicitization in high dimensions is a hugely computationally intensive task. However,

as the dimension is increased, the level of intrinsic parallelism in the algorithm is also vastly

increased. As a direction for future research, it would be interesting to compare how a hetero-

geneous/GPU implementation of the algorithm for higher dimensional envelope computation

compares to a CPU-only implementation. It may be the case that the high level parallelism

opens the door to implicitization of hypersurfaces that was not previously realizable.

Another area for future research could be to renew efforts for theoretical work on the con-

vergence rates. The promising results presented in this paper give justification for attempting

theoretical proofs, at least in the case of rational envelope curves.

Paper IV: A basis for the implicit representation of rational

cubic Bézier curves

As mentioned in the previous chapter, one method to reduce the computational complexity of

implicitization is to compute the support of the implicit polynomial; that is, to compute the

monomials in the implicit equation which have non-zero coefficients. If many of the monomial

coefficients are zero, the support is said to be sparse. Unfortunately, for general freeform curves

in floating point arithmetic, the implicit polynomial in monomial form often has full support

(i.e., no sparsity). One of the motivations for this paper was to find a basis which in some

sense ‘follows’ the curve, thereby preserving sparsity. Such bases have been defined previously

for quadratic and cubic curves [34, 37]. The cubic implicitization method of Floater [37],

was described in Chapter 1. In this paper we take a similar approach, but define only four

implicit basis functions, which can implicitize all rational cubic Bézier curves except those

with collinear control points.

In addition to the apparent sparsity of the method, the coefficients have very simple forms,

and can be given by explicit formulas. These formulas are based only on the weights, and

relations between the control points of the curve. They are thus independent of the coordinate

system and invariant under affine transformations. Moreover, certain factors of the coefficients

are shown to be fundamental to the geometry of the curve. These quantities, which we denote

Φ1,Φ2 and Φ3, are simple to calculate and give information on the curve simply by observation.

Some of the main results include the following:
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• The curve degenerates to a conic section if and only if Φ1 = Φ2 = Φ3 = 0.

• The curve has an unwanted self-intersection if and only if Φ1Φ2 < 0.

• The parameters of the double point are given by the roots of

r(t) = Φ1t
2 + Φ3t(1− t) + Φ2(1− t)2,

which can be written explicitly as

2Φ2 − Φ3 ±
√
Φ3 − 4Φ1Φ2

2(Φ1 + Φ2 − Φ3)
.

• The discriminant ∆ = Φ2
3 − 4Φ1Φ2 determines whether the curve has a self-intersection

(∆ > 0), a cusp (∆ = 0), or an acnode (∆ < 0).

In addition, we give a barycentric formula for the double point of the curve in terms of its

control points. This formula, or slight variations thereof, is valid in all cases, even when the

curve has collinear control points.

We also consider some algorithmic aspects of how cubic curves can be rendered via the

implicit representation. In particular, we define two lines S̃1 and S̃2, which, in the case of

unwanted self-intersections, can be used to visually eliminate the singularity. In the case that the

coefficients become zero (which indicates conic degeneration) another formula for the implicit

representation is presented.

Comments

One of the main disadvantages of the method is that it fails when any three points are collinear.

For floating point implementations the representation becomes less numerically stable close

to collinear configurations1. Defining additional basis functions to overcome this appears to

complicate the method somewhat, and the structure of the coefficient formulas appears to be

lost. Currently, in collinear cases, we resort to subdivision. Although this sufficiently solves the

problem, more direct methods would be of interest.

In addition to stability problems with collinear control points, the method is unstable near

conic degenerations. However, the basis functions still provide support for representation of the

conic section, under a different set of coefficients. It should be investigated whether a smooth

transition between the cubic and conic coefficients is possible.

Inflection points are an important feature of rational cubic curves, which were not consid-

ered in the paper. It should be investigated whether formulas for inflection points are possible

within the simple notational framework of this paper.

The basis functions described using this method give some geometric intuition into the

construction of implicit representations of cubic curves. In a sense, the method can be thought

of as using a change of coordinates, but it is not clear exactly how this occurs. It would be

interesting to find out whether the method could be expressed compactly in terms of some form

1Experimentally it appears that the instabilities do not cause a problem until the control points are collinear

within a tolerance on the order of machine epsilon.
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Figure 2.2: A diagrammatic representation of the zero sets of nine basis functions, which appear

to support the implicit representation of rational quartic Bézier curves, when no three control

points are collinear. The number of lines between any two points ci and cj, reflect the multi-

plicity with which Lij(x, y) appears in the basis function.

of generalized barycentric coordinates. For example, quadrilateral coordinates, Wachspress

coordinates and mean values coordinates can all be used to treat cases with four points.

Although coming from a completely different approach, there appears to be some connec-

tion with µ-bases and resultants. In particular, elementary operations on the resultant matrices

can also be used to define the function r(t) [13]. Moreover, those methods are general and work

for any degree. It would be of great interest to investigate further connections between µ-basis

methods and those presented in this paper. Also, extending the method to higher degrees would

be of interest. Initial work on this has been attempted, and experimentally, it appears the basis

functions in Figure 2.2 support the implicit equations of all rational quartic Bézier curves, with

no three control points collinear.
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Chapter 3

Applications of methods for change of

representation

The intention of this section is to highlight both new and existing applications of the methods

described in the scientific papers of Part II of this thesis. We consider three main applications

within CAD intersection algorithms, visualization and robotics. We also discuss some open

problems that have arisen by using the methods in practice. Since this section utilizes concepts

from the scientific papers of this thesis, it may be that the reader wishes to gain familiarity with

those concepts before proceeding with this section.

1 Intersection algorithms

Intersection algorithms in CAD were the principal motivation behind the development of ap-

proximate implicitization [26]. Whereas transversal intersections can be successfully approx-

imated using subdivision schemes [65], tangential (and near tangential) intersections pose a

more difficult problem. For such cases, the use of approximate implicitization can be helpful

[27, 28, 70]. Algorithms for surface trimming are also related to intersection algorithms. We

describe how the method from Paper IV can be useful in computing surface trimming regions.

1.1 Self-intersections

In this section we discuss self-intersections of curves and surfaces. We are only interested in

single rational curves or surfaces, as opposed to piecewise NURBS self-intersections, which are

more closely related to the problem of general intersection, covered in Section 1.2.

There exist several methods for computing self-intersections of rational curves and surfaces,

including [14, 15, 54, 74]. In this section we mainly focus on the methods in [74], which are

well suited to approximate implicitization.

Self-intersection of planar rational curves

For an implicitly defined curve q, we refer to points where

q(x, y) = 0 and ∇q(x, y) = (0, 0)
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as singularities of the curve. All self-intersections of algebraic curves are singularities, but the

converse is not necessarily true. Singularities can also occur as cusps and isolated points known

as acnodes.

The simplest examples of self-intersections are for low degree curves. Clearly, in R2, a line

will never intersect itself. Conic sections will also never exhibit singularities unless they can be

decomposed into two lines (i.e., the implicit polynomial is reducible). For rational cubic curves

with real coefficients, there always exists a real singularity, in the form of a self-intersection

(crunode), cusp or acnode1 [63]. In Paper IV we present an explicit formula for the location of

the singularity of a cubic curve in terms of a barycentric combination of its control points [8].

We also give very simple conditions for when the singularity defines a self-intersection, and in

particular, an unwanted self-intersection. The parameter values of the singularity are also stated

explicitly as the roots of a quadratic polynomial r(t).

For most higher degree curves explicit formulas are not generally available and we often

resort to numerical rootfinding. In [73], a method for computing self-intersections using ap-

proximate implicitization is presented. For a given parametric curve p(t), its normal n(t) and

its (approximate) implicit representation q, the roots of the polynomial

∇q(p(t)) · n(t), (3.1)

are shown to give candidates for self-intersections. It is normally possible to find exact implicit

representations of rational parametric curves, since the degrees involved are not excessively

high. However, this polynomial is not of the lowest possible degree, and will contain extra

factors. In the case of cubic curves, for example, it has degree six, much higher than the desired

degree of two. In the general case of rational curves of degree n, we want to find a polynomial

rn(t) of degree (n − 1)(n − 2). There exist alternative methods to find the polynomial rn(t)

using resultants, which work for any degree [14, 21]. However, these methods are better suited

to symbolic computation. It would be of substantial practical interest to extend the method

of Paper IV to higher degrees, as this would provide a method more suitable for numerical

implementation, thereby aiding applicability in CAD systems.

Self-intersections of surfaces in R
3

For surfaces, similar methods for computing self-intersections can be used; however, they are

generally more complex. The complexity is reflected in the high degrees that appear. The

method given in [74] suggests computing the zeros of the bivariate polynomial

∇q(p(s, t)) · n(s, t), n(s, t) = ∂sp(s, t)× ∂tp(s, t), (3.2)

in order to find candidates for self-intersections. However, as mentioned previously, exact im-

plicitization is often not computationally feasible for surfaces. Thomassen proposes the use

of approximate implicitization for use in computing self-intersections. As shown previously

by Dokken [26, 27, 29] and in Papers I-III of this thesis [9, 10, 11], excellent approxima-

tions are possible at vastly lower degrees than the exact degree. Thus, in the case of surfaces,

1For implicit curves of degree three and higher there also exist non-singular curves, which do not have rational

parametrizations (e.g., elliptic curves).

30



Thomassen’s approach to computing self-intersections will give excellent numerical results. In

addition, reducing the degree of the implicit polynomial often removes unwanted branches,

such as those that can occur in the polynomial (3.2).

1.2 Curve and surface intersection via algebraic substitution

The problem of intersection between two general freeform parametric curves or surfaces is

generally much more complex than self-intersections. For example, whereas a planar cubic

curve can only intersect itself once, two cubic curves can intersect in up to nine points in the

plane. This can be generalized to higher degrees by the classical result of Bézout’s theorem

[23]:

Theorem 2 (Bézout’s theorem). Let q1(x, y) : R
2 → R and q2(x, y) : R

2 → R be irreducible

polynomials of total degree m1 and m2 respectively, which define two algebraic curves. Then

the total number of intersections between the curves (including complex intersections, intersec-

tions of higher multiplicity than one, and intersections at infinity) is given bym1m2.

Again, there are many methods for computing general intersections including both algebraic

and subdivision approaches [28, 65]. We do not provide a review of the methods here, but

refer the reader to the survey articles [28, 70] and references cited therein. We note that while

subdivision methods perform well and give stable results for transversal intersections, tangential

intersections pose more of a problem. In such cases, use of the implicit or approximate implicit

representations can be useful.

General substitution method for intersection

For the sake of generality, in this section we outline the method for surface/surface intersections

- the case of curves is similar. This method utilizes both implicit and parametric representa-

tions for computing intersections [26, 65]. Suppose we have two rational parametric surfaces

p1(s, t) : Ω1 → R
3 and p2(u, v) : Ω

2
2 → R

3 for Ω1,Ω2 ⊂ R
2. Suppose we also have respective

implicit representations q1(x, y, z) : R
3 → R and q2(x, y, z) : R

3 → R. In computing the inter-

section, we are interested in finding the parameter values (s, t) ∈ Ω1 and (u, v) ∈ Ω2 such that

p1(s, t) = p2(u, v).We are also interested in the set

P = x ∈ R
3 : p1(s, t) = p2(u, v)

If we were to deal only with the parametric surfaces, we need to deal with four parameters

s, t, u and v. Using both parametric and implicit representations, this can be reduced to two.

The (s, t)-preimage of the intersection is defined as

S = {(s, t) ∈ Ω1 : q2(p1(s, t)) = 0}.

A subset of the points (s, t) ∈ S is normally computed numerically. For each point (si, ti) thus

computed, it must be checked that the (u, v)-preimage of the mapped point p1(si, ti) is in the

domain Ω2. Sederberg and Parry suggest the use of inversion formulas for this purpose [65]. It
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is also possible to use the reverse procedure of computing

U = {(u, v) ∈ Ω2 : q1(p2(s, t)) = 0}.

However, this approach will be slow since each pair of points in the two domains would need

to be compared [74].

It is also possible to use approximate implicit representations in place of q1 and q2, in a direct

analogue of the above procedure. This was proposed in Dokken’s thesis [26]. The improved

approximations and computational times given by the methods for approximate implicitization

in Papers I and II, will provide better results than previous implementations.

One aspect of computing intersections, which is not taken into account when using approx-

imate implicitization, is that of topological consistency. This is concerned with the intersection

results having compatible definitions in the different domains. According to [71], topological

consistency requires that the representations of the intersection in the two parameter domains

and the representation in R3, should all correspond to the same curve. In general, the parameter

domain preimage of surface intersections (which can be either points or curves) will not be ra-

tional. Song et. al. propose a linear perturbation method, whereby the parametric surfaces are

altered slightly in order to force the intersection curve to be rational [71]. In general, approxi-

mate implicit methods will not give topologically consistent results. However, this would be an

interesting direction for future research.

1.3 Surface trimming

Although tensor-product NURBS surfaces are the predominant surface representation in CAGD,

often an additional operation is used to bound the region in which a NURBS surface is defined.

This process, known as surface trimming, defines regions of the parameter domain which cor-

respond either to valid or invalid surface points. The curves in the parameter domain are often

expressed as densely sampled piecewise linear curves [34]. One reason for using piecewise lin-

ear curve data is that the problem of computing whether the point is considered valid or invalid

is simplified, by counting ray intersections. However, such methods have limited accuracy.

The data for defining trimming curves may be generated, for example, from the intersection

of two surfaces. This may be in the form of points in the parameter domain that can be interpo-

lated or approximated, and may also include derivative data. For example, a common approach

is that of cubic Hermite interpolation, where we find a cubic curve p, such that

p(0) = p0, p(1) = p1, p
′(0) = m0, and p

′(1) = m1,

for given data p0, p1, m0 and m1. The Bézier form of cubic curves is particularly useful for

this task since interpolation and tangency constraints at the endpoints are given naturally by the

control polygon [34]. In fact, the control points of such a polynomial cubic curve can be given

explicitly as

c0 = p0, c1 = p0 +
m0

3
, c2 = p1 +

m1

3
and c3 = p0.

Because the parametric form of cubic curves is not optimal for deciding which points lie inside

or outside a curve, it is not a good choice for trimming curves. However, since we are given
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the control points and weights of the curve, the method of Paper IV can be used directly (i.e.,

no computationally expensive implicitization methods are necessary). Hence, the integration

with existing cubic Hermite interpolation schemes is immediate, and will result in a piecewise

implicit cubic representation. Moreover, it will provide a robust method for deciding whether

or not the point lies within the trimming curve.

For implicitly representing piecewise curves in this way, some post-processing will be re-

quired in order to define the correct domains for each segment. Typically, restricting each

segment to the convex hull of its control polygon will suffice. However, we must also define

what happens outside the union of the convex hulls. One approach could be to use a Delaunay

triangularization, similar to the method used in [46] for curve rendering.

2 Rendering of curves and surfaces

Traditionally, the parametric form of B-spline and Bézier curves and surfaces has been used

for rendering, since it is very easy to evaluate points lying on the curve or surface. Recently,

real-time rendering in the implicit form has generated increased attention, particularly using

ray casting and ray tracing. Such implementations rely heavily on the efficiency of modern

GPU hardware, which can process per-pixel computations using highly parallel architectures.

Since the methods compute on a per-pixel basis, a major advantage is that the resolution is

independent of the zoom level or the viewpoint. Resolution independent methods have also

been applied to curve rendering.

2.1 Implicit rendering of rational cubic curves

For applications which involve rendering regions bounded by curves, such as font shading, the

implicit form of rational cubic and conic curves is important [46, 55]. In [46], conic and cubic

curves are evaluated implicitly by projecting one of a set of canonical curves onto screen space.

This results in highly efficient computations, with very simple fragment shaders. The technique

used in [55] is to employ the implicitization method of [37], along with subdivisions to obtain

a simple Bézier arch. In this section, we describe how the method of Paper IV can be used for

rendering cubic curves.

It is shown in Paper IV that any rational planar cubic Bézier curve with no three control

points collinear, can be written implicitly in terms of four basis functions (Ki(x, y))
3
i=0 by

q(x, y) =
3

∑

i=0

b̃iKi(x, y) = 0,
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where

b̃0 =
λ1λ2
λ0λ3

− u1u2
u0u3

,

b̃1 =
λ21
λ0λ2

− u21
u0u2

,

b̃2 =
λ22
λ1λ3

− u22
u1u3

,

b̃3 =
λ0λ3
λ1λ2

− u0u3
u1u2

.

Here, λi denotes twice the signed area of the convex hull of {c0, c1, c2, c3} \ ci and ui =
(

3
i

)

wi.

In the paper, a multiple of these coefficients is chosen. However, for practical purposes, these

coefficients are more useful. In particular, they are independent of affine transformations of the

curve.

By Corollary 11 in Paper IV, we know that all the coefficients vanish when the curve de-

generates to a conic. Thus, when using floating point arithmetic, we would like to define a

tolerance for when the curve should be treated as a conic. Using the coefficients (bi)
3
i=0, we can

choose a tolerance ǫ > 0, such that if |bi| < ǫ for each i = 0, 1, 2, 3, then we use the implicit

representation for conics (see Proposition 12). Experimentally, it seems sufficient to take ǫ to

be quite close to machine precision.

A common technique for visualization of implicit curves is to shade regions of the plane

according to the sign of the implicit polynomial in those regions. For example, we can shade

the region W = {(x, y) : q(x, y) ≤ 0} in white, and G = {(x, y) : q(x, y) > 0} = W c in

grey (e.g., Figure 3.1). However, such a method has some disadvantages in practice. Figure

3.1 shows two cubic Bézier curves rendered with such a method. The control points of these

curves lie very close to each other, and yet the curve has flipped orientation. The reason for

the change of orientation is that the curve has ‘passed through’ a conic section (both curves

are strictly cubic, but they lie very close to a conic section2). It is important to realise that this

is not an artifact of the specific algorithm; it is in the nature of the implicit representation of

cubic curves. This is necessarily true since it is possible to transform between the two curves

smoothly, without passing through the conic. This example highlights the unstable nature of

cubic curves near conic sections. In [46], Loop and Blinn overcome such problems by adding

a test to check that the ‘inside’ of the curve always lies to the right of the curve, in the direction

of increasing parameter. We describe here an alternative technique, which also solves other

problems with unwanted self-intersections.

In addition to the implicit polynomial q, we have definitions for two lines, S̃1 and S̃2 in

terms of the quantities (λi)
3
i=0 and (ui)

3
i=0. For the explicit definition of the lines, we refer the

reader to Proposition 6 in Paper IV. The important property of S̃1 and S̃2 is that they intersect

each other at the double point, and intersect the curve at c0 and c3 respectively. As opposed to

the ‘inside/outside’ approach, we propose defining the regions as follows:

W = {(x, y) : S̃1(x, y)q(x, y) ≤ 0 OR S̃1(x, y)S̃2(x, y) > 0}, B = W c.

2In actuality, the left figure has an acnode at (1, 100), and the right figure has a crunode at (1,−100).
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Figure 3.1: An example of two cubic Bézier curves with control points (0, 0), (b0, b1), (2/3, 1)
and (1, 0) (left: (b1, b2) = (1/3 + 0.01, 1), right: (b1, b2) = (1/3 − 0.01, 1)). The implicit

representation flips orientation, despite only a small perturbation of the control points.

Figure 3.2: An example of rendering the same cubic Bézier curve with the inside/outside

method (left) and the proposed method (right). Note that no rootfinding is required. In the

right image it may be desirable to colour the triangle bounded by c0, c3 and the singularity in

black.

Using these definitions gives a smooth representation of the implicit curve, with no unwanted

flips near conics. In addition, if an unwanted self-intersection occurs, this method will automat-

ically visually eliminate it (see Figure 3.2). In previous algorithms, this has been achieved by

subdividing the curves at the parameter values of the singularity [46, 55].

For standard GPU implementations (e.g. using OpenGL or DirectX), each cubic curve is

rendered in two triangular regions whose union make up the convex hull of the control polygon.

Thus, subdividing the curve generates more data and requires more triangles for rendering.

Since the method above deals with self-intersections without subdivision, it may be expected

to perform better than the methods in [46, 55]. However, the fragment shader, which computes

whether the points lie inside and outside of the curve, would be more complicated using this

method and may hurt the performance. Additionally, in the method of Paper IV, subdivision is

necessary when any three control points are collinear.
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2.2 Ray tracing surfaces with approximate implicitization

In a similar vein to the rendering of curves, the presence of the GPU has opened new doors to

surface rendering in the implicit form. Several topics in the efficient visualization of implicit

surfaces appear in the PhD thesis of Seland [67]. However, real-time ray tracing of implicit

surfaces is quite severely restricted by the implicit degree and is currently only feasible for

degrees approximately ≤ 10. Since a general bicubic parametric patch has implicit degree 18,

the potential for exact methods appears to be limited.

The methods for approximate implicitization presented in this thesis have the potential to

be coupled with implicit surface ray tracing methods. This would give the benefits of both the

geometric control by manipulating the control polygon, and the high quality rendering that ray

tracing produces. However, several challenges would need to be resolved.

An inherent problem with the implicit representation is the presence of extraneous branches.

These branches define areas of the curve or surface, which are not part of the region of interest.

Although approximation has the potential to remove some extraneous branches, they are also

a common occurrence in approximate implicitization. One potential method for the removal

of branches would be to use inversion formulas. These formulas give the parameter value of

a point known to lie on the surface. If the parameter values thus generated lie outside the

parameter domain of interest, the point can be discarded. However, inversion formulas are

useful only for points that are known to lie on the surface. For a given non-singular point p0

on a surface, it will often be the case that the inversion formula evaluated at the point p0 + e

returns values within the parameter domain, for ǫ > ‖e‖ > 0, even though the point is not on the

surface. Hence, unwanted self-intersections generated from approximations (i.e., points that do

not necessarily lie on the exact implicit surface), are unlikely to be identified well by inversion

formulas. Although methods for approximate inversion have been discussed, their applicability

is unclear [66].

An alternative method for removing branches is to form linear combinations of several good

approximations to the surface. When performing the algorithm for approximate implicitization

for a given degree m, we obtain a matrix (the right singular matrix of the SVD), that defines

a basis for the space of polynomials of total degree m. The space is partitioned in such a way

that the approximations (in the form of singular vectors), are ordered in quality by their corre-

sponding singular values. If vmin and vmin−1 refer to the singular vectors corresponding to the

two smallest singular values, we can explore the linear space {τvmin + (1− τ)vmin−1, τ ∈ R}
for an approximation in which extra branches are not present. If there are more good approxi-

mations, more dimensions can be added to the linear space. In particular, the orthogonal basis

methods introduced in Paper II generally exhibit a larger family of good approximations than

the original method [27]. This method for branch removal was employed for the implicitization

of the teapot patches in Paper II. However, since criteria for when unwanted branches occur

are hard to determine, it is difficult to automate this process. Moreover, though likely, it is not

guaranteed that the linear space will contain a solution free from extra branches.

Defining suitable boundaries in which to render is another challenge which is more difficult

to overcome for surfaces than curves. For surfaces, a 3D domain must be chosen for rendering.

For the teapot patches, it suffices to define the boundaries as the 3D box which is limited by the

upper and lower bounds of the control points, in a Cartesian system. However, this is not the
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case in general. The four boundary curves of a general bicubic patch can be formed from any

cubic space curve. Moreover, these boundary curves do not always define the silhouette of the

surface. The method in Paper III for computing envelopes, is related to the problem of finding

silhouettes. Utilizing this for the case of rendering may be a direction for future research,

although performance would be a major obstacle with current hardware and implementations.

Probably the most severe barrier to using implicit surfaces in practice is performance. There

exist competing methods for pixel-accurate rendering of surfaces which use the parametric

form, and can render several thousand bicubic surface patches at hundreds of frames per sec-

ond [79]. While these methods may not produce the same effects as ray traced surfaces, such

performance currently eludes implicit surface rendering.

3 Robotics

In Paper III we propose an extension to the method for approximate implicitization of envelope

curves first published in [59]. Envelope curves have a variety of applications in robotics, in-

cluding defining boundaries, collision detection and gearing [56, 59]. Envelope implicitization

is also interesting from a theoretical point of view, in giving an explicit definition to the curve.

In [59] a method for piecewise implicit approximation of envelope curves was presented

along with several examples. One reason for choosing piecewise approximation was that the

method became very computationally expensive for all but the lowest degrees. The new imple-

mentation in Paper III allows faster approximations, thus in this section we present examples of

higher degree approximations, as opposed to piecewise approximations.

In Figure 3.3 we show the method applied to two different families of curves, both of which

are implicitized at degree six. The first, which is a quadratic family of circles of variable radius,

has the homogeneous definition

p(s, t) =
2

∑

i=0

4
∑

j=0

(xij, yij , wij)B
2
i (s)B

4
j (t),

where

(xij)
(2,4)
i,j=(0,0) =





1/3 −1/25 1/9 1/25 1/3

1/3 −9/100 1/9 9/100 1/3

2/3 −7/50 2/9 7/50 2/3



 ,

(yij)
(2,4)
i,j=(0,0) =





0 0 4/75 0 0

1 0 34/75 0 1

0 0 14/75 0 0



 ,

(wij)
(2,4)
i,j=(0,0) =





1 0 1/3 0 1

1 0 1/3 0 1

1 0 1/3 0 1



 .

The seemingly higher degree in the t-parameter direction is because the degree has been raised

in order to obtain a better parametrization of the circles. The family is really biquadratic in

nature. For the implicit degree of the envelope curve we take m = 6. However, envelope im-
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(a) (b)

Figure 3.3: The envelope curves defined by the families of curves given in Section 3 and com-

puted using the techniques of Paper IV. The implicit representation has degree six in both cases.

plicitization using this method also requires a choice of bidegree for the coupling function λ,

which we denote (k1, k2). In order to obtain good results for this example, we require k1 = 10

and k2 = 16. This particular choice of bidegree (k1, k2), is discussed in more detail in Paper

III. The necessity of using such high degrees makes the algorithm rather slow, but the exam-

ple shows that accurate implicitizations of moderately high degree are possible. Also, it may

be noted that the envelope function, h(s, t), has three branches within the region of interest.

Thus, attempting to implicitize the entire envelope with a single polynomial could be consid-

ered a relatively complicated problem. If a piecewise implementation is used, these branches

would normally be considered separately. This example is generated by a medial axis trans-

form of the type which appear commonly in robotics. Of course, in this example, a square root

parametrization of the envelope curve is possible, thus less computationally intensive methods

could be used by generating point data on the curve.

The second example is a quadratic family of parabolas, defined by

(xij)
(2,4)
i,j=(0,0) =





1/3 −1/25 1/9 1/25 1/3

1/3 −9/100 1/9 9/100 1/3

2/3 −7/50 2/9 7/50 2/3



 ,

(yij)
(2,4)
i,j=(0,0) =





0 0 4/75 0 0

1 0 34/75 0 1

0 0 14/75 0 0



 ,

with the weight function w(s, t) = 1.

Using a single polynomial implicit representation of the envelope rather than a piecewise

approximation can be somewhat advantageous. Since we only need a single polynomial for

the entire region of interest, there are none of the complications of defining 2D regions for the

pieces. In addition, for higher degrees, the approximation can be expected to be somewhat

better.
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Paper I: Approximate Implicitization of

Triangular Bézier Surfaces

Oliver J.D. Barrowclough and Tor Dokken

In Proceedings of the 26th Spring Conference on Computer Graphics, SCCG ’10, pages 133-

140, New York, NY, USA, 2010. ACM.

Abstract: We discuss how Dokken’s methods of approximate implicitization can be applied

to triangular Bézier surfaces in both the original and weak forms. The matrices D and M

that are fundamental to the respective forms of approximate implicitization are shown to be

constructed essentially by repeated multiplication of polynomials and by matrix multiplication.

A numerical approach to weak approximate implicitization is also considered and we show

that symmetries within this algorithm can be exploited to reduce the computation time of M.

Explicit examples are presented to compare the methods and to demonstrate properties of the

approximations.

1 Introduction

Methods for conversion between the two main representations of curves and surfaces in CAGD,

namely the parametric and implicit forms, have been widely investigated within the CAGD

community. Of these, the parametric form has established itself as the representation of choice

in most CAGD systems due to its intuitive geometric nature [9]. However, the implicit form

has distinct advantages over the parametric form in solving certain geometrical problems and

thus the possibility to have a dual representation is, in some circumstances, appealing [10]. For

example, the implicit representation allows us to immediately determine whether a given point

lies on the curve or surface. Although exact formulas can be devised for low degree surfaces,

higher order parametric geometries require computationally expensive algorithms such as recur-

sive subdivision. Implicit representations are also useful in intersection problems. Notably, ray

tracing of implicitly defined surfaces is much quicker than ray tracing of parametric surfaces.

Despite these advantages, exact implicit representations of rational parametric curves and sur-

faces lead to high polynomial degrees in the implicit equation. In general, implicit equations of

high degree are not desirable due to often having extraneous branches and singularities that are

not necessarily present in the parametric form. They also exhibit a lack of numerical stability

[15].
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The procedure of converting from the rational parametric to the implicit form of a curve

or surface is called implicitization. Traditional methods using Gröbner bases or resultants,

focused solely on exact implicitization. Exact implicit representations use exact arithmetic,

whereas in CAD and CAGD, the use of floating point arithmetic is desirable due to performance.

Approximate implicitization provides numerically stable methods to approximate a parametric

surface using lower degree implicit equations. In [2], a method for approximate implicitization

was introduced that allows us to choose the degree of the implicit equation to be defined. The

theory behind this approach to approximate implicitization of rational parametric manifolds in

R
l has been thoroughly developed in [2, 3]. A similar approach known as weak approximate

implicitization was developed in [5]. The aim of this paper is to present both these methods,

in the special case of approximate implicitization of triangular Bézier surfaces. Although other

methods of approximate implicitization exist [11, 16, 15, 18], the original and weak methods

that we follow provide fast algorithms with a high order of convergence that are well suited to

curves and surfaces defined in a partition of unity basis [17].

While approximate implicitization of tensor-product Bézier surfaces is a fairly simple exten-

sion of approximate implicitization of 2D rational parametric curves, triangular Bézier surfaces

are somewhat more difficult. They are, however, expressed naturally in terms of a bivariate

Bernstein basis over a triangular domain, which forms a partition of unity. This allows us to

follow the steps of original approach fairly directly.

Unfortunately, implicitization algorithms tend to be computationally expensive and as such

are hindered in CAGD applications. This paper will highlight some symmetries in the numer-

ical approach to the algorithm that can be exploited to reduce the computation time, and thus

improve the prospect of dual representations in CAGD.

This paper will be organised as follows. Section 2, will briefly introduce the concepts re-

quired to define triangular Bézier surfaces, and highlight some properties of Bernstein polyno-

mials that are important for approximate implicitization. Section 3 will present the procedure

for approximate implicitization in the context of Bézier triangles, both in the original and weak

forms. It will highlight some new observations that significantly reduce the number of compu-

tations required in the numerical form of the algorithm. The accuracy and convergence rates

of approximate implicitization will also be stated. Section 4 will describe a simple example of

approximate implicitization of a Bézier triangle before concluding with some examples that are

more relevant in practice.

2 Triangular Bézier Surfaces

Triangular Bézier surfaces, also known as Bézier triangles, were developed by Paul de Casteljau

to offer a natural generalization of Bézier curves to surfaces [6]. Although, tensor-product

patches may be more intuitive (and are certainly used more widely in CAGD), the triangular

patches are in some sense a more fundamental generalization. In this section we recall the

notation of Bézier triangles and state some simple results about Bernstein polynomials. For a

comprehensive review of these concepts we refer the reader to [6, 7].
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2.1 Barycentric Coordinates

In this paper we will make extensive use of barycentric coordinates, both over triangles and

tetrahedra. Barycentric coordinates over triangles provide a natural domain in which to define

the Bézier triangle, whereas tetrahedral barycentric coordinates will be used to define the im-

plicit surface. We introduce the notation in the general form to capture both these circumstances

in a common definition.

Barycentric coordinates allow us to express any point x ∈ R
l as

x =
l+1
∑

i=1

βiai,
l+1
∑

i=1

βi = 1,

where ai ∈ R
l are points defining the vertices of a non-degenerate simplex in R

l.

The conversion between Cartesian coordinates x = (x1, . . . , xl) and barycentric coordinates

β = (β1, . . . , βl+1) over the simplex with vertices (a1, . . . , al+1), is given by the following

relation:
(

x

1

)

=

(

a1 . . . al+1

1 . . . 1

)

β. (1)

If a point lies within the simplex which defines the barycentric coordinate system, the barycen-

tric coordinates of that point are guaranteed to be non-negative. This leads to good numerical

stability if all the points in the algorithm are contained within the relevant simplex. We define

the domain Ω to be the triangle formed by a bivariate barycentric coordinate system, and Λ to be

the tetrahedron formed by a trivariate barycentric coordinate system. Unless explicitly stated,

all subsequent coordinates in this paper are assumed to be barycentric.

2.2 Bernstein Polynomials

The notation used when describing Bernstein polynomials and Bézier triangles is greatly simpli-

fied by making use of multi-indices. These provide a natural way to label the basis functions and

can be related to regular indices by choosing an ordering. For multi-indices i = (i1, . . . , il+1)

and j = (j1, . . . , jl+1) we have the following definitions:

• |i| = i1 + · · ·+ il+1,

• i+ j = (i1 + j1, . . . , il+1 + jl+1),

• for barycentric coordinates β, define βi = βi1
1 · · · βil+1

l+1 ,

• the multinomial coefficients are defined as

(

n

i

)

=
n!

i1!i2! · · · il+1!
,

• the ordering of choice is the lexicographical ordering, described by (i1, . . . , il+1) <

(j1, . . . , jl+1) if and only if there exists an index k such that ik < jk and ir = jr for

all r < k.
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We now define the Bernstein basis polynomials of degree n as

Bn
i (β) =

(

n

i

)

βi, |i| = n,

where β are barycentric coordinates.

In this paper, care must be taken to distinguish between triangular and tetrahedral Bernstein

polynomials as the notation differs only by the variable they are defined under. A triangu-

lar Bernstein polynomial will be defined in the variable s ∈ Ω, whereas a tetrahedral Bernstein

polynomial will be defined for u ∈ Λ.We use the variables β when describing general barycen-

tric coordinates.

We will now state three important properties of Bernstein polynomials that will be used in

the implicitization algorithm:

• The Bernstein basis forms a partition of unity. That is

∑

|i|=n

Bn
i (β) = 1, (2)

for all barycentric coordinates β.

• There is a simply derived formula for multiplying Bernstein polynomials of the same

form (i.e., triangular or tetrahedral Bernstein polynomials), which is given as follows:

Bn
i (β)B

m
j (β) =

(

n
i

)(

m
j

)

(

n+m
i+j

) Bn+m
i+j (β), (3)

with |i+ j| = |i|+ |j| = m+ n.

• The integral over any Bernstein basis function of given degree is constant. In particular,

for the Bernstein basis polynomials over a triangle of unit area [8]:

∫

Ω

Bn
i (s) ds =

1

(n+ 1)(n+ 2)
. (4)

This implies that the integral of any polynomial q(s) defined in the triangular Bernstein

basis is given by:

∫

Ω

q(s) ds =
1

(n+ 1)(n+ 2)

∑

|i|=n

bi. (5)

2.3 Bézier Triangles

We can now state the definition of a degree n Bézier triangle with control points (ci)|i|=n in

terms of the triangular Bernstein basis as follows:

p(s) =
∑

|i|=n

ciB
n
i (s). (6)

50



(a) p1(s) (b) p2(s)

Figure 1: Examples of Bézier triangles p1(s) defined in Section 2.3 and p2(s) defined in Section
4.3. Exact and approximate implicitizations of the latter surface are in Figure 2.

The control points ci can be defined in any space but we restrict them to lie in R
3 since we are

interested in surfaces. We consider only the points s in the domain Ω so that the entire Bézier

triangle lies within the convex hull of its control points.

Figure 1(a) shows an example of a degenerate quadratic Bézier triangle p1(s), with Carte-

sian control points

c200 = (1, 0, 0),

c110 = (0, 0, 0), c101 = (0, 0, 0),

c020 = (0, 1, 0), c011 = (0, 0, 0), c002 = (0, 0, 1).

In Section 6 we will see three alternative quadratic implicit approximations of this surface.

Notice that the lexicographical ordering here is given by reading the control points from left to

right and top to bottom.

3 Approximate Implicitization

In this section we outline the approach to approximate implicitization presented in [2, 3], in the

context of Bézier triangles. Both the original approach and the so-called weak approach will

be described, closely following the procedure given in [5]. We will also look at a numerical

approach to the algorithm in greater detail.

The exact implicitization of a degree n Bézier triangle may require a degree as high as n2.

It should be noted that if a degree high enough for an exact implicitization is chosen and the

algorithm is executed using exact arithmetic, then these methods will be exact. Use of floating

point arithmetic will result in small rounding errors.

We begin by stating the formal definition of approximate implicitization:

An algebraic surface defined by the points u ∈ R
3 such that q(u) = 0 for some polynomial

q, approximates the parametric surface p(s)within a tolerance of ǫ if there exists a vector-valued

function g(s) of unit length, and an error function δ(s) such that

q(p(s) + δ(s)g(s)) = 0, (7)
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and

max
s∈Ω

|δ(s)| < ǫ.

We do not attempt to find the functions g(s) and δ(s) directly. Instead, we aim to find

a polynomial q of chosen degree m that minimizes the algebraic distance |q(p(s))| between
the parametric and implicit surfaces. Certainly, if q(p(s)) = 0, then we have an exact im-

plicitization. In Section 3.5 we will see that this approach is also justified for approximate

implicitization.

The method we use to find the polynomial q, both in the original and weak approaches is to

find the coefficients bi of q when expressed in the Bernstein basis of chosen degreem :

q(u) =
∑

|i|=m

biB
m
i (u). (8)

The difference between original and weak approximate implicitization is the choice of how

to minimize the algebraic distance. The original approach attempts to minimize the pointwise

error

max
s∈Ω

|q(p(s))|,

whereas the weak approach minimizes by integration:

∫

Ω

(q(p(s)))2 ds.

3.1 The Original Approach

We follow the same steps as in approximate implicitization of tensor-product Bézier surfaces

and Bézier curves, only now using the triangular Bernstein basis functions. As we will see, the

details differ somewhat in the triangular case.

Since we have chosen q to be of degreem, and p(s) is defined to be degree n, the expression

q(p(s)) will be a polynomial of degree mn in s. Such a polynomial can be factorized in the

Bernstein basis (Bmn
j )|j|=mn with coefficients di,j. To obtain these coefficients, we form the

following composition of the coordinate functions of p(s) with each Bernstein basis function

Bm
i :

Bm
i (p(s)) =

∑

|j|=mn

di,jB
mn
j (s). (9)

Note that di,j can be calculated explicitly by using (3), the product rule for Bernstein bases. An

example of how this is done is presented in Section 4.1.
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Now, using (8) and (9) we get

q(p(s)) =
∑

|i|=m

biB
m
i (p(s))

=
∑

|i|=m

bi





∑

|j|=mn

di,jB
mn
j (s)





=
∑

|j|=mn

Bmn
j (s)





∑

|i|=m

di,jbi



 . (10)

Since the matrix D defined by the coefficients (di,j)|i|=m,|j|=mn is fundamental to the theory of

approximate implicitization, we summarize its construction in the following proposition:

Proposition 1. The
(

m+3
3

)

×
(

mn+2
2

)

matrix D for approximate implicitization of triangular

Bézier surfaces can be constructed by repeated multiplication of the coordinate functions of

p(s), according to the equation (9).

Writing the unknown coefficients (bi)|i|=m and the basis functions (Bmn
j (s))|j|=mn in vectors

b and Bmn(s) respectively, we restate (10) as

q(p(s)) = Bmn(s)TDb. (11)

We may impose, without loss of generality, the normalization condition ‖b‖ = 1. Since the

Bernstein basis forms a partition of unity, using the factorization (11) we get

max
s∈Ω

|q(p(s))| = max
s∈Ω

|Bmn(s)TDb|
≤ max

s∈Ω
‖Bmn(s)‖‖Db‖ ≤ ‖Db‖.

The approximation may well be good outside the region of interest Ω, but the result used here,

that ‖Bmn(s)‖ ≤ 1, is specific only to the domain Ω. A standard result from linear algebra tells

us thatmin‖b‖=1 ‖Db‖ = σmin, where σmin is the smallest singular value ofD. So, in particular

we have

min
‖b‖=1

max
s∈Ω

|q(p(s))| ≤ σmin. (12)

We can thus minimize the left hand side of the inequality by performing a singular value de-

composition (SVD) on the matrix D. The vector bmin corresponding to the smallest singular

value σmin of D would then give the best candidate for the approximation.

3.2 The Weak Approach

Recall that the weak approach attempts to minimize the algebraic distance by minimizing the in-

tegral
∫

Ω
(q(p(s)))2 ds. Here we approach this problem using the exact integration formula (4).

However, the weak approach also introduces the possibility to perform a numerical integration.

In Section 3.3 we will discuss this further.
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Using the factorization (11) we can perform the integral as follows:

∫

Ω

(q(p(s)))2 ds =

∫

Ω

(

Bmn(s)TDb
)2

ds

= bTDT

(∫

Ω

Bmn(s)TBmn(s) ds

)

Db

= bTDTADb, (13)

where A is the symmetric matrix defined by (ai,j)|i|=mn,|j|=mn

ai,j =

∫

Ω

Bmn
i (s)Bmn

j (s) ds

=

(

mn
i

)(

mn
j

)

(

2mn
i+j

)

∫

Ω

B2mn
i+j (s) ds

=

(

mn
i

)(

mn
j

)

(

2mn
i+j

)

1

(2mn+ 1)(2mn+ 2)
.

We may define the matrix M by

M = DTAD. (14)

Then, similarly to the original approach, an SVD of M will give us a candidate for a weak

approximate implicitization of p(s).We again choose the vector corresponding to the smallest

singular value for the best candidate. The construction of M is summarized as follows:

Proposition 2. The
(

m+3
3

)

×
(

m+3
3

)

matrix M formed in weak approximate implicitization of

triangular Bézier surfaces can be built by the matrix multiplication DTAD, where the matrix

A depends only onm and n.

SinceA is only dependent on the degreesm and n, it could in fact be pre-calculated, mean-

ing the construction of M is reduced to making two matrix multiplications.

This method may be particularly useful when combining the original and weak approxima-

tions in order to remove unwanted branches, as the D matrix must already be calculated. By

combining the best approximations from the original and weak forms, we will obtain another

approximation with a high convergence rate. Since both the approximations will be ‘good’

in the area of interest, but may have different branches, the combination may remove these

unwanted branches.

For a detailed discussion of the relationship between the weak and original forms of approx-

imate implicitization, we refer the reader to [5]. Here we simply state the main results:

|q(p(s))| ≤ 1√
λmin

‖ΣUDb‖,

and
√

∫

Ω

(q(p(s)))2 ds ≤
√

λmax‖Db‖,

where Σ is a diagonal matrix containing the square roots of the eigenvalues λmin, . . . , λmax of

A, andA = UT (Σ2)U.
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3.3 Numerical Approximation

As the exact integration in weak approximate implicitization can be replaced by a numerical

integration, the need for an explicit rational parametric form is removed. Numerical integration

only requires that the surface can be evaluated. This allows, for example, procedural surfaces

to be approximated. Integration using numerical methods allows for quick building of the M

matrix. In addition, we show that the algorithm exhibits symmetries that further enhance its

efficiency. The results of this section can be easily generalized to apply to weak approximate

implicitization of rational parametric manifolds in Rl.

In the previous section we constructedM via matrix multiplications. Perhaps a more natural

method to construct M is to perform the integration using the equation (8). Using this method

we obtain an element-wise formula for M, which we can evaluate by making use of (3):

mi,j =

∫

Ω

Bm
i (p(s))Bm

j (p(s)) ds (15)

=

(

m
i

)(

m
j

)

(

2m
i+j

)

∫

Ω

B2m
i+j(p(s)) ds. (16)

This method eliminates the need to compute D, but we are now required to evaluate the poly-

nomials B2m
i+j(p(s)) in order to use (5) for the integration. This is in comparison to evaluating

the expressionsBm
i (p(s)) required to buildD.Due to the lower polynomial degrees involved in

the latter, the construction of M by first computing D and then applying (14), is preferable for

the exact integration. However, equation (16) provides a direct method that would be preferable

if using numerical integration, since it avoids the polynomial multiplication.

Inspecting (15) we clearly see that M is symmetric. However, there exist other symmetries

which allow us to avoid repeated calculation of the integrals for each elementmi,j. Equation (16)

shows that there are in fact only
(

2m+3
3

)

unique integrals required. We can thus pre-calculate

these integrals using some chosen numerical integration method:

(∫

Ω

B2m
k (p(s))

)

|k|=2m

. (17)

Exploiting these symmetries results in the required number of integrals being proportional to

m3 rather thanm6. This result is summarized in the following proposition:

Proposition 3. The
(

m+3
3

)

×
(

m+3
3

)

matrix M formed in weak approximate implicitization of

triangular Bézier surfaces can be built by pre-computing the
(

2m+3
3

)

integrals in (17), and

multiplying the relevant integrals with the coefficients
(mi )(

m

j )
(2mi+j)

.

Since the degree of the integrand is 2mn, it is vital that the numerical integration techniques

used, exhibit numerical stability up to high polynomial degrees. For example, approximating a

cubic Bézier triangle by a cubic implicit surface, requires the numerical integration of a bivariate

polynomial of degree 18.
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3.4 Approximating Rational Bézier Triangles

Rational Bézier triangles give extra flexibility in CAGD and are in fact required to be able

to represent general quadric surfaces exactly. Although this can be done with rational tensor-

product patches, some degeneracy is necessary, and hence singularities are introduced. We

will show in this section that the algorithm for approximate implicitization of rational Bézier

triangles is only a short extension of the non-rational version. We first introduce the concept of

rational Bézier triangles, as described in [7].

A rational Bézier triangle of degree n is defined similarly to the non-rational case as follows:

r(s) =
∑

|i|=n

ciR
n
i (s),

where

Rn
i (s) =

wiB
n
i (s)

∑

|i|=n wiBn
i (s)

=
gi(s)

h(s)
.

The wi denote weights assigned to each control point ci. Note that the basis (Ri(s))|i|=n defines

a partition of unity, so the original approach to approximate implicitization can be used in a

similar way for rational Bézier triangles. In fact, on forming the expression q(r(s)), we can

factor out the denominator, which allows us to consider only the numerator for an exact implic-

itization [17]. Since the numerator is simply a regular Bézier triangle (albeit with the weights

absorbed into the control points), this implies that we can find implicitly defined quadrics from

non-rational Bézier triangles. We show this as follows:

q(r(s)) =
∑

|j|=m

bjB
m
j (r(s))

=
1

(h(s))m

∑

|j|=m

bjB
m
j





∑

|i|=n

cigi(s)



 . (18)

We obtain an exact implicitization if and only if the sum over |i| = n in (18) is zero; but

these are exactly the same conditions for exact implicitization on non-rational Bézier triangles,

allowing us to disregard h(s) in the algorithm. That is, we may perform the implicitization on

∑

|i|=n

cigi(s) =
∑

|i|=n

γiB
n
i (s),

where γi = wici.We may also disregard h for approximate implicitizations, however this will

come at some expense to the quality of approximation if the function h has large variations.

3.5 Accuracy in Affine Space and Convergence Rates

The intention of this section is to show why approximate implicitization works, and to state a

result about the quality of the approximation. For a more in-depth coverage of these topics see

[2].

Recall the definition of approximate implicitization from the beginning of this section. This
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definition ensures that the implicit and parametric curves lie close together in affine space. How-

ever, by minimizing the algebraic distance, as we did in the algorithm, we cannot necessarily

guarantee that the affine error will be small. The affine and algebraic errors are related by the

following Taylor expansion of (7):

q(p(s)) + δ(s)g(s) · ∇q(p(s)) + · · · = 0.

Suppose we have a polynomial q such that q(p(s)) ≈ 0. Then the above equation shows that

either ∇q(p(s)) or δ(s) must be small. Certainly, away from singularities, where the gradient

∇q(p(s)) does not vanish, δ(s) will be small, meaning the approximation in affine space is

good. This justifies the approach to approximate implicitization outlined above, away from

singularities. In the region of singularities, the neighbourhood of the singular point or curve

will attract the approximation to the correct shape; however, the singularities themselves may be

smoothed out. A clear example of this is the approximation in Figure 2. Here, the approximation

is attracted to the non-singular part of the surface and the singular curves are ‘smoothed out’.

We will consider this example further in Section 4.3.

We can improve the approximation in affine space by performing the approximation over a

smaller region of the parametric surface. The convergence rates of approximate implicitization,

as the size of the region to be approximated is reduced, have been investigated in [4]. Here

we state the result most relevant to this paper; the convergence rate of surfaces in R
3. Given a

closed box of diameter h in Ω around a point s0, we have the convergence rate

O
(

h⌊
1

6

√
(9+12m3+72m2+132m)⌋− 1

2

)

. (19)

Here, ⌊x⌋ denotes the integer part of x.

4 Examples of Implicitization of Bézier Triangles

In this section we present examples of approximate implicitization of triangular Bézier sur-

faces. We begin with a simple example that can be calculated by hand, before moving on to

more computationally intensive examples. Our first example will find an implicit surface that

approximates a single quadratic Bézier triangle.

4.1 A First Example

Recall the definition of p1(s), the degenerate quadratic Bézier surface mentioned in Section 2.3

and pictured in Figure 1(a). The control points also form a tetrahedron over which we can define

the barycentric coordinate system. Using these barycentric coordinates, the patch is described

by,

p1(s) = (B2
200(s), B

2
020(s), B

2
002(s), B

2
011(s) + B2

101(s) +B2
110(s)). (20)

For this example, we choose to approximate p1(s) by a quadratic implicit surface, in order to

keep the matrix D to a manageable size. However, an exact implicitization in fact requires an

implicit surface of degree four.
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A trivariate polynomial of degree two, represented in the tetrahedral Bernstein basis can be

written as follows:

q(u) =
∑

|i|=2

biB
2
i (u),

for barycentric coordinates u.

Now, to construct the 15 × 10 matrix D, we simply expand the expression (9), for each of

the basis functions (B2
i (u))|i|=2 and write the resulting coefficients in the columns of D. We

use the lexicographical ordering system to relate the entries of the matrix, to the multi-indices.

The first column in the matrix D contains the coefficients of B2
2000(p1(s)) which by the

definition (20) and the product rule (3) is equal to (B2
200(s))

2 = B4
400(s). The first column ofD

is thus the vector of coefficients that are all zero except for the first:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Similarly, the second column is calculated by expanding B2
1100(p1(s)) giving

(0, 0, 0,
1

3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Continuing in this way we get the matrix,

D =



























































1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 1
3

0 0 0 0 0 0 0 2
3

0 0 1
3

0 0 0 0 0 0 2
3

0 0 0 1
3

0 0 0 0 0 2
3

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1
3

0 0 2
3

0 0 0 0 0 0 0 0 1
3

2
3

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1
3

0 0 0 2
3

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0



























































.

The correct and accurate construction of this matrix can be confirmed by checking that the rows

sum to 1 (see Theorem 4.3 in [3]). As we have proceeded using exact methods, we expect no

errors here.

We now perform an SVD on this matrix, and choose the vector b corresponding to the

smallest singular value σmin. The singular values of D are

(1.70471, 1.45296, 1.45296, 1.38925, 1.00000,

1.00000, 1.00000, 0.33333, 0.33333, 0.22984),

58



Figure 2: Exact (left) and approximate (right) implicitizations of a quadratic Bézier triangle

with singularities p2(s) (see Figure 1(b)).

and the normalized vector corresponding to σmin = 0.22984 is

borig = (0.00000,−0.57062,−0.57062,−0.01616, 0.00000,

−0.57062,−0.01616, 0.00000,−0.01616, 0.14966).

This vector defines a candidate for an approximate implicitization of p1(s).

The approach of weak approximate implicitization is equally well suited to this example.

As stated previously, property (5) allows us to integrate Bernstein polynomials by summing the

coefficients of the Bernstein basis and dividing by a constant factor. For simplicity, we proceed

here using the element-wise definition ofM, (16):

mi,j =

(

2
i

)(

2
j

)

(

4
i+j

)

∫

Ω

B4
i+j(p1(s)) ds.

For example, the first entry for i = j = (2, 0, 0, 0), is calculated by making the integration

∫

Ω

B4
4000(p1(s)) =

∫

Ω

(B200)
4 =

∫

Ω

B8
800.

This is a degree eight Bernstein polynomial with first coefficient equal to one and all other

coefficients equal to zero. The first value of the matrix is thusm1,1 = 1/90. The other values of

the matrix can be computed similarly to get

M =

























1

90

1

1260

1

1260

1

84

1

6300

1

18900

23

18900

1

6300

23

18900

4

675
1

1260

1

1575

1

9450

23

9450

1

1260

1

9450

23

9450

1

18900

1

2100

31

9450
1

1260

1

9450

1

1575

23

9450

1

18900

1

9450

1

2100

1

1260

23

9450

31

9450
1

84

23

9450

23

9450

16

675

23

18900

1

2100

31

4725

23

18900

31

4725

67

3150
1

6300

1

1260

1

18900

23

18900

1

90

1

1260

1

84

1

6300

23

18900

4

675
1

18900

1

9450

1

9450

1

2100

1

1260

1

1575

23

9450

1

1260

23

9450

31
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The accuracy of the construction of this matrix can be confirmed by checking that the elements

59



Original Weak Combined

Figure 3: Colour maps showing the algebraic approximation errors qb(p1(s)) over the domain

Ω bounded by the triangle. Note that the white parts correspond to intersection curves between

the implicit and parametric surfaces.

sum to 1
2
(see Theorem 2 in [5]).

Again, performing an SVD on this matrix and choosing the vector corresponding to the

smallest singular value will define an implicit equation that is a candidate for approximation:

bweak = (0.03985, 0.56837, 0.56837,−0.09313, 0.03985,

0.56837,−0.09313, 0.03985,−0.09313,−0.00859).

Although this simple example has no extraneous branches, in order to illustrate the possibil-

ity of modelling the shape of the approximation, we include a combined approximation. This is

obtained by summing the coefficients of the original and weak approximations and renormaliz-

ing:

bcomb = (0.11496,−0.00652,−0.00652,−0.31523, 0.11496,

−0.00652,−0.31523, 0.11496,−0.31523, 0.81371).

Figure 3 shows the algebraic distance between the parametric and approximate implicit

surfaces. The three approximations exhibit different behaviour with regard to where the surfaces

intersect and the positions of the maximum error. This illustrates the possibility of modelling the

surfaces to obtain certain characteristics. Alternative approximations could also be formed by

taking different combinations of the two surfaces, by combining approximations corresponding

to other singular values in the SVD, or by adding constraints to the algebraic equation.

When constructing this example we ensured that the corners of the Bézier triangle were

reused as vertices in the tetrahedral barycentric coordinate system, with the remaining fourth

vertex positioned symmetrically with respect to these three points. This symmetry is reflected

in the intersection curves between the triangular Bézier surfaces and the approximations in

Figure 3. In this example, the original approximate implicitization intersects the corners of

the triangular Bézier surface; however, the interpolation is special to this case. It is easy to

construct examples with the same collocation of surface corners and tetrahedral vertices where

the approximate implicit generated by the original approach does not intersect the corners of
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the triangular Bézier surface.

4.2 Approximation of Several Patches with One Implicit Surface

(a) parametric form (b) quadratic

approximation

(c) cubic

approximation

(d) quartic

approximation

Figure 4: Implicit approximations of the surface described in Section 4.2. Note that the quartic

approximation, which is an exact implicitization up to rounding error, is defined by the product

of two polynomials and hence extra branches are present.

In many circumstances it may be desirable to approximate several surface patches simulta-

neously, by a single implicit surface. This is possible using either the original or weak methods

[2, 5].

Suppose we have several parametric surfaces p1(s), . . . ,pr(s). To find an implicit surface

that approximates all these surfaces we may proceed as before to build matrices Di corre-

sponding to the individual manifolds pi(s). However, before performing the SVD, we stack the

matrices to define

D =

(D1

...
Dr

)

.

Using the weak formwe build matricesMi corresponding to the manifolds pi(s), but instead

of stacking, we sum the matrices to form

M =
r

∑

i=1

Mi.

Performing an SVD onM then defines the weak approximation.

In fact, we are not restricted to approximating surfaces of the same type. There is also the

possibility to simultaneously approximate points, curves and surfaces with different parametric

forms. To exemplify this we approximate a surface defined by two rational tensor-product

Bézier patches describing a half-cylinder, and two rational Bézier triangles describing a quarter-

sphere, as pictured in Figure 4(a). The quadratic, cubic and quartic approximations displayed

in Figure 4 demonstrate some interesting properties of implicit representations. The quadratic

approximation, which is in fact described by an ellipsoid, is clearly quite different from the

parametric surface and, for most purposes, would not be a sufficient approximation. The cubic

approximation is visually what we expect to see, and does indeed provide a close approximation.

When we increase the degree to four, as expected, we obtain an exact implicit representation,

though this is defined by the product of two polynomials which describe the cylindrical and
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Degreem 1 2 3 4

σmin of p1(s) 1.0 0.22984 0.047868 0.0

σmin of p2(s) 1.0 0.62773 0.31596 0.0

Table 1. Difference in the smallest singular values of D for a Bézier triangle with singularities

(p2(s)) and without singularities (p1(s)).

spherical parts separately. Consequently, when visualizing the surface we see extra branches

that are not present in the parametric representation.

4.3 Approximate Implicitization of Surfaces with Singularities

A simple example of a quadratic Bézier triangle p2(s) that exhibits singularities is constructed

by taking the three corner control points to be at the Cartesian origin (0, 0, 0), and the three

central control points to be at (1,0,0), (0,1,0) and (0,0,1). This is pictured in Figure 1(b). An

exact quartic implicitization and an approximate cubic implicitization of p2(s) are pictured

in Figure 2. We will now compare the approximations of this example with the example from

Section 4.1, to see how the singular surface suffers from worse approximations. Table 1 lists the

singular values for implicit approximations up to degree four, obtained by the original method.

Both of the surfaces require degree four for an exact implicitization. However, the singular

values of p1(s) are much smaller for the quadratic and cubic approximations, indicating better

approximations.

5 Conclusion

This paper described how the original and weak methods of approximate implicitization can

be applied to triangular Bézier surfaces. It presented examples which exhibit properties of

the various approaches to approximate implicitization. It also highlighted ways in which to

improve the efficiency of the algorithm in the numerical case, by exploiting symmetries in the

calculations.
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Paper II: Approximate implicitization

using linear algebra

Oliver J.D. Barrowclough and Tor Dokken

In Journal of Applied Mathematics, 2012. doi:10.1155/2012/293746

Abstract: In this paper we consider a family of algorithms for approximate implicitization of

rational parametric curves and surfaces. The main approximation tool in all of the approaches is

the singular value decomposition, and they are therefore well suited to floating point implemen-

tation in computer aided geometric design (CAGD) systems. We unify the approaches under

the names of commonly known polynomial basis functions, and consider various theoretical

and practical aspects of the algorithms. We offer new methods for a least squares approach to

approximate implicitization using orthogonal polynomials, which tend to be faster and more nu-

merically stable than some existing algorithms. We propose several simple propositions relating

the properties of the polynomial bases to their implicit approximation properties.

1 Introduction

Implicitization algorithms have been studied in both the CAGD and algebraic geometry com-

munities for many years. Traditional approaches to implicitization have focused on exact meth-

ods such as Gröbner bases, resultants and moving curves and surfaces, or syzygies [24]. Ap-

proximate methods that are particularly well suited to floating point implementation have also

emerged in the past 25 years [3, 6, 7, 9, 22]. These methods are closely related to the algo-

rithms we present, however, those that fit most closely into the framework of this paper include

[7, 10, 12, 26].

Implicitization is the conversion of parametrically defined curves and surfaces into curves

and surfaces defined by the zero set of a single polynomial. Exact implicit representations of

rational parametric manifolds often have very high polynomial degrees, which can cause nu-

merical instabilities and slow floating point calculations. In cases where the geometry of the

manifold is not sufficiently complicated to justify this high degree, approximation is often de-

sirable. Moreover, for CAGD systems based on floating point arithmetic, exact implicitization

methods are often unfeasible due to performance issues. The methods we present, attempt to

find ‘best fit’ implicit curves or surfaces of a given degree m (the definition of ‘best fit’ varies

with regard to the chosen method of approximation). One important property of all the algo-

rithms is that they are guaranteed to give exact implicitizations for sufficiently high implicit
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degrees, up to numerical stability. In addition, some of the methods are also suitable for imple-

mentation in exact arithmetic, hence constituting alternative methods for exact implicitization.

For simplicity of notation, we proceed for the majority of the paper to describe the implicit-

ization of curves. In Sections 2, 3 and 4 we introduce the notation and review existing methods.

In Section 5 we present a new method for approximate implicitization using orthogonal polyno-

mials and prove a theoretical relation to the previous methods. Implementations of the methods

using different basis functions will be presented in Section 6 and a qualitative comparison and

discussion given in Section 7. Finally, the generalization to both tensor-product and triangular

surfaces will be covered in Section 8.

2 Preliminaries

A parametric curve in R
2 is given by p(t) = (p1(t), p2(t)) where p1 and p2 are functions in t

on some parameter domain Ω. Of particular importance both in CAGD and classical algebraic

geometry are rational parametric curves (i.e., where p1 and p2 are rational functions). In the

majority of this paper we will thus restrict our attention to planar rational curves, where the

domain of interest is Ω = [0, 1]. In order to use polynomial bases in our construction, we can

use the representation of the curves in the projective plane P2. For a rational parametric curve

p(t) = (g1(t)/h(t), g2(t)/h(t)) in R
2, where g1, g2 and h are polynomials, we thus use the

homogeneous description

p(t) = (g1(t), g2(t), h(t)).

All the methods to be described require a choice of degreem and a choice of basis (qk(u))
M
k=1,

for the implicit polynomial. Here M is defined as the number of basis functions in a polyno-

mial of total degree m. Thus, for a general bivariate polynomial, we have M =
(

m+2
2

)

. Any

polynomial q can be written in terms of such a basis by choosing coefficients b = (bk)
M
k=1 :

q(u) =
M
∑

k=1

bkqk(u). (1)

The choice of implicit basis is an important factor which has implications for both the stability

of the algorithms and the quality of the approximations. However, most of the work in this

paper is independent of the choice of implicit basis. In R2, a good choice is the Bernstein basis

in a barycentric coordinate system defined over a triangle containing the parametric curve. For

curves in P
2, we use the homogeneous Bernstein basis given by

qk(u, v, w) =

(

m

k1, k2, k3

)

uk1vk2wk3 , for |k| = k1 + k2 + k3 = m,

where u, v and w denote the homogeneous coordinates and k = (k1, k2, k3) denotes a multi-

index. We order the basis by letting qk correspond to qk for k = 1, . . . ,M, where k = k(k)

denotes lexicographical order on the indices k1, k2 and k3. Unless otherwise stated, we will

assume that the implicit basis (qk(u))
M
k=1 is the Bernstein basis. In particular, it forms a partition
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Algebraic degreem 1 2 3 4 5 6 7 8

Convergence rate k 2 5 9 14 20 27 35 44

Table 1: Convergence rates for approximate implicitization of sufficiently smooth parametric

curves in R
2 by algebraic curves of degreem, given by k = 1

2
(m+ 1)(m+ 2)− 1.

Algebraic degreem 1 2 3 4 5 6 7 8

Convergence rate k 2 3 5 7 10 12 14 17

Table 2: Convergence rates for approximate implicitization of sufficiently

smooth parametric surfaces in R
3 by algebraic surfaces of degree m, given by

k = ⌊1
6

√
9 + 12m3 + 72m2 + 132m− 1

2
⌋.

of unity
M
∑

k=1

qk(u) ≡ 1.

The choice of degree m determines the number of degrees of freedom the implicit curve will

have. If the chosen degree m is sufficiently high, all the algorithms will produce exact results,

up to numerical stability. If the degree is lower than necessary, approximations are produced.

Since we are searching for implicit representations and want to avoid the trivial solution

q ≡ 0, we add a normalization constraint to q in the approximation. How best to make this

choice has been discussed by several authors (see [22] for an overview). However, as we use

the singular value decomposition (SVD) as the means of approximation, our results are given

with the quadratic normalization ‖b‖2 = 1.

The techniques in this paper focus on minimization of the objective function q ◦ p over the

space of polynomials {q : ‖b‖2 = 1}, where q is defined by (1) in a fixed implicit basis. Such a

minimization, although not directly minimizing the Hausdorff distance between the implicit and

parametric curves, is closely related to the geometric approximation problem. It has been shown

that minimization of q◦p gives excellent results in geometric space away from singularities [9].

3 Approximate implicitization - the original approach

In 1997 a class of techniques for approximate implicitization of rational parametric curves,

surfaces and hypersurfaces was introduced in [9]. The approximation quality of the techniques

was substantiated by a general proof that the methods exhibit very high convergence rates, as

shown in Tables 1 and 2. Extensions of this original approach, all of which inherit these high

convergence rates, form the basis of this paper.

The guiding principle behind these methods is to find a polynomial q which minimizes the

maximal algebraic error in a given parameter domain Ω. That is, in the given implicit basis

(qk)
M
k=1, to find the coefficients b = (bk)

M
k=1 which solve

min
‖b‖=1

max
t∈Ω

|q(p(t))|. (2)
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The solution to this problem, which we call the minimax (or uniform) approximation, is not

easy to find exactly. However, approximations to the minimax solution can be found directly,

using linear algebra.

We notice that the expression q(p(t)) is a univariate polynomial of degree mn in t. We

can thus approach the problem by first factorizing the error expression in a polynomial basis

α(t) = (αj(t))
L
j=1, where L = mn+ 1, as follows:

q(p(t)) = α(t)TDαb, (3)

where Dα is a matrix whose columns are the coefficients of qk(p(t)) expressed in the α-basis

and b is the unknown vector of implicit coefficients. Now, we have

min
‖b‖=1

max
t∈Ω

|q(p(t))| = min
‖b‖=1

max
t∈Ω

|α(t)TDαb|,

≤ max
t∈Ω

‖α(t)‖2 min
‖b‖=1

‖Dαb‖2,

= max
t∈Ω

‖α(t)‖2 σmin, (4)

giving an upper bound on the maximal algebraic error, dependent on the choice of basis. Here,

we have used the fact that

min
‖b‖2=1

‖Dαb‖2 = σmin,

where σmin is the smallest singular value of Dα. We thus choose b = vmin, the right singular

vector corresponding to σmin, as an approximate solution to the problem. The other singular

vectors corresponding to larger singular values also give candidates for approximation that gen-

erally decrease in quality as the singular values increase [12]. It is important to note that the

value of σmin is dependent on the choice of basis α.

In this paper we use the following ‘normalization’ to compare the approximation qualities

of different polynomial bases:

max
t∈Ω

‖α(t)‖2 = 1. (5)

It should be noted that bases with different scaling coefficients on the individual basis functions

will produce different results. For example, the standard Legendre basis, where each basis

function (Pj)
L
j=1 has the normalization Pj(1) = 1, will produce quantitatively different results

to the Legendre basis normalized with respect to the L2-inner product. This choice of scaling

is somewhat arbitrary, but experience shows that small differences in the scaling result in small

differences in the approximation. Thus, for the bases we study, standard choices will be made.

Given a choice of basis functions α = (αi)
L
i=1, we summarize the general approach of this

section in the following algorithm:

Algorithm 1. Input: a rational parametric curve p(t) of degree n on the interval [0, 1], and a

degreem for the implicit polynomial:

1. For each basis function (qk)
M
k=1, compute the vector dk = (dj,k)

L
j=1 of coefficients such

that qk(p(t)) =
∑L

j=1 dj,kαj(t),

2. Construct a matrix Dα = (dk)
M
k=1 from the column vectors dk,
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3. Perform an SVD Dα = UΣVT , and select b = vmin, the right singular vector corre-

sponding to the smallest singular value σmin as an approximate solution.

This algorithm is known as the original method in the α-basis; however, for this paper, we

will refer to it simply as the α-method for an arbitrary basis α.

4 Weak approximate implicitization

Two approaches to approximate implicitization by continuous least squares minimization of the

objective function were introduced simultaneously in 2001 in [7, 11], and further developed in

[12]. These methods perform minimization in the weighted L2-inner product:

min
‖b‖2=1

〈q ◦ p , q ◦ p〉w = min
‖b‖2=1

∫

Ω

w(t)q(p(t))2 dt, (6)

where w(t) is some weight function defined on the domain of approximation Ω.

After choosing a basis for the implicit representation we obtain a linear algebra problem as

before:

min
‖b‖2=1

bTMwb, (7)

where Mw = (mk,l)
M,M
k=1,l=1 is given by

mk,l = 〈qk ◦ p , ql ◦ p〉w. (8)

This approach eliminates the need for a choice of basis, but a choice of weight function is

necessary. The standard approach in [7, 11] has been to take w(t) ≡ 1. Later we will discuss

the benefits of choosing the Chebyshev weight function on [0, 1], w(t) = 1/
√

t(1− t), instead.

This problem, unlike the minimax problem, can be solved directly if the parametric compo-

nents are integrable. We simply take b = vmin, the eigenvector corresponding to the smallest

eigenvalue ofMw. Since the matrix is symmetric, it has orthonormal eigenvectors. Similarly to

the previous method, eigenvectors corresponding to larger eigenvalues give gradually degener-

ating approximations.

We summarize this algorithm, for a given weight function w, as follows:

Algorithm 2. Input: a parametric curve p(t) on the interval [0, 1], and a degree m for the

implicit polynomial:

1. Construct a matrix Mw by performing the integrals according to

mk,l = 〈qk ◦ p, ql ◦ p〉w

for k, l = 1, . . . ,M,

2. Compute the eigendecomposition Mw = VΛVT ,

3. Select b = vmin, the eigenvector corresponding to the smallest eigenvalue λmin.
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Algorithms following the procedure above are known under different names in the literature;

weak approximate implicitization in [12], numerical implicitization in [7] and the eigenvalue

method in [13]. For the rest of this paper we will call it the weak method.

As previously mentioned, the methods of this section are suitable for either exact or approx-

imate implicitization. They can be performed using either symbolic or numerical integration,

however the former is generally only required when performing exact implicitizations in exact

precision. For applications where floating point precision is sufficient, numerical quadrature

rules provide a much faster alternative. The methods also have wide generality since they can

be applied to any parametric forms with integrable components, not only rational parametric

forms. There are, however, some significant disadvantages in choosing this method in practice.

Firstly, due to the high degree of the integrand, the integrals can take a relatively long time to

evaluate, even when numerical quadrature rules are used. Secondly, and more importantly, the

condition numbers of the matrices Mw can be significantly larger than the condition numbers

of the Dα matrices from the previous section, leading to issues with numerical stability.

Since Mw is a symmetric positive (semi) definite matrix, it has a decomposition Mw =

KTK, where the singular values of K are the square roots of the singular values of Mw. This

decomposition is not unique; however, in the next section we show that it is possible to construct

such a matrix directly, without first computing Mw. The condition number of K will be the

square root of the condition number of Mw, hence we obtain the solution to the least squares

problem in a more stable manner. Example 5.1 demonstrates how the lack of stability in the

weak method compares to the new method described in the following section.

5 Approximate implicitization using orthonormal bases

To make the connection between the original method and the weak method in the previous

section, we consider the factorization (3). We can then express Mw in terms of Dα and a new

matrix A [12]. That is, we get

∫

Ω

w(t)q(p(t))2 ds = bTDT
αADαb (9)

where A = (ai,j)
L,L
i=1,j=1 is given by ai,j = 〈αi, αj〉w. Note that A is a Gramian matrix in the

α-basis on the weighted L2-inner product. This gives us a clue as to how to improve the weak

method by the use of orthonormal bases. A polynomial basis (αi)
L
i=1 is said to be orthonormal

with respect to the weighted L2-inner product 〈·, ·〉w, if

〈αi, αj〉w = δij, for all i, j = 1, . . . , L,

with δij denoting the Kronecker delta.

Theorem 1. Let α be a polynomial basis, orthonormal with respect to the given inner product

〈·, ·〉w, andDα and Mw be defined by (3) and (8) respectively. ThenMw = DT
αDα.

Proof. By (9) and the definition of Mw, we have Mw = DT
αADα for any basis α. But since

α is orthonormal with respect to the inner product 〈·, ·〉w, we have ai,j = 〈αi, αj〉w = δi,j (i.e.,

A = I).
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We notice that the right singular vectors of Dα are exactly the orthonormal eigenvectors of

DT
αDα, and the singular values of Dα are the non-negative square roots of the eigenvalues of

DT
αDα. Thus, with Theorem 1 in mind, we see that if the α-basis is orthonormal with respect

to w, then the results of the original method and the weak method are the same1. That is, Dα

is a candidate for the matrix K from the previous section. Such a matrix, as defined by (3), can

also be given elementwise by

dj,k =

∫

Ω

w(t)αj(t)qk(p(t)) dt. (10)

In practice, there often exist algorithms for computing coefficient expansions in orthogonal

bases that are more efficient than using the elementwise definition. We will mention later how

the Chebyshev and Legendre methods can utilize algorithms based on the fast Fourier transform

(FFT) to generate the Dα matrices.

We should note that the matrix Dα is of dimension L×M, compared with the M ×M

matrix Mw. For n ≥ 3, we have L ≥M, so finding the singular vectors of Dα may be more

computationally expensive than computing the eigenvectors of Mw. However, since the matrix

construction is usually the dominant part of the algorithm, these differences do not affect the

overall complexity of the algorithms. Moreover, the increase in accuracy more than justifies

any small increase in computational complexity in part of the algorithm.

5.1 Example

In order to compare the numerical stability of the two approaches to least squares minimization

of the objective function, we turn to a familiar example; exact implicitization of a rational

parametric circular arc, which is defined in projective space by

p(t) =
(

p1(t), p2(t), h(t)
)

=
(

2t, 1− t2, 1 + t2
)

, t ∈ [0, 1].

We perform the implicitization using the homogeneous Bernstein basis functions qk(u, v, w) ∈
{u2, 2uv, 2uw, v2, 2vw,w2}, for k = 1, . . . , 6, and degree m = 2. If performed using exact

arithmetic, the implicitization vector given by both the weak and orthonormal basis methods is

b = (3−1/2, 0, 0, 3−1/2, 0,−3−1/2).

However, performing the algorithms in double precision, we obtain the results

bweak = (0.577350269173099,−1.63× 10−11, 2.19× 10−11,

0.577350269178602, 1.87× 10−11,−0.577350269217176)

borth = (0.577350269189627, 5.52× 10−16,−8.47× 10−16,

0.577350269189626,−4.16× 10−16,−0.577350269189625)

1Note that we do not specify that the orthonormal basis must be a polynomial basis, only a basis for the relevant

space of functions. For example, curves defined by trigonometric polynomials can be treated in a similar way, since

that basis is orthogonal.
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for the weak and the orthogonal basis methods respectively2. Examining the respective relative

errors (in the infinity norm)

‖bweak − b‖∞/‖b‖∞ = 4.77× 10−11,

‖borth − b‖∞/‖b‖∞ = 1.73× 10−15,

we see that the orthogonal basis method preserves the accuracy much better than the weak

method, with the former only preserving approximately 11 digits of accuracy. The orthogonal

basis method preserves all but the last the digit of the implicitization, up to double precision. It

should be noted that this is an example of implicitization with degree m = 2; as the degree is

raised, such numerical errors can become more serious. The example in Section 7.2 shows how

higher degree implicitizations using the weak method can give unpredictable results.

6 Examples of the original approach with different bases

The previous sections justified why the original approach is preferable to the weak approach

in cases where the expression q(p(t)) can be expressed in terms of orthogonal functions. In

this section we will look at examples of specific implementations using orthogonal polynomial

bases. We will also consider alternative implementations using non-orthogonal bases, which

produce approximations to the least squares solution. We state some simple propositions which

unify the methods and also consider computational aspects of the algorithms.

6.1 Jacobi polynomial bases

The most commonly used orthogonal polynomial bases in approximation theory are the Leg-

endre basis (Pj)
L
j=1 and the Chebyshev basis (of the first kind) (Tj)

L
j=1. These are both special

cases of Jacobi polynomials, which are orthogonal with respect to the weight functions defined

by

wα,β(t) = tα(1− t)β,

on the interval [0, 1], and are defined for α, β > −1. The Legendre and Chebyshev cases are

given by α = β = 0 and α = β = −1
2
respectively. It is well known that the Chebyshev ex-

pansion has an efficient construction via use of the discrete cosine transform (DCT-I) which

can be implemented via fast Fourier transform (FFT) [5]. The Legendre expansion can also be

constructed efficiently by transforming from the Chebyshev coefficients (inO(n) operations for

a degree n polynomial [1]). The implementation of approximate implicitization exploiting the

speed of the FFT will be the subject of another paper. Here we will look at the properties of

the matrices DP for the Jacobi bases, and the properties of the approximations. The following

proposition is an analogue of Theorem 4.3 in [10], for Jacobi polynomial bases.

Proposition 2. Let DP be the matrix defined by (3) in a Jacobi polynomial basis (Pj(t))
L
j=1,

2The orthogonal basis method was implemented with Legendre polynomials, as described in Section 6.1.
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for any α, β > −1, normalized to ‖Pj‖∞ = 1 for j = 1, . . . , L. Then

M
∑

k=1

dj,k =

{

1, if j = 1,

0, if j ≥ 2.

Proof. Since an orthogonal polynomial basis is degree ordered, one of the functions must be

identically a non-zero constant, which, by the normalization condition is equal to 1. Consider

the vector b = (1, . . . , 1), which ensures that q(p(t)) = 1 for all t ∈ [0, 1], by the partition of

unity on the implicit basis (qk)
M
k=1. Clearly, only the basis function of degree zero can have a

non-zero coefficient. By (3), we have the expansion

q(p(t)) =
L
∑

j=1

Pj(t)
M
∑

k=1

dj,k.

But this is equal to 1 if and only if
∑M

k=1 d1k = 1 and
∑M

k=1 dj,k = 0 for j ≥ 2.

One property of Chebyshev expansions of a continuous function is that the error introduced

by truncating the expansion is dominated by first term after the truncation, if the coefficients

decay quickly enough [17]. For curves that we wish to approximate (with relatively simple

forms), the coefficients do tend to decay quickly, so the coefficients in the lower rows of the

matrix tend to be dominated by those above them.

The Chebyshev basis is well known for giving good approximations to minimax problems

in approximation theory (see [17] for an overview). This also seems to be the case for approx-

imate implicitization, with the resulting error normally being close to equioscillating. In fact,

experiments show that in almost all test cases, the number of roots in the error function given by

the Chebyshev method is greater than or equal to the convergence rate, for the given implicit de-

gree m (see Table 1). Thus the Chebyshev method appears to give a ‘near best’ approximation

in the sense that the error normally oscillates a maximum number of times.

Our experience in the choice between Legendre and Chebyshev polynomials is that the

difference in approximation quality is minor. Chebyshev expansions are slightly quicker to

compute and require less programming effort than their Legendre counterparts [1]. In addition

they tend to eliminate the spike in error at the end of the intervals that appears in the Legen-

dre method. However, both algorithms provide efficient and numerically stable methods for

(weighted) least squares approximation over the entire interval Ω.

6.2 Discrete approximate implicitization - the Lagrange basis

One of the simplest and fastest implementations of approximate implicitization is to perform

discrete least squares approximation of points sampled on the parametric manifold, similar to

the methods in [3, 22]. In our setting, this can be implemented as the original method but with

the α-basis chosen to be the Lagrange basis at the given nodes. The matrixDL,L defined by (2)

in the Lagrange basis of degree L− 1 can be given elementwise by

dj,k = qk(p(tj)), j = 1, . . . , L, and k = 1, . . . ,M, (11)
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where tj ∈ Ω are nodes in the parameter domain.

The result of approximate implicitization in the Lagrange basis depends both on the number

of points sampled and the density of the point distribution in the parameter domain. Since

Lagrange polynomials are neither orthogonal nor degree ordered, they do not solve a least

squares problem of type (14). However, we can form a direct relation between the discrete

and continuous least squares problems, as follows:

Proposition 3. Let p(t) be a planar parametric curve with bounded, piecewise continuous

components on the interval [0, 1] and let DL,L be the matrix defined by (11) at uniform nodes.

Then the (k, l) element of DL,L
TDL,L converges to a constant multiple of the (k, l) element of

M1, defined by (8), as the number of samples L is increased.

Proof. Since each of the parametric components of the curve is bounded and piecewise continu-

ous on the interval and qk is a polynomial, we know that qk ◦p is bounded and piecewise contin-

uous for each k. Let hL := 1/(L−1). Then, for uniform samples (tj)
L
j=1, where tj = hL(j−1)

in the parameter domain we see that

lim
L→∞

hL(DL,L
TDL,L)k,l = lim

L→∞

L
∑

j=1

hLqk(p(tj))ql(p(tj)),

=

∫

Ω

qk(p(t))ql(p(t)) dt,

= (M1)k,l,

for k, l = 1, . . . ,M.

Sampling more points gives ever closer approximations of the true least squares approxi-

mation (for any given L, the constant hL is absorbed into the singular values of the matrix and

does not affect the singular vectors). However, as we have seen, the Legendre method can solve

the (unweighted) least squares problem exactly, without excessive sampling and in a way that

best preserves the numerical precision. Although the point sampling method does tend to give

good approximations when the number of samples L is large enough, it is a relatively small

increase in computational complexity and programming effort to use Legendre expansions in-

stead. The main strength of the Lagrange method lies in its simplicity: it is easy to implement,

computationally inexpensive and highly parallelizable.

Alternative choices of nodes are also interesting to investigate. Using the inequality (4), we

can introduce the bound

min
‖b‖2=1

max
t∈Ω

|q(p(t))| ≤ ‖α(t)‖2 σmin,

≤ Λ(α) σmin,

whereΛ(α) is the Lebesgue constant from interpolation theory defined byΛ(α) = maxt∈Ω ‖α(t)‖1.
Thus we may expect to obtain better results from point distributions with smaller Lebesgue con-

stants. In particular, we will see in Section 6.3 that by using the Bernstein basis we achieve a

Lebesgue constant of 1. However, it is possible that with smaller Lebesgue constants come
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larger singular values. Thus it is important to balance between minimizing the Lebesgue con-

stant and the singular value in order to obtain the best bound for the algebraic error.

A point distribution of particular interest is that of the Chebyshev points. On [0, 1] this is

defined as:

tj =
1

2

(

1− cos

(

jπ − π

L− 1

))

, j = 1, . . . , L. (12)

Conversion from the Lagrange basis at Chebyshev points to the Chebyshev basis can be per-

formed by a DCT-I of the Lagrange coefficients [17]. Implementing the algorithm in this way

gives a fast procedure for the Chebyshev method of Section 6.1. Proposition 3 can be ex-

tended to show that sampling at an increasing number of Chebyshev points causes the solution

to converge to that of the weak method with the Chebyshev weight function (see Proposition 4).

However, interpolation in these points is known from approximation theory to give very good

approximation properties of its own [5]. One reason for this is the small Lebesgue constants

associated with Chebyshev points.

Proposition 4. Let p(t) be a planar parametric curve with bounded, piecewise continuous

components on the interval [0, 1] and letDL,L be the matrix defined by (11) at Chebyshev points

given by (12). Then the (k, l) element of DL,L
TDL,L converges to a constant multiple of the

(k, l) element of Mw, defined by (8) with the weight function w(t) = 1/
√

t(1− t), as the

number of samples L is increased.

Proof. We use the change of variable t(θ) = (1− cos(πθ))/2, and note first that

√

t(θ)(1− t(θ)) = sin(πθ)/2, and
dt

dθ
= π sin(πθ)/2.

As in Proposition 3, qk ◦p is bounded and piecewise continuous for each k. In order to simplify

the notation, let fk = qk ◦ p for each k, and let hL = 1/(L − 1). Then, for uniform samples

θj in the domain [0, 1] (which correspond to the Chebyshev points tj = t(θj) in the parameter

domain), we see that

lim
L→∞

hL(DL,L
TDL,L)k,l = lim

L→∞

L
∑

j=1

hLfk(t(θj))fl(t(θj)),

=

∫

Ω

fk(t(θ))fl(t(θ)) dθ,

=

∫

Ω

fk(t(θ))fl(t(θ)) sin(πθ)

2
√

t(θ)(1− t(θ))
dθ,

=
π

2

∫

Ω

fk(t)fl(t)
√

t(1− t)
dt,

=
π

2
(Mw)k,l,

for k, l = 1, . . . ,M. Note that t(Ω) = Ω, so the integral is taken over the same domain even

after change of variables.
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6.3 Bernstein polynomial basis

The approach in [9] was to choose α to be a non-negative partition of unity basis such as the

Bernstein basis (i.e.,
∑

i αi(t) ≡ 1 and 0 ≤ αi(t) ≤ 1). This ensures that ‖α(t)‖2 ≤ Λ(α) = 1

for all t ∈ Ω and so the smallest singular value gives an upper bound for the error

min
‖b‖2=1

max
t∈Ω

|q(p(t))| ≤ σmin.

Approximation in the Bernstein basis (Bj)
L
j=1, has the advantage that it is easily generalizable

to both tensor-product and simplex domains in higher dimensions [4]. If the parametric curves

are given in spline or Bézier form, it is natural to use the Bernstein coefficients, since there exist

numerically stable algorithms for computing the compositions, without resorting to sampling

[8]. Despite the slightly less favourable approximation qualities of the Bernstein basis (see

Figure 1), this method performs sufficiently well to be integrated into CAGD systems that are

based on Bézier or spline curves and surfaces. It also appears to be the most stable method if

the degreem is chosen high enough for an exact implicit representation (see Section 7).

The Bernstein method is closely related to both the Lagrange and Legendre methods seen

previously. It is in fact easy to see that the DB,L matrix in the Bernstein basis of degree L− 1,

converges asymptotically to the DL,L matrix in the Lagrange basis of degree L − 1 at uniform

nodes, as the degree is raised.

Proposition 5. LetDB,L be the matrix defined by (2) in the degree L− 1 Bernstein polynomial

basis. Then the (j, k) element ofDB,L converges to the (j, k) element ofDL,L, defined by (2) in

the Lagrange polynomial basis at uniform nodes.

Proof. It is well known that the Bernstein coefficients of a polynomial tend to the values of the

polynomial as the degree is raised, as follows [16]:

lim
L→∞

(DB,L)j,k = qk (p (tj)) , for all j = 1, . . . , L,

where tj = (j− 1)/(L− 1). But the elements on the right-hand side are simply the elements of

DL,L in the Lagrange basis at uniform nodes.

We can thus deduce the following convergence property of the Bernstein method as an

immediate consequence of Propositions 3 and 5:

Corollary 6. LetDB,L be the matrix defined by (2) in the Bernstein polynomial basis of degree

L − 1. Then the (k, l) element of DB,L
TDB,L converges to a constant multiple of the (k, l)

element of M1, defined by (8), as the degree is raised.

6.4 Exact implicitization using linear algebra

As mentioned previously, when the degree m is chosen high enough to give an exact implicit

representation and the algorithms are implemented in exact precision, all the methods can give

exact results. The choice of basis in the exact case is irrelevant to the resulting polynomial

and only affects only the implementation complexity and computational speed. For example,

the elements of the matrix using the Lagrange method can be generated by choosing rational
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nodes represented in exact arithmetic. As with the floating point implementation, the matrix

can be built very quickly in parallel, but rather than using SVD we can exploit algorithms for

finding the kernel of a matrix. A similar method for exact implicitization is described in [26].

However, the matrix there is expanded in the monomial basis, which leads to computationally

expensive expansions for high degrees. It is noted that it is possible to reduce the complexity of

that method in certain cases by exploiting the special structures of the algorithm and sparsity in

the resulting matrix. In general, sparsity is not a feature of the Lagrange method, however, the

matrices can be built more efficiently. The Bernstein method can also be implemented in exact

arithmetic, however, similarly to the method in [26], it suffers from issues with computationally

expensive expansions. Although it is possible to implement the Chebyshev and Legendre meth-

ods in exact precision using the elementwise definition (10), the evaluation of such integrals

will be slow. The fast algorithms for generating the matrices using FFT are not suitable for an

exact implementation.

When using the original method for approximate implicitization, we represent the error

function q ◦ p in a basis of degree mn. In the Lagrange basis we thus choose the number of

nodes L, to be one more than the degree of the basis L = mn+ 1. This is shown to be the

smallest number of samples one can take in order to guarantee an exact implicitization method

in the following proposition:

Proposition 7. Suppose we are given a non-degenerate rational parametric planar curve p(t)

of degree n (i.e., the degree of the algebraic representation is n). Then the number of unique

samples required to guarantee an exact implicitization by the Lagrange method is given by

K = n2 + 1.

Proof. Since the implicitization is exact, we know that there exists a unique polynomial q of

degree n with coefficients b such that q ◦ p ≡ 0. By the theory described in Section 3, we can

write

q(p(t)) =
K
∑

j=1

αj(t)
M
∑

k=1

dj,kbk ≡ 0,

where (αj)
K
j=1 is a basis for polynomials of degreeK−1, andK = n2+1. Since the polynomials

(αj)
K
j=1 are linearly independent, we have

M
∑

k=1

dj,kbk = 0,

for j = 1, . . . , K, and since Dα 6= 0, the vector b must lie in the null space of Dα. This shows

that any basis of degree K − 1 can be used for exact implicitization. In the univariate case,

Lagrange polynomials defined byK points form a basis for polynomials of degree up toK−1,

if and only if all the K points are unique. Thus, choosing K unique points in the parameter

domain is sufficient to guarantee an exact implicitization.

To see that choosing fewer than K points is insufficient, we consider parameter values cor-

responding to double points on the curve. Let K1 = 1
2
(n + 1)(n + 2) − 1 denote the mini-

mum number of points in general position on a curve of degree n required to define the curve.

Let the total number of possible double points on a rational curve of degree n be given by

K2 =
1
2
(n− 2)(n− 1) [20]. Then up to K2 points on the curve can correspond to more than
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Figure 1: The average uniform algebraic error, max |q(p(t))|, of the approximate implicitiza-

tion of 100 Bézier curves of degree 10, with random control points in the triangle defined by

(1, 0), (0, 0) and (0, 1), with implicit approximation degrees between 1 and 10.

one parameter value. Thus the minimum number of samples guaranteeing a unique exact im-

plicitization is given by

K1 +K2 = K.

When searching for exact implicitizations, we generally want the implicit polynomial of

lowest degree that contains the parametric curve. Since the normalized coefficient vector b,

given by an exact implicitization of lowest degree is unique, the kernel of the matrix would

be expected to be 1-dimensional. A kernel of dimension higher than one indicates that the

implicit polynomial defined by any vector in the kernel is reducible, and thus the degreem can

be reduced.

7 Comparison of the algorithms

So far, we have presented several approaches to exact and approximate implicitization using

linear algebra. The approaches exhibit different qualities in terms of approximation, condition-

ing and computational complexity. The intention of this section is to provide a comparison of

the algorithms.

7.1 Algebraic error comparisons

Figure 1 plots the average uniform algebraic error, maxt∈[0,1] |q(p(t))|, of the approximations

of 100 Bézier curves of degree 10, for algebraic degrees m = 1, . . . , 10. We use a barycentric

coordinate system defined on the triangle (1, 0), (0, 0) and (0, 1) for the implicit representation,

and choose random control points within this region to define the Bézier curves. We compare the

performance of the Lagrange basis (at uniform nodes)3, the Bernstein basis and the Chebyshev

basis. As the results in the Chebyshev and Legendre bases are very similar, we include only the

3Any reference to the Lagrange basis throughout this section will be assumed to be at uniformly spaced nodes.
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Chebyshev basis. The monomial basis, transformed to the interval [0, 1], was also considered

but not included due to its vastly inferior approximation qualities. All the algorithms were

performed in double precision.

For each degree up to the exact degree,m = 10, the Chebyshev basis gave the best uniform

minimization of the objective function q◦p. The maximum error for degreem in the Chebyshev

basis was, in general, approximately equivalent to the maximal error in the Lagrange basis of

degree m + 1 and the Bernstein basis of degree m + 2. For the Chebyshev basis, the maximal

errors level out to roughly double-precision accuracy at degree eight, whereas for the Bernstein

basis, the required degree for machine precision was 10. Although the Lagrange basis performs

better than the Bernstein basis for low degrees, the higher degree approximations are distorted

to the extent that the exact implicitization, at degree 10, loses several orders of magnitude

in accuracy. This appears to be due to the large deviation in the extrema of Lagrange basis

functions at uniform nodes, which are associated with large Lebesgue constants. An example

of such an error distribution is pictured in Figure 4c. The spike in error can be reduced by

sampling more points, as the error converges to the weak approximation (c.f., Proposition 3), or

by choosing point distributions with smaller Lebesgue coefficients.

It should be noted that for the Bernstein and Lagrange methods, the maximum of the alge-

braic error normally occurs at the end points of the interval, and is normally much higher than

the average error across the interval (see Figure 4). Moreover, the error away from the ends

of the interval can sometimes be smaller in these bases than in the Chebyshev basis. Hence,

they generally perform better than Figure 1 may suggest, in relation to the Chebyshev basis.

The Chebyshev basis, however, tends to make the error roughly equioscillating throughout the

interval. In addition, topological constraints imposed by approximating with lower degrees

than necessary mean that even when the algebraic error is small, the geometric error can be

somewhat different, especially for curves with many singularities.

7.2 A visual comparison of the methods

As discussed previously, minimizing the algebraic error does not necessarily minimize the ge-

ometric distance between the implicit and parametric curves. In order to visually compare how

the methods perform in terms of geometric approximations, Figure 3 plots the implicit approx-

imations of the parametric curve pictured in Figure 2. The curve was chosen as an example

that represents the general approximation properties of each of the bases. However, it should be

noted that different examples can give different results.

We see that for the quartic approximation, the Lagrange and Chebyshev methods are al-

ready performing fairly well with only some detail lost close to the double point singularities.

Despite exhibiting several intersections with the parametric curve, the Bernstein method gives

little reproduction of the shape. The monomial approximation bears almost no resemblance to

the original curve. For the quintic approximation, the Chebyshev and Lagrange bases again per-

form very similarly, giving excellent approximations that replicate the singularities well. These

approximations would be sufficient for many applications. The Bernstein method performs sim-

ilarly to the Chebyshev and Lagrange approximations of degree four, with only some loss of

detail at each of the double points. Again the monomial basis gives almost no replication of the

curve. It is also interesting to note the presence of extraneous branches visible in the Bernstein,
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Figure 2: A parametric Bézier curve of degree seven, with control points (1
5
, 1
10
), (1

2
, 3
10
), (1

2
, 1
2
),

( 3
10
, 1
2
), (0, 0), (0, 4

5
), (4

5
, 0) and (1

5
, 1
5
). Implicit approximations of this curve appear in Figure

3.

Monomial Bernstein Lagrange Chebyshev

m = 4

m = 5

m = 6

m = 7

Figure 3: Implicit plots of the approximations of the degree seven Bézier curve pictured in

Figure 2, for implicit degrees m = 4, 5, 6 and 7, in the monomial, Bernstein, Lagrange and

Chebyshev bases.
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Lagrange and Chebyshev approximations at degree five. This is a feature which may occur with

any of the methods. At degree six the Bernstein, Lagrange and Chebyshev methods all give

excellent results over the entire interval. The monomial method is beginning to show good ap-

proximation at the centre of the interval, however, this deteriorates towards the ends. At degree

seven we expect exact results, up to numerical stability, for all of the algorithms. Visually, the

implicitizations in all of the bases agree very closely.

For degree seven, we can also perform the Lagrange method in exact precision as described

in Section 6.4. Using this method we obtain a null space of dimension one, which confirms

that the correct algebraic degree is in fact seven. We may also use this exact implicitization

to compare the relative errors eα (using the infinity norm) for the implicitizations given by the

different bases, as follows:

emono = 1.17× 10−8,

ebern = 7.46× 10−11,

elag = 2.01× 10−4,

echeb = 1.11× 10−5.

The numerical stability properties of the Bernstein basis are well documented in mathematical

literature (see for example [15]). It appears that these properties are also preserved by the im-

plicitization algorithm presented here, with the Bernstein basis outperforming the other bases

to some orders of magnitude. In relation to the numerical stability of the methods, it is inter-

esting to note the distribution of singular values given by the singular value decomposition of

the Dα matrices [23]. For this comparison we normalize the singular values to all lie in [0, 1].

The Bernstein basis has one singular value close to zero in double precision; the second small-

est being approximately 7.74 × 10−9. This shows that the solution is quite unique. The case

is similar in the monomial basis, however, the second smallest singular value is approximately

6.24 × 10−10. For the Lagrange and Chebyshev bases the second smallest singular values are

2.54×10−15 and 1.17×10−14 respectively. Such close proximity between the smallest singular

values leads to issues with numerical stability. However, it can also be useful since, as discussed

previously, the singular vectors corresponding to the larger singular values are also candidates

for approximation. Thus we would expect the second best approximation in the Chebyshev and

Lagrange bases to be much better than the second best approximation in the Bernstein basis.

It is also interesting to note that when attempting to use the weak method for approximate

implicitization as an exact method here, we obtain a completely different solution, with relative

error given approximately by eweak = 0.607. This seems to be due to the fact that the nine

smallest eigenvalues (which are equal to the singular values, since M is symmetric positive

semi-definite), are all below machine precision. Thus, the solution given by the weak method

could be a combination of any of the nine corresponding eigenvectors. However, despite the

large relative error, the weak method still returns a solution which gives a reasonable geometric

approximation.

Typical algebraic error distributions obtained from the methods in this section are displayed

in Figure 4. A more accurate approximation of the geometric error can be given by dividing the

algebraic error by the norm of the gradient of the given implicit representation. However, since

the methods we present do not control the gradient, we have not included such plots here.
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Figure 4: Typical algebraic error distributions q(p(t)), for the different bases. These are taken
from the quintic implicit approximations of the parametric curve in Figure 2.

7.3 Discussion

In the example of section 7.2, it is striking how well the Lagrange basis performs in relation

to the Chebyshev basis. Despite the spike in error near the ends of the interval, the geometric

approximation appears to remain relatively good; and in some cases, even better than the Cheby-

shev. Thus, the comparisons in this section may lead to different conclusions as to which is the

best algorithm to choose in general. It is clear that the monomial basis performs relatively badly,

but the other bases all tend to perform well. The speed and simplicity of the Lagrange method

is appealing, whereas the stability of exact implicitization in the Bernstein basis is desirable for

many applications. The fact that the Legendre and Chebyshev methods have the guarantee of

solving a least squares problem (see Theorem 1), and that there exist efficient algorithms for

computing them, also gives justification for choosing them as general methods. As an overview

of this qualitative comparison, we display various aspects of the implementations in Table 3.

The table summarizes how the algorithms perform in terms of the stability, generality and what

sort of problems they solve (i.e., least squares or uniform approximations).

One undesirable property of approximate implicitization is the possibility of introducing

new singularities that are not present in the parametric curve. As the implicit polynomial rep-

resentation is global, we cannot control what happens outside the interval of approximation.

In particular, there could appear self-intersections of the curve within the interval of interest.

This is an artifact that can appear using any of the methods described in this paper. However,

such problems can be avoided by adding constraints to the algebraic approximation [25], or by

using information about the gradient of the implicit curve in the approximation [18]. In general,

adding such constraints will reduce the convergence rates of these methods [10].

The computation times for each of the methods varies. In all the current implementations of
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Least squares Uniform Stability Generality

Lagrange Good OK OK Any

Legendre Very good Good OK Rational

Chebyshev Very good Very Good OK Rational

Bernstein OK OK Very Good Rational

Weak Very good OK Very Bad Integrable

Table 3: A qualitative comparison of the algorithms. The least squares, and uniform columns

refer to how well the algorithms perform in terms of producing such approximations in the

algebraic error function.

the methods, the matrix generation is the dominant part of the algorithm, and the SVD is gen-

erally fast. When constructing the matrices, the monomial and Bernstein methods suffer from

computationally expensive expansions for high degrees, whereas the Chebyshev and Lagrange

methods are based on point sampling and FFT, which can be implemented in parallel. Compu-

tational features of the methods will be the subject of further research, including exploiting the

parallelism of GPUs to enhance the algorithms.

8 Approximate implicitization of surfaces

In this section we will discuss how the methods presented for curves in the preceding sections

generalize to surface implicitization. We will also provide a visual example of approximate

implicitization of surfaces.

A parametric surface in R
3 is given by p(s, t) = (p1(s, t), p2(s, t), p3(s, t)) where p1, p2

and p3 are functions in parameters (s, t) ∈ Ω ⊂ R
2. Similarly to curves, in P

3, we use the

homogeneous form of such a surface to write

p(s, t) = (g1(s, t), g2(s, t), g3(s, t), h(s, t)),

for bivariate polynomials g1, g2, g3 and h.

Although we have the option of using tensor-product polynomials for the implicit represen-

tation, here we choose polynomials of total degreem. An implicit polynomial q of total degree

m can be described in a basis (qk(u))
M
k=1, where M =

(

m+3
3

)

, with coefficients b = (bk)
M
k=1.

The choice of using the Bernstein basis for the implicit polynomial can be extended by con-

sidering a barycentric coordinate system defined over a tetrahedron containing the parametric

surface. For surfaces in P
3, the homogeneous Bernstein basis is given by

qk(u, v, w, z) =

(

m

k

)

uk1vk2wk3zk4 , for |k| = k1 + k2 + k3 + k4 = m,

where u, v, w and z denote the homogeneous coordinates, and k = (k1, k2, k3, k4) denotes a

multi-index. Again, this basis forms a partition of unity and we order it by letting qk correspond

to qk, for k = 1, . . . ,M, where k = k(k) denotes lexicographical ordering.

When applying the original algorithm for approximate implicitization, we observe that the
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expression q ◦ p is a bivariate polynomial in s and t. As such, we can write the function in a

basis α(s, t) = (αj(s, t))
L
j=1 as

q(p(s, t)) = α(s, t)TDαb. (13)

The description of α(s, t) and the number of basis functions L is dependent on the type of

parametric surface. We thus make distinctions for the two most interesting cases - tensor-

product surfaces, and surfaces on triangular domains - in the following subsections.

The weak method presented in Section 4 can also be generalized to surfaces. The problem

can be stated as

min
‖b‖2=1

∫

Ω

w(s, t)q(p(s, t))2 ds dt, (14)

where w(s, t) is some weight function defined on the domain of approximation Ω. In this way,

we obtain a linear algebra problem as before, where the solution is given by the eigenvector

corresponding to the smallest eigenvalue of a matrix Mw = (mk,l)
M,M
k=1,l=1, defined by

mk,l =

∫

Ω

w(s, t)qk(p(s, t))ql(p(s, t)) ds dt. (15)

8.1 Tensor-product parametric surfaces

For rational tensor-product surfaces of bidegree n = (n1, n2), we can write,

p(s, t) =

n1
∑

i1=0

n2
∑

i2=0

ci1,i2φi1(s)ψi2(t),

where (φi1)
n1

i1=0 and (ψi2)
n2

i2=0 are bases for univariate polynomials of respective degree n1 and

n2, the domain Ω = [a, b] × [c, d] is the Cartesian product of two univariate intervals, and

ci1,i2 ∈ P
3 for i1 = 0, . . . , n1 and i2 = 0, . . . , n2. In this case, equation (13) can be written

in a tensor-product basis α(s, t) = (αj1(s)βj2(t))
L1,L2

j1=1,j2=1 of bidegree mn = (mn1,mn2) as

follows:

q(p(s, t)) =
M
∑

k=1

bk

L1
∑

j1=1

L2
∑

j2=1

d̂(j1,j2),kαj1(s)βj2(t),

where L1 = mn1 + 1 and L2 = mn2 + 1. We must use an ordering for the indices (j1, j2)

in order to enter the coefficients d̂(j1,j2),k in matrix form. Again we choose the lexicographical

ordering j = j(j1, j2) = (j1 − 1)L2 + j2, so that

Dα,β = (dj,k)
L,M
j=1,k=1, (16)

where L = L1L2 = m2n1n2+mn1+mn2+1 and dj,k = d̂(j1,j2),k. The algorithm then proceeds

as for curves by using the singular value decomposition and selecting the vector corresponding

to the smallest singular value.

The univariate bases α = (αj1)
L1

j1=1 and β = (βj2)
L2

j2=1 can be be chosen arbitrarily, as in

the case for curves. In this way, Theorem 1, Propositions 3, 4, 5, 7 and Corollary 6 from the
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univariate case, all carry over to the tensor-product case with minimal effort4. This applies also

to higher dimensional tensor-product hypersurfaces. As an example, consider Theorem 1. In

the tensor-product case, we have the following, almost verbatim to the univariate case:

Theorem 8. Letα be a tensor-product polynomial basis, orthonormal with respect to the given

inner product 〈·, ·〉w, and Dα,β and Mw be defined by (16) and (15) respectively. Then Mw =

DT
α,βDα,β.

Proof. Similar to Theorem 1, with the relevant inner product given by

〈f, g〉w =

∫

Ω

w(s, t)f(s, t)g(s, t) ds dt,

for real bivariate polynomials f, g.

8.2 Triangular surfaces

For rational surfaces of total degree n on a triangular domain Ω, we can write,

p(s, t) =
N
∑

i=1

ciφi(s, t),

where (φi)
N
i=1 is a basis for bivariate polynomials of total degree nwithN =

(

n+2
2

)

, and ci ∈ P
3

for i = 1, . . . , N. In this case, equation (13) can be written in a bivariate basis α = (αj)
L
j=1 of

total degreemn as follows:

q(p(s, t)) =
M
∑

k=1

bk

L
∑

j=1

dj,kαj(s, t),

where, L =
(

mn+2
2

)

. Lexicographical ordering on the respective degrees of s and t in the basis

α can be used to enter the coefficients in matrix form, Dα = (dj,k)
L,M
j,k=1,1.

Surfaces on triangular domains may be considered a more fundamental generalization than

tensor-product surfaces, however, they often exhibit several difficulties not present in the tensor-

product case. For example, most practical applications of the weak method of Section 4 use

numerical quadrature, a method which is difficult to implement on triangular domains for high

degrees. Since the degree of the integrand in the weak implicitization of a surface of degree n

has degree 2mn, high degree quadrature rules are required. For example, exact implicitization

of a general quintic parametric surface, with implicit degreem = n2 = 25would need a quadra-

ture rule accurate to order 250. Although it would be wise to use a lower degree approximation

in this case (e.g.,m = 5), the degree of the integrand would still be too high for many quadrature

rules on triangular domains. High degree quadrature rules can be constructed by first transform-

ing the domain into a square, and using two univariate quadrature rules. However, these rules

are not symmetric in the triangle and require more samples than is mathematically necessary

[19].

4For a tensor-product extension of Proposition 7, the samples should be taken on a tensor-product grid and the

number of samples is given by K = (2n1n
2

2
+ 1)(2n2

1
n2 + 1).
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Certain methods for approximate implicitization are, however, easy to generalize. For ex-

ample, the Bernstein basis has a natural representation on simplex domains using barycentric

coordinates, and thus the use of approximate implicitization on triangular surfaces in this basis

is simple [4]. The convergence result of Corollary 6 can be extended to this case, together with

well established degree elevation algorithms, in order to obtain better approximation results.

The Lagrange basis method from Section 6.2, which was based on sampling, can also be

extended to triangular surfaces. However, when choosing samples, it is essential that the La-

grange polynomials defining the α-basis are linearly independent; that is, that they do in fact

form a basis. For curves, choosing unique parameters for the sample points was sufficient (see

Proposition 7). However, for surfaces we must add the requirement that the samples must not

all lie on a curve of degreemn in the parameter domain, where the number of samples is given

by L =
(

mn+2
2

)

.

Orthogonal polynomials on triangular domains also exist and an extension of Theorem 1

holds in this case. However, fast algorithms for generating the coefficeints appear to be difficult

to replicate, thus limiting the applicability of this method in practice. In particular, there appears

to be no direct analogue of the FFT method for generating Chebyshev coefficients. We refer the

reader to [14] for a discussion of orthogonal polynomials on triangular domains.

8.3 An example of surface implicitization

As an example of approximate implicitization of tensor-product surfaces we will consider the

problem of approximating the well known Newells’ teapot model. It is stated in [24] that

“the 32 bicucic patches defining Newells’ teapot provide a surprisingly diverse set of tests for

moving surface implicitization”. In that paper, properties of the moving surface implicitization

algorithm for the different patches are discussed and exact implicit degrees for each patch are

stated. We will consider the same 32 patches here, but instead use approximate methods, where

the degree of approximation has been chosen manually to give good visual results.

Each of the 32 bicubic parametric surfaces has been approximated using the tensor-product

Chebyshev method and the degrees stated in Table 4. The resulting surface has been ray traced

in Figure 5 using POV-Ray [21], and clearly gives an excellent implicit approximation to the

parametric teapot model. Moreover, the degrees of the surface patches are greatly reduced

from the exact degrees, which are also stated in Table 4. The highest degree patch in the

approximated model is six, whereas if exact methods are used patches of degree up to 18 are

required. Generally, it appears that for visual purposes, the degree can be reduced to roughly

one third of the exact degree.

This example shows one potential application of approximate implicitization, however, there

are several factors that should be noted. Firstly, a significant amount of user input was required

to generate the approximations of the teapot patches. This involved choosing degrees that were

suitable for each patch, and also choosing approximations without extra branches in the re-

gion of interest. This was done by considering approximations corresponding to other singular

values than the smallest. For example, for the upper handle patches we chose the approxima-

tion corresponding to the fourth smallest singular value. For each increased singular value, the

convergence rate of the method is reduced by one [12]. However, even with the reduced conver-

gence rates, the Chebyshev method continues to give excellent approximations. User input was
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Figure 5: Teapot defined by 32 approximately implicitized patches from Section 8.3, with de-

grees given in Table 4 and ray traced using POV-Ray [21].

also given to define the clipping region for the ray tracing of each patch. In this example, the

clipping regions were boxes parallel to the xy, xz and yz-planes. however, in more complicated

examples it is not always suitable to use box regions for this purpose.

Another feature of this example is that the continuity between the parametric patches has

been approximated very well in the implicit model. This is mainly due to the high convergence

rates, which give good approximations over the entire surface region. However, in this case,

there is also symmetry in the model meaning the edge curves where the patches meet can be

approximated in a symmetric way. To achieve this we have used the monomial basis for the

implicit representation since it is symmetric around the z-axis. For more general models, such

symmetry would not be possible.

9 Conclusions

We have presented and unified several new and existing methods for approximate impliciti-

zation of rational curves using linear algebra. Theoretical connections between the different

methods have been made together with qualitative comparisons. Extensions of the methods to

both tensor-product and triangular surfaces have been discussed. By considering various issues

such as approximation quality and computational complexity, we regard the Chebyshev and

Legendre methods as the algorithms of choice for approximation of most rational parametric

curves. However, to obtain good numerical stability when using floating point arithmetic for

exact implicitization, the Bernstein basis is a more favourable choice. Future research could

include how the methods can be improved, for example, by exploiting sparsity as in [13], or by

adding continuity constraints to the approximations [2].
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Exact degree Approximate degree

4 × rim 9 4

4 × upper body 9 3

4 × lower body 9 3

2 × upper handle 18 4

2 × lower handle 18 4

2 × upper spout 18 5

2 × lower spout 18 6

4 × upper lid 13 3

4 × lower lid 9 4

4 × bottom 15 3

Table 4: Exact implicit degrees of the 32 Newells’ teapot patches and the degrees used for

approximate implicitization in Section 8.3.
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205-212. Springer Netherlands, 2012.

Abstract: Consider a rational family of planar rational curves in a certain region of interest.

We are interested in finding an approximation to the implicit representation of the envelope.

Since exact implicitization methods tend to be very costly, we employ an adaptation of approx-

imate implicitization to envelope computation. Moreover, by utilizing an orthogonal basis in

the construction process, the computational times can be shortened and the numerical condition

improved. We provide an example to illustrate the performance of our approach.

1 Introduction

In geometric applications there are two basic standards for representing curves, namely the

parametric and the implicit descriptions. Both descriptions feature specific advantages and

disadvantages that complement each other. For instance, parametric curves allow the simple

generation of point samples, while implicit forms support the decision of point location queries.

In many applications, such as intersection computations, it is an advantage if both representa-

tions are available, and conversion algorithms are therefore of substantial practical interest. The

conversion processes are called parametrization and implicitization, respectively.

A rational curve may always be implicitized, whereas the opposite is not true [10]. Several

techniques for exact implicitization exist, e.g. Gröbner bases, moving curves/surfaces, or meth-

ods based on resultants, (see e.g. [5]). However, due to their computational complexity, their

practical use is often restricted to low-degree curves. Moreover, the variety obtained by exact

implicitization may contain unexpected branches and self-intersections.

A valid alternative to exact methods is approximate implicitization; cf. [3, 4]. Instead of the

exact variety, a low degree approximation is used to represent the shape of the geometric object

in a certain region of interest. This technique can be implemented using floating point numbers

and thus it offers faster computation, while having very high convergence rates. As shown in
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[2], the speed-up may be increased even further by using an orthogonal basis in the construction

process.

These features make approximate implicitization a promising candidate for an efficient com-

putation of envelope curves. Envelopes are used in different contexts in mathematics and appli-

cations, ranging from gearing theory and geometrical optics to NC-machining and Computer-

Aided Design. In robotics, envelopes are ubiquitous, appearing for instance as singularities or

boundaries. The theory of envelopes is covered by the classical literature, and is continuously

extended, due to their practical importance [1, 6, 7, 8].

Approximate implicitization has recently been adapted to the computation of envelopes in

[9]. As shown there, the idea is feasible and most properties of the original method can be

preserved, such as the possibility of obtaining the exact solution. However, the convergence

behaviour for higher degrees has not previously been studied and the computations are still

fairly expensive, needing integrals of products of high degree polynomials.

The present paper uses the latest results from approximate implicitization to obtain a fast and

efficient algorithm for approximating the envelope. This will make the use of implicit methods

more attractive and moreover allow us to study the convergence behaviour experimentally. The

paper is organized as follows: In Section two we will recall the basics of envelopes of planar

curves. After that, the third section shows how approximate implicitization can be used to

compute envelopes and derives a fast and efficient algorithm. The performance of our approach

is illustrated with an example and discussion in Section four.

2 Envelopes of Rational Families of Curves

Consider the family of rational curves

p(s, t) =
(

x(s, t)/w(s, t), y(s, t)/w(s, t)
)T
, (s, t) ∈ I × J (1)

where x, y and w are bivariate polynomials of bidegree (n1, n2) with gcd(x, y, w) = 1 and

I, J ⊂ R are closed intervals. We assume that w(s, t) 6= 0 for all (s, t) ∈ I × J . Either s or t

can be thought of as the time-like parameters, and the remaining parameter t or s is then used

to parameterize the curves forming the family.

The envelope of the mapping p consists of those points where its Jacobian J(s, t) becomes

singular. We observe that detJ(s, t) = h(s, t)/w(s, t)3, where

h(s, t) = det





x(s, t) ∂sx(s, t) ∂tx(s, t)

y(s, t) ∂sy(s, t) ∂ty(s, t)

w(s, t) ∂sw(s, t) ∂tw(s, t)



 . (2)

The function h is called the envelope function, since its zero set determines those points in the

parameter domain which are mapped to the envelope. Unfortunately, certain parts of the zero

set of h may degenerate under the mapping p.

The earlier paper [9] describes how these improper factors can be removed from h. This

can be done via some gcd computation and gives the reduced envelope function h̃. The image

of the zero set of h̃ under p is called proper part of the envelope.
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Let q : C2 → C be the polynomial which defines the implicit equation of the proper part of

the envelope of p. According to Theorem 1 of [9], there exists a real polynomial λ(s, t) such

that

(q ◦ p) (s, t)w(s, t)d = λ(s, t)h̃(s, t)2. (3)

Equation (3) is linear with respect to the coefficients of q and λ. Let

q(x) = cTq β(x) and λ(s, t) = cTλα(s, t), (4)

where β(x) = (βk(x))
M
k=1 and α(s, t) = (αi(s)αj(t))

(k1,k2)
(i,j)=(0,0) are bases of polynomials in x

and s, t of total degree d and bidegree (k1, k2) respectively, whereM =
(

d+2
2

)

. The coefficients

of q and λ with respect to these bases form a vector c = (cTq , c
T
λ )

T . We formulate the problem

of approximate envelope implicitization: Find the coefficients c which solve the weighted least

squares minimization problem

min
‖c‖2=1

∫

I×J

ω(s, t)
(

(q ◦ p)(s, t)w(s, t)d − λ(s, t)h(s, t)2
)2

d(s, t), (5)

for a nonnegative weight function ω, and chosen degrees d, k1 and k2.

It is important to mention that we use h instead of the exact h̃, since our algorithm uses

floating point computations which do not support exact gcd computations. While an exact

solution of this simplified problem might produce additional branches, the effect on our low

degree approximation will be negligible.

The result of the minimization (5) depends both on the choice of bases of q and λ and on

the weight function ω. The standard choice of a triangular Bernstein basis for q and a tensor-

product Bernstein basis for λ has been used for the approximations in this paper and also in

[9]. However, as a major difference to the approach in [9] where ω ≡ 1, here we use a tensor

product Chebyshev weight function on the domain I × J, for the reasons described in the next

section.

3 Fast Approximate Implicitization of Envelope Curves

The direct method for finding an approximate implicitization of envelope curves by evaluating

high degree integrals is simple, but computationally costly. In addition, the resulting symmet-

ric positive semi-definite matrix can be rather ill conditioned, leading to inaccurate null space

computations when using floating point arithmetic. This is similar to the case of approximate

implicitization of parametric curves presented in [2]. In that paper, an approach using orthogo-

nal polynomials is presented which greatly improves both the conditioning and the computation

time of the problem. In this section we give the details of how to implement the approach to

approximate implicitization of envelope curves using Chebyshev polynomials.

3.1 Approximate Implicitization using Chebyshev Polynomials

As described previously, the method works by minimization of the integral (5). Such a problem

is aided by expressing the function in a basis orthonormal with respect to the chosen weight
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function ω. The objective function is expressible in any tensor product polynomial basis of

bidegree

(L1, L2) = (max(dn1, k1 + 2degs(h)),max(dn2, k2 + 2degt(h))).

Thus, choosing an orthonormal basis (e.g., tensor-product Chebyshev polynomials), T(s, t) =

(Ti(s)Tj(t))
L1,L2

i=0,j=0 written in vector form and using (4), we can write

(q ◦ p)(s, t)w(s, t)d − λ(s, t)h(s, t)2 = T(s, t)T (Dqcq +Dλcλ), (6)

where the matrices Dq andDλ contain coefficients in T. Now, defining a matrix

D = (Dq,Dλ), (7)

we claim that the singular vector corresponding to the smallest singular value of D solves the

minimization problem (5). To see this, we prove the following Theorem:

Theorem 1. Let the matrix D be defined as in (7). Then we have

min
‖c‖2=1

∫

I×J

ω((q ◦ p)wd − λh2)2 = min
‖c‖2=1

‖Dc‖22.

Proof. By (6) and (7) we have

∫

I×J

ω((q ◦ p)wd − λh2)2 =

∫

I×J

ω(cTDTT)(TTDc) =

cTDT

(∫

I×J

ωTTT

)

Dc = cTDTDc = ‖Dc‖22.

Since we have min‖c‖2=1 ‖Dc‖2 = σmin, where σmin is the smallest singular value of D,

the corresponding right singular vector solves the problem. The problem is, however, better

conditioned and can be implemented in a more efficient way than the weak approach [2].

3.2 Implementation of the Chebyshev method

The choice of using Chebyshev polynomials for the orthogonal basis is made mainly for compu-

tational reasons; the coefficients can be generated via a fast algorithm. This utilizes an existing

method outlined for univariate polynomials in [11], which exploits the discrete orthogonality of

Chebyshev polynomials at Chebyshev points.

Here we briefly describe the algorithm for efficient generation of tensor-product Chebyshev

coefficients. The univariate Chebyshev points of degree L in the interval [0, 1] are given by:

tj,L = (1− cos (jπ/L)) /2, j = 0, . . . , L.

The Chebyshev coefficients of any tensor product polynomial f of bidegree no higher than

(L1, L2) can then be generated by the following procedure [11]:
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• Construct a matrix f = (f(ti,L1
, tj,L2

))L1,L2

i=0,j=0 of values of the function f at the tensor-

product Chebyshev points,

• Extend f to its even counterpart f̂ :

f̂i,j = fi,j , i = 0, . . . , L1, j = 0, . . . , L2,

f̂L1+i,j = fL1−i,j, i = 1, . . . , L1 − 1, j = 0, . . . , L2,

f̂i,L2+j = fL1−i,j, i = 0, . . . , L1, j = 1, . . . , L2 − 1,

f̂L1+i,L2+j = fL1−i,L2−j, i = 1, . . . , L1 − 1, j = 1, . . . , L2 − 1.

• perform a bivariate fast Fourier transform (FFT) to get f̃ = FFT(f̂),

• extract the first (L1 +1, L2 +1) coefficients of f̃ to get g = (f̃i,j)
L1,L2

i,j=0 . The matrix g then

contains the tensor product Chebyshev coefficients of f.

The algorithm for approximate implicitization proceeds by applying the above procedure to

the functions {wd(βk ◦ p)}Mk=1 and {−h2αl}L1L2

l=1 , and arranging the coefficients in matricesDq

and Dλ according to the definition (7). The efficiency of the method is due to it being based

on point sampling and FFT. Moreover, the sampling can be done entirely in parallel making the

method highly suitable for implementation on heterogeneous architectures.

4 Numerical results

In this section we present an example of the method along with both computation times and

estimations for the convergence rates. In order to generate reliable data, we have chosen a

degree six family of lines which has a rational envelope. We can thereby use a parametrization

of the envelope to compute the algebraic error of the approximations. The family of lines is

pictured in Figure 1, along with the envelope approximations up to the exact implicitization

at degree six. For these approximations we take k1 = max(0, dn1 − 2 degs(h)) and k2 =

max(0, dn2 − 2 degt(h)), since this is also the minimum needed for the exact solution.

It can be seen that with increased degree the approximations converge quickly. It is possible

that with higher degrees, extra branches may appear in the region of interest. For example, the

approximation of degree five has an extra branch close to the envelope curve. However, such

artifacts could be avoided using a suitable collection of low-degree approximations (see [9] for

an adaptive algorithm).

In Table 1 we show the computation times for the above approximations. The algorithm

has been implemented in the Python programming language using the NumPy library for the

built in FFT and singular value decomposition (SVD) algorithms. The results are computed on

a 3.4Ghz Intel Core i7-2600 with 8GB RAM.

Instead of increasing the polynomial degree d, one may also improve the quality of the

approximations by subdivision; the envelope is then approximated by a piecewise implicit rep-

resentation. It is thus of interest to see how the approximation improves as the region Ω = I×J
is reduced.
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d = 1 d = 2 d = 3

d = 4 d = 5 d = 6

Figure 1: Approximations of the envelope of a family of lines for degrees d = 1, . . . , 6.

Degree d 1 2 3 4 5 6

# coefficients 196 975 2964 7000 14136 25641

Time (s) 0.02 0.04 0.11 0.23 0.45 0.80

Table 1: Computation times and number of matrix coefficients for the examples in Fig. 1.
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Implicit Degree d
1 2 3 4

ǫd,i rd,i ǫd,i rd,i ǫd,i rd,i ǫd,i ri

Diam.

1 1.69e-1 - 6.23e-3 - 1.16e-4 - 3.96e-6 -

1/2 1.67e-1 0.02 3.46e-4 4.170 2.62e-6 5.467 2.66e-10 13.86

1/4 3.04e-2 2.458 1.52e-5 4.511 1.50e-9 10.77 1.34e-14 14.27

1/8 6.52e-3 2.223 5.02e-7 4.915 2.87e-12 9.028 n/a n/a

1/16 1.41e-3 2.213 1.58e-8 4.989 5.63e-15 8.993 n/a n/a

Table 2: Maximum algebraic error ǫd,i, of the approximations of the example in Fig.1, together

with approximate convergence rates rd,i.

Consider a region Ωi = Ii × Ji, of diameter 2−i centered on a point (s0, t0) in

H = {(s, t) ∈ Ω : h(s, t) = 0}.

For an approximation qd,i of degree d to over the region Ωi, we define the maximum algebraic

error to be

ǫd,i = max
(s,t)∈H∩Ωi

|qd,i(p(s, t))|,

where the coefficients cqd,i of qd,i have been renormalized to ‖cqd,i‖ = 1, in order to give mean-

ingful results. Given two approximations qd,i, and qd,i+1, on subsequent subdivision regions Ωi

and Ωi+1, we define the convergence rate to be rd,i = log2(ǫd,i/ǫd,i+1). Table 2 shows values of

ǫd,i and rd,i for four successive subdivisions of the example in Figure 1 and degrees d up to four.

Values of ǫd,i below machine precision have been omitted.

As can be seen from Table 2, the error ǫd,i decreases both with increased degree and in-

creased levels of subdivision. The values of rd,i, suggest that the convergence rates for d =

1, 2, 3 and 4 are approximately two, five, nine and 14 respectively. This corresponds directly

to the number of degrees of freedom in approximating with lines, conics, cubics and quartics

and is hence as high a convergence as we can expect, supporting our choices for the degrees

(k1, k2). The results in Table 2 are typical of rational examples we have tested.

It should be noted that in general, envelope curves are not rational. Thus, this example,

whilst showing that high convergence rates are attainable, cannot conclude that this is always

the case. However, from studying additional examples, our experience shows that convergence

behaviour is good in the general setting.

5 Conclusion

We have presented a new implementation of approximate implicitization of envelope curves

using Chebyshev polynomials. We have detailed the computation times and convergence be-

haviour of a specific example, thereby demonstrating the feasibility of our approach. This paper

also motivates theoretical work on convergence rates as a direction for future research.
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representation of rational cubic Bézier

curves
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Abstract: We present an approach to finding the implicit equation of a planar rational para-

metric cubic curve, by defining a new basis for the representation. The basis, which contains

only four cubic bivariate polynomials, is defined in terms of the Bézier control points of the

curve. An explicit formula for the coefficients of the implicit curve is given. Moreover, these

coefficients lead to simple expressions which describe aspects of the geometric behaviour of the

curve. In particular, we present an explicit barycentric formula for the position of the double

point, in terms of the Bézier control points of the curve. We also give conditions for when an

unwanted singularity occurs in the region of interest. Special cases in which the method fails,

such as when three of the control points are collinear, or when two points coincide, will be

discussed separately.

1 Introduction

Parametric curves are widely used in CAGD applications, especially in the ubiquitous rational

Bézier and B-spline forms, due to their natural geometric properties. It is well known that all

planar rational parametric curves can be written in implicit form [11]; that is, as the zero set

of a single bivariate polynomial function. The availability of both the implicit and parametric

representations, which have properties complementary to each other, is important for various

applications in CAGD, such as intersection and surface trimming algorithms. The increase in

the presence of GPUs in commodity computers has also led to renewed interest in implicit

representations for rendering applications [8, 9]. Since traditionally the design phase happens

using the parametric representation, a great deal of research has focussed on implicitization -

the conversion from the rational parametric, to the implicit form.

Implicitization algorithms, both exact and approximate, have been investigated by many

authors [1, 2, 3, 4, 11]. The specific case of implicitization of planar rational cubic curves has

also received particular attention. In [10], Sederberg et al. present a method which reduces the

degrees of freedom in the implicit polynomial from nine to eight by introducing monoid curves.
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In [7], Floater makes a choice of basis that allows the implicit representation to be given in

terms of only six basis functions - a reduction from the 10 basis functions required to represent

all polynomials of total degree three. Floater also gives explicit formulas for the coefficients

and conditions for when the curve degenerates to a conic.

Despite being motivated by methods for sparse implicitization [5], the techniques in this

paper more closely resemble those of Sederberg et al. [10, 11] and Floater [7]. The method

describes how, in most cases, the implicit form of the curve can be defined in terms of only four

basis functions. The basis functions are constructed from the control points of a rational cubic

curve given in Bernstein-Bézier form. In addition, the coefficients which describe the implicit

representation are shown to contain a lot of information about the geometry of the curve. We

present an explicit barycentric formula for the position of the double point of the curve in terms

of its control points, along with criteria for when the double point is considered ‘unwanted’.

The important case of degeneration to conic sections is also treated. In the special case when

three of the control points are collinear, the method fails; potential remedies for this will also

be discussed.

Although much of the paper will utilize a Cartesian system for describing and proving the re-

sults, the method is in fact independent of the coordinate system, and is stated in terms of purely

geometric quantities. In addition, all of the formulas (except Eq. (16)), including the detection

and location of singularities on the curve, can be implemented in exact rational arithmetic; that

is, only the operations of addition, subtraction multiplication and division are required. This

contrasts with other methods, which often use rootfinding algorithms to find the double point

via the parametric representation [7, 8, 9, 14]. This is potentially useful in applications which

require exact precision and also aids the speed of floating point implementations.

There are several applications of implicit representations of cubic curves. These include res-

olution independent curve rendering, as in [8, 9], and intersection algorithms, as in [10, 12, 14].

We also envisage great potential for the use of the techniques in this paper in surface trimming

algorithms. A piecewise implicit representation of cubic trimming curves in the parameter do-

main will give a simple and accurate test for whether a point lies inside or outside the trimming

region. The geometric formulas presented in this paper are also interesting from a theoretical

perspective.

The paper will proceed as follows. In Section 2 we present the construction of the basis we

use for the cubic implicitization, and also present formulas for the coefficients which define the

curve. Computation of the double point of the curve will be addressed in Section 3, and Section

4 will cover the case of cubics which degenerate to conic sections. The special case of collinear

control points will be discussed in Section 5. Several examples will be presented in Section

6, which highlight the simplicity of the method. We conclude the paper with a discussion of

the extension to higher degrees and further work in Section 7. Some extended proofs and basic

geometric properties are deferred to the Appendices.
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2 A basis for representing rational cubic Bézier curves im-

plicitly

In this section we describe the implicit basis functions and prove some simple facts such as

invariance of the coefficients under affine transformations. We begin with some definitions.

2.1 Preliminaries

We assume that the planar rational cubic curve is given in Bernstein-Bézier form with control

points c0, c1, c2, c3, and weights w0, w1, w2, w3. That is, we have

p(t) =
c0w0(1− t)3 + c13w1(1− t)2t+ c23w2(1− t)t2 + c3w3t

3

w0(1− t)3 + 3w1(1− t)2t+ 3w2(1− t)t2 + w3t3
. (1)

In the parametric form, Bézier curves are normally rendered within a region of interest cor-

responding to the parameter values t ∈ [0, 1]. It is also common in the CAGD community to

require that the weights are positive. Although such a restriction is easier for us to work with,

for the most part, it is not strictly necessary; the method also works with negative weights, zero

weights and weights of mixed sign. However, due to the construction which follows, we do

require that no three of the control points are collinear. It is important to note that this will be

an assumption of all the results up to Section 5.

In the following definition, we assume the control points are given in a Cartesian system,

ci = (ci,0, ci,1).

Definition 1. We define the implicit equation of the line between ci and cj to be given by

Lij(x, y) = 0, where

Lij(x, y) =

∣

∣

∣

∣

∣

∣

x y 1

ci,0 ci,1 1

cj,0 cj,1 1

∣

∣

∣

∣

∣

∣

.

Wemay refer loosely to ‘the line Lij,’ meaning ‘the line defined by the equation Lij(x, y) =

0’. Note that the norm of the gradient ofLij is equal to the Euclidean distance between the points

ci and cj :
1

‖∇Lij‖2 = ‖cj − ci‖2.
Definition 2. We define a quantity λijk as follows:

λijk =

∣

∣

∣

∣

∣

∣

ci,0 ci,1 1

cj,0 cj,1 1

ck,0 ck,1 1

∣

∣

∣

∣

∣

∣

.

For compactness of notation we define λi = (−1)i+1λi+1,i+2,i+3 where the indices i + 1, i + 2

and i+ 3 are taken modulo 4. That is,

λ0 = λ321, λ1 = λ230, λ2 = λ103, λ3 = λ012. (2)

1The linear functions Lij , can in fact be characterised by the three conditions of vanishing at ci and cj , and

having constant gradient, proportional to the Euclidean distance between the points. However, for the sake of

clarity, we proceed using the definition in the Cartesian system.
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Figure 1: The definition of the coefficients λi corresponds to twice the signed areas of the

shaded regions. The corresponding weights ui appear on the opposite vertex.

We also make the definition

ui =

(

3

i

)

wi,

for each of the weights (wi)
3
i=0 of the cubic Bézier curve.

Clearly λijk = 0 if any of the i, j, k’s are equal. The quantities λi represent twice the signed

areas of the triangles formed from the control points (ci)
3
i=0, by omitting the point ci (i.e.,

ci+1, ci+2 and ci+3). The areas, λi, are pictured with the corresponding weights, ui, in Figure 1.

2.2 Implicit basis functions for rational cubic curves

The following definition describes the basis functions we use for the implicit representation:

Definition 3. We define four basis functions as follows:

K0(x, y) = L01(x, y)L12(x, y)L23(x, y),

K1(x, y) = L01(x, y)L13(x, y)
2,

K2(x, y) = L02(x, y)
2L23(x, y),

K3(x, y) = L03(x, y)
3.

A diagrammatic representation of these basis functions is shown in Figure 2. The functions

(Ki)
3
i=0 can be thought of as the implicit representations of the limiting configurations of non-

negative weights w1 an w2, with w0 = w3 = 1. For example, K3 is the implicit polynomial of

the rational cubic curve with weights w1 = w2 → 0; that is, the line L03(x, y) between c0 and

c3 with multiplicity three, and parametric representation

c0(1− t)3 + c3t
3

(1− t)3 + t3
.

Similarly, K0 can be thought of as the limiting implicit equation as w1 = w2 → ∞, and the

other two cases as 1/w2 = w1 → ∞, and 1/w1 = w2 → ∞, respectively.
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c0

c1 c2

c3
K0(x, y) = 0

c0

c1 c2

c3
K1(x, y) = 0

c0

c1 c2

c3
K2(x, y) = 0

c0

c1 c2

c3
K3(x, y) = 0

Figure 2: A diagrammatic representation of the zero sets of the basis functions (Ki)
3
i=0. The

number of lines between any two points ci and cj, reflect the multiplicity with which Lij(x, y)
appears in the basis function.

It can be shown that the basis functions are linearly dependent if and only if no three control

points are collinear. However, we defer this result to Appendix 4.B.

In the following Theorem we establish an explicit formula for the implicit representation of

the rational cubic Bézier curve p(t), in terms of these basis functions.

Theorem 1. Suppose we are given a non-degenerate cubic Bézier curve, p(t), such that no

three of the control points are collinear. Then the curve has the following equation defining its

implicit representation:

q(x, y) =
3

∑

i=0

biKi(x, y)

where

b0 = −λ21λ22U + u21u
2
2Λ,

b1 = λ31λ3U − u31u3Λ,

b2 = λ0λ
3
2U − u0u

3
2Λ,

b3 = λ20λ
2
3U − u20u

2
3Λ.

(3)

and U =
∏3

k=0 ui and Λ =
∏3

k=0 λi.

Due to its length, we also defer the proof of this theorem to Appendix 4.B. It is interesting

to note that the degrees to which the uis and λis appear in the coefficient formula (3), are closely

related to the multiplicities of the basis functions (Ki)
3
i=0 at the vertices (ck)

3
k=0.

Proposition 2. The coefficients (bi)
3
i=0 defined by (3) are invariant under affine transformations,

up to a constant scaling.

Proof. Formally, suppose we are given a Bézier curve p(t) with control points ci and weights

wi, whose implicit coefficients (bi)
3
i=0 are defined by (3). Then, for any affine map Φ, we claim
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that the implicit coefficients of the transformed curve Φ(p(t)), are given by (αbi)
3
i=0, for some

non-zero constant α. Since affine transformations multiply areas by a non-zero constant, there

exists a constant C such that λ̃i = Cλi where λ̃i are the areas defined by control points c̃i, after

the affine transformation (i.e., c̃i = Φci, for each i = 0, 1, 2, 3). Now, since the weights ui
are unchanged, and the λis appear homogeneously of degree four in the definition (3), we have

b̃i = C4bi, for each i.

Since implicit representations are unchanged by non-zero scalar multiplication, we can

clearly factor out the constant C4.

2.3 Evaluating the implicit equation

One potential disadvantage of the method described in this paper, is that when the implicit

equation is evaluated, samples are taken at the six different lines in the set

{Lij(x, y) : 0 ≤ i < j ≤ 3}.

This can, however, be reduced to three evaluations by some simple relations between the lines.

Proposition 3. Suppose we are given any four points (ci)
3
i=0, with no three collinear. Then,

using Definitions 1 and 2, we can write

λjLij(x, y) + λkLik(x, y) + λlLil(x, y) ≡ 0, (4)

for any choice of i, j, k, l ∈ {0, 1, 2, 3}, with all indices distinct.

Proof. Let

r(x, y) = λjLij(x, y) + λkLik(x, y) + λlLil(x, y).

Then

r(cj) = λkLik(cj) + λlLil(cj) = ±(λkλl − λlλk) = 0,

since Lij(cj) = 0, and Lik(cj) and Lil(cj) must have opposite signs. Similarly, r(ck) = 0 and

r(cl) = 0. Thus, since r is a linear function which is zero at three non-collinear points, it must

be identically zero.

This Proposition gives us an alternative method to evaluate some of the functions Lij(x, y).

We assume that we are given the lines L01, L12 and L23, corresponding to the lines in the control

polygon. It can easily be shown, using (4), that

L02(x, y) =
λ3L23 − λ1L12

λ0
,

L13(x, y) =
λ0L01 − λ2L12

λ3
,

L03(x, y) =
λ1λ2L12 − λ0λ1L01 − λ2λ3L23

λ0λ3
.

When using this method as a numerical technique, care should be taken to ensure a sufficient

degree of numerical stability. For example, if the denominators become small, it may be better
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to choose a different set of three lines to evaluate on, or to compute each line evaluation explic-

itly. A similar method is used by Sederberg and Parry in [12], in order to simplify the symbolic

expansion of the determinant required in their method.

2.4 Properties of the coefficients

In the following definition we give three quantities which can be used to determine several

characteristics of the geometry of the curve, such as when the curve degenerates, and in what

region the singularity lies.

Definition 4. We define three quantities φ1, φ2 and φ3 as follows:

φ1 = u0u2λ
2
1 − u21λ0λ2,

φ2 = u1u3λ
2
2 − u22λ1λ3,

φ3 = u1u2λ0λ3 − u0u3λ1λ2.

These quantities are based on the coefficients (bi)
3
i=0 and we can write

b0 = φ3u1u2λ1λ2,

b1 = φ1u1u3λ1λ3,

b2 = φ2u0u2λ0λ2,

b3 = φ3u0u3λ0λ3.

(5)

We thus have a compact form of the implicit equation

q(x, y) = φ3(u1u2λ1λ2K0(x, y) + u0u3λ0λ3K3(x, y))

+ φ1u1u3λ1λ3K1(x, y) + φ2u0u2λ0λ2K2(x, y).
(6)

There is also a relation between the three quantities given as follows:

Proposition 4. The following two equations hold:

u3λ2φ1 + u1λ0φ2 + u2λ1φ3 = 0,

and

u2λ3φ1 + u0λ1φ2 + u1λ2φ3 = 0.

Proof. The proof is a simple exercise in expanding polynomials after substituting the definitions

φ1, φ2 and φ3.We therefore omit the details here.

3 Double points on cubic curves

Since the curve is rational, there always exists a single double point in the form of a crunode,

an acnode or a cusp. It is a surprising fact that the double point of a rational cubic curve with

rational coefficients is necessarily rational, despite the fact that the corresponding parameter
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values may be irrational or complex. This was apparently first noticed by Sederberg in [10]

(Theorem 1):

“Every rational cubic curve defined by polynomials with rational coefficients has a double

point whose coordinates are real and rational”.

In this section we derive the equations of two lines which intersect at the double point, in

terms of the coefficients we have already discussed. We give exact formulas for the location

of the double point in terms of barycentric combinations of its control points. We also define a

condition which detects when there is an ‘unwanted’ self-intersection in the region of interest.

We first some give identities for the gradient which will be needed in the proofs in this

section. From Definition 1 it is clear that we have

∂

∂x
Lij(x, y) = ci1 − cj1,

and
∂

∂y
Lij(x, y) = cj0 − ci0.

For compactness of notation we define c⊥ij =

(

ci1 − cj1
cj0 − ci0

)

. Thus, using the product rule, we can

write the gradients of the basis functions as follows:

∇K0(x, y) = c⊥23L01L12 + c⊥12L01L23 + c⊥01L12L23,

∇K1(x, y) = c⊥132L01L13 + c⊥01L
2
13,

∇K2(x, y) = c⊥022L02L23 + c⊥23L
2
02,

∇K3(x, y) = c⊥033L
2
03.

(7)

In addition, using (6), we can write the gradient function, ∇q, in the compact form

∇q(x, y) = φ3(u1u2λ1λ2∇K0(x, y) + u0u3λ0λ3∇K3(x, y))

+ φ1u1u3λ1λ3∇K1(x, y) + φ2u0u2λ0λ2∇K2(x, y).
(8)

3.1 Location of the singularity

In this section we locate the position of the singularity in affine space. The following proposition

deals with the case where the singularity occurs at one of the endpoints c0 or c3.

Proposition 5. Let the control points and weights of a non-degenerate rational cubic Bézier

curve be given, and assume that no three control points are collinear. Then the singularity

occurs at the end point c0 if and only if φ2 = 0 or u1 = 0. Similarly, the singularity occurs at

the end point c3 if and only if φ1 = 0 or u2 = 0.

Proof. Since the functions (L0i)
3
i=1, evaluated at the endpoint c0 are all zero, we have∇K2(c0) =

∇K3(c0) = 0. Thus

∇q(c0) = c⊥01
(

L12(c0)L23(c0)
(

u21u
2
2Λ− λ21λ

2
2U

)

+ L2
13(c0)

(

λ33λ1U − u31u1Λ
))

= c⊥01Λu
2
1

(

u22λ1λ3 − u1u3λ
2
2

)

= −c⊥01Λu
2
1φ2.
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Clearly this is zero if and only if φ2 = 0 or u1 = 0, since c0 and c1 are distinct. Similarly,

∇q(c3) = 0 if and only if φ1 = 0 or u2 = 0.

In non-degenerate cases, except for those with the conditions above, we can derive the

equations of two lines, S̃1 and S̃2, which both intersect the singularity and either c0 or c3.

Proposition 6. Suppose we have a planar rational cubic Bézier curve with no three control

points collinear and non-zero weights. Suppose further that the double point of the curve is

finite, and does not lie on either of the endpoints c0 or c3. Define two equations as follows:

S̃1(x, y) = L02(x, y)u2φ1 − L03(x, y)u1φ3 = 0,

S̃2(x, y) = L13(x, y)u1φ2 − L03(x, y)u2φ3 = 0.
(9)

The equations (9) define two lines which intersect the end points of the Bézier curve, c0 and c3

respectively. Moreover, the lines intersect each other at the unique double point of the curve.

The lines are also determined by the alternative equations

Ŝ1(x, y) = L01(x, y)u2φ1 − L03(x, y)u0φ2 = 0,

Ŝ2(x, y) = L23(x, y)u1φ2 − L03(x, y)u3φ1 = 0.
(10)

Proof. We can immediately see that S̃1(c0) = 0 since, by definition, it is a linear combination

of L02 and L03. Similarly, S̃2(c3) = 0. It remains to show that both lines intersect at the double

point of q.

We now use both equations (9) and (10), which can easily be shown to be equivalent, using

Proposition 3. We must prove that both the implicit polynomial q and its gradient ∇q, vanish
when these equations are satisfied. From (9) and (10) we infer that

L01 =
L03u0φ2

u2φ1

, L23 =
L03u3φ1

u1φ2

, L02 =
L03u1φ3

u2φ1

, L13 =
L03u2φ3

u1φ2

, (11)

and

L12 =
L23λ3 − L02λ0

λ1
= L03

(

φ1u3λ3
φ2u1λ1

− φ3u1λ0
φ1u2λ1

)

. (12)

These are well defined since, by Proposition 5, we have φ1 6= 0 and φ2 6= 0, and the weights are

non-zero. Thus, by (6), the formula for q becomes

q(x, y) = φ3λ0λ3u0u3L
3
03 + φ3

(

φ1λ3u3
φ2u1λ1

− φ3λ0u1
φ1u2λ1

)

λ1λ2u0u3L
3
03

+
φ2
3λ1λ3u0u2u3

φ2u1
L3
03 +

φ2
3λ0λ2u0u1u3

φ1u2
L3
03,

= L3
03

λ3φ3u0u3
φ2u1

(φ2λ0u1 + φ3λ1u2 + φ1λ2u3) ,

= 0,

by Proposition 4.

In order to prove that ∇q = 0 when S1 = S2 = 0, we substitute the equations (11) into the

gradient identities (7). After expanding the formula (8), we can group together the coefficients
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of c⊥ij to write

∇q = L2
03

(

ψ01c
⊥
01 + ψ12c

⊥
12 + ψ23c

⊥
23 + ψ02c

⊥
02 + ψ13c

⊥
13 + ψ03c

⊥
03

)

,

where

ψ01 = φ3u0u3λ0λ1,

ψ12 = φ3u0u3λ1λ2,

ψ23 = φ3u0u3λ2λ3,

ψ02 = 2φ3u0u3λ0λ2,

ψ13 = 2φ3u0u3λ1λ3,

ψ03 = 3φ3u0u3λ0λ3.

The quantities ψij can be verified by writing out the coefficients. Thus, we can factor out the

common factor φ3u0u3, to get

∇q = L2
03φ3u0u3

(

λ0λ1c
⊥
01 + λ1λ2c

⊥
12 + λ2λ3c

⊥
23 + 2λ0λ2c

⊥
02 + 2λ1λ3c

⊥
13 + 3λ0λ3c

⊥
03

)

.

Now, we can individually verify each of the following

λ0λ1c
⊥
01 + λ0λ2c

⊥
02 + λ0λ3c

⊥
03 = 0,

λ2λ3c
⊥
23 + λ1λ3c

⊥
13 + λ0λ3c

⊥
03 = 0,

λ1λ2c
⊥
12 + λ0λ2c

⊥
02 + λ1λ3c

⊥
13 + λ0λ3c

⊥
03 = 0.

Thus, summing the previous three equations, we must have∇q = 0, proving the statement.

The lines defined in Proposition 6 are shown in Figure 3. It can be seen that the segments of

the curve limited to the quadrants defined by the lines S̃1 and S̃2, are non-singular. This is nec-

essarily true due to rational cubic curves having only one singularity. The following Theorem,

which is a consequence of the previous Proposition, gives the location of the singularity in the

affine plane.

Theorem 7. Suppose that the double point s, of a non-degenerate cubic curve, is not at infinity.

Then the following barycentric combination of the four Béizer control points (ci)
3
i=0 determines

its location exactly:

s =
c0λ1φ1φ3u

2
2 +

1
2
(c0λ0 − c1λ1 + c2λ2 − c3λ3)φ1φ2u1u2 − c3λ2φ2φ3u

2
1

λ1φ1φ3u22 +
1
2
(λ0 − λ1 + λ2 − λ3)φ1φ2u1u2 − λ2φ2φ3u21

The formula can be simplified in a number of different ways, using the identities provided in the

previous sections. For example, in the barycentric coordinate system defined by c0, c2 and c3,

we have

s =
c0φ

2
1u2u3 − c2φ1φ2u1u2 + c3φ2φ3u

2
1

φ2
1u2u3 − φ1φ2u1u2 + φ2φ3u21

, (13)
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S̃1(x, y) = 0

S̃2(x, y) = 0

Figure 3: Two lines S̃1 and S̃2 (in bold, left), each defined by a linear combination of Lijs,

which intersect at the singularity. For an unwanted self-intersection (as pictured), the segments

of the curves restricted to the quadrants defined by the two lines can be rendered separately,

thus visually eliminating the singularity (right).

or in the barycentric coordinate system defined by c0, c1 and c3

s =
c0φ1φ3u

2
2 − c1φ1φ2u1u2 + c3φ

2
2u1u0

φ1φ3u22 − φ1φ2u1u2 + φ2
2u1u0

. (14)

Proof. The formulas can be found by solving the linear equations S̃1(x, y) = 0 and S̃2(x, y) =

0, in a particular coordinate system. It is clear that all the formulas are barycentric combinations

of the control points, by observing the coefficients in the numerator and denominator. In order

to validate that s is the intersection of the two lines, we can simply evaluate the functions S̃1

and S̃2 at s :

S̃1(s) =
u1φ2

φ2
1u2u3 − φ1φ2u1u2 − φ2φ3u21

(

−S̃1(c2)φ1u2 − S̃1(c3)φ3u1

)

=
u1φ2

φ2
1u2u3 − φ1φ2u1u2 − φ2φ3u21

(−L03(c2)φ1φ3u1u2 − L02(c3)φ1φ3u1u2)

= 0.

We can similarly show that S̃2 vanishes at s, and thus, by Proposition 6, s it the unique double

point of the curve.

Of course, describing the singularity in terms of the control points may not be optimal with

respect to numerical stability if the double point lies far from the region of interest, due to the

denominator becoming small. However, information about the singularity is normally required

only when it interferes with the region of interest of the curve. In these cases, the method

performs very well.

3.2 Parametric identities

In complement to the previous section, it is also possible to derive formulas for the parameter

values of the singularity in terms of the quantities φ1, φ2 and φ3. For more compactness of

notation we first make the following definitions:
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Definition 5.

Φ1 = φ1u2u3, Φ2 = φ2u0u1, Φ3 = φ3u1u2.

Proposition 8. Suppose we are given a non-degenerate rational cubic parametric curve with no

three points collinear. Then the parameter values of the double point are given by the solutions

to the quadratic equation r(t) = 0, where

r(t) = Φ1t
2 + Φ3t(1− t) + Φ2(1− t)2. (15)

Proof. By inserting the parametric form p(t), into S̃1 (and factoring out the denominator), we

obtain a cubic polynomial whose three roots correspond to the two parameter values t1 and t2 of

the double point, and the parameter t = 0. After factoring out t from the polynomial we obtain

r(t) = S̃1(p(t))/t, as given above. In the case that φ2 = 0, S̃1 degenerates, however, we can

simply follow a similar proof, using S̃2 instead.

The polynomial r(t) is strictly quadratic except in the case when Φ1 + Φ2 − Φ3 = 0. In

the non-degenerate case, this condition corresponds to when the singularity occurs at infinity.

When r(t) is quadratic, it can be solved explicitly, to give the parameters t1 and t2 of the double

point as

2Φ2 − Φ3 ±
√
Φ3 − 4Φ1Φ2

2(Φ1 + Φ2 − Φ3)
. (16)

In particular, we have the discriminant ∆ = Φ2
3 − 4Φ1Φ2, which defines whether the curve has

a self-intersection (∆ > 0), a cusp (∆ = 0), or an acnode (∆ < 0). In the case that the r(t)

degenerates, we have a singularity at infinity, with a single inflection point. This appears to be

similar to the discriminant described by Stone and DeRose in [13].

The lack of symmetry in the formula above is due to Bernstein polynomials being defined

over the interval [0, 1], as opposed to [−1, 1].

3.3 Detecting Unwanted Self-intersections

The parameter values of the double point can occur in several ways. If the two parameters are

real and distinct, then a self-intersection occurs; in the case that the two parameters are equal,

we have a cusp; and parameter pairs which occur as complex conjugates give rise to isolated

singular points known as acnodes.

When the curve is given in Bézier form, the region of interest is the parameter interval [0, 1].

If the parameters of the singularity both lie within the interval [0, 1], the self-intersection is

normally an intended product of the designer. If the parameters both lie outside the interval

[0, 1], this means there will be no singularities in the region of interest; again, this is normally

intended by the designer. The case where one parameter lies within the interval and one lies

outside is what we term an unwanted self-intersection or unwanted singularity. Figure 4 shows

the three cases. When the parametric representation is used the unwanted case is not normally

distinguished, since the curve is only plotted in the region of interest in the parameter domain.

However, using implicit representations, it is more difficult to avoid plotting the curve without

the unwanted branch and self-intersection, since a 2D region of rendering must be chosen.
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(a) Singular segment (b) Non-singular segment (c) Unwanted singularity

Figure 4: Three Bézier representations of the same cubic curve. The solid part of the curve

represents the region of interest and dashed part corresponds to parameter values outside [0, 1].

It is possible to detect the presence of unwanted singularities by directly analysing the co-

efficients Φ1 and Φ2. In [7], a method is presented to detect unwanted singularities in special

cases, which essentially correspond cubic Bézier curves which form simple arches [9]. The

following proposition gives a condition to detect unwanted singularities in all non-degenerate

cases. We make the condition that a singularity at infinity is not classified as unwanted so that

we can assume that Φ1 + Φ2 − Φ3 6= 0.

Proposition 9. Let the control points and non-zero weights of a non-degenerate rational cubic

Bézier curve be given, such that no three control points are collinear. Then there exists an

unwanted singularity in the region of interest if and only if Φ1Φ2 < 0.

Proof. This can be proved by observing that r(t) is a quadratic polynomial in Bernstein form,

with coefficients Φ1, Φ3/2 and Φ2, and by the properties of Bernstein polynomials.

( ⇐= ) Assume first that Φ1 and Φ2 have opposite signs. Then, by observing the discrimi-

nant, we always have two real roots. Since r(0) = Φ2 and r(1) = Φ1, we know there is a root in

[0, 1] by the intermediate value theorem. We also know that there must be a root outside [0, 1],

because, since it is quadratic, r(t) must have the same sign as r(−t) asymptotically. Thus an

unwanted self-intersection occurs (c.f. Figure 4(c)).

Assume now thatΦ1 andΦ2 have the same sign. Since we are only interested in cases of self-

intersection, where we have two distinct real roots, we consider the two cases, Φ3 >
√
4Φ1Φ2

and Φ3 < −
√
4Φ1Φ2. In one of the cases, all of the Bernstein coefficients of r(t) have the same

sign, so, by the variation diminishing property, both roots must be outside [0, 1]. In the other

case, Φ3 has opposite sign to Φ1 and Φ2, so the derivatives of r at t = 0 and t = 1 must have

opposite sign. Again, by the intermediate value theorem, r′(t) = 0 for some t ∈ [0, 1], thus

both roots of r(t) must be in [0, 1]. Thus either we have a singular or non-singular segment (c.f.

Figure 4(a) and (b)).

( =⇒ ) Assume first that r(t) has one root in [0, 1] and one outside [0, 1]. Then clearly,

r(0) = Φ2 must have opposite sign to r(1) = Φ1.

Assume that both roots are in [0, 1]. Then r(0) = Φ2 must have the same sign as r(1) = Φ1.

This is similarly the case if both roots are outside [0, 1].

Of course, in the standard case that all weights are positive, we can use the simplified con-

dition φ1φ2 < 0.
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In [8], Loop and Blinn use subdivision at the parameter values of the singularity in order

to remove the unwanted branch. Their method involves solving a cubic polynomial for the

parameter values of the self-intersection and then running the de Casteljau algorithm for the

subdivision. The results of this section suggest an alternative method to remove the singularity.

If, according to Proposition 9, we detect an unwanted singularity, we can use the lines defined

in Proposition 6 to render non-singular segments of the curve. Such an approach is pictured in

Figure 3 (right). This would appear to be advantageous since we avoid the necessity of dealing

with two separate curves, and also avoid computing the parameter values of the singularity.

Additionally, exact rational arithmetic can be used since we do not need to solve any polynomial

equations.

4 Degeneration to conic sections

4.1 Conditions for conic degeneration

Similarly to the method of Floater [7], the coefficients (bi)
3
i=0 disappear identically when the

curve degenerates to a conic section. The following proposition defines conditions for conic

degeneration of the cubic curve.

Theorem 10. Suppose all the weights (wi)
3
i=0 are non-zero and no three of the control points

are collinear. Then the cubic curve degenerates to a conic if and only if φ1 = 0 and φ2 = 0.

Proof. Assume we have a quadratic Bézier curve r(t), with points a0, a1 and a2 and respective

weights v0, v1 and v2. By degree elevation we can write the points and weights of the corre-

sponding cubic Bézier curve as [6]:

c0 = a0, c1 =
v0a0 + 2v1a1

v0 + 2v1
, c2 =

2v1a1 + v2a2

2v1 + v2
, c3 = a2

u0 = v0, u1 = v0 + 2v1, u2 = 2v1 + v2, u3 = v2.

If we now compute the quantities λi, we see that

λi = γi

∣

∣

∣

∣

∣

∣

a0,0 a0,1 1

a1,0 a1,1 1

a2,0 a2,1 1

∣

∣

∣

∣

∣

∣

,

where

γ0 =
v0v1

(v0 + 2v1)(2v1 + v2)
, γ1 =

v1
2v1 + v2

,

γ2 =
v1

v0 + 2v1
, γ3 =

v1v2
(v0 + 2v1)(2v1 + v2)

.

We can thus scale out the determinant factor, which is constant in each of the λi. We can now
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easily check that the following equations are satisfied:

u0u2γ
2
1 = u21γ0γ2,

u1u3γ
2
2 = u22γ1γ3.

Thus, by Definition 4, we have φ1 = φ2 = 0.

Now, assume that φ1 = φ2 = 0. By Proposition 5 we know that we have a double point at

c0 if and only if φ2 = 0 (resp. double point at c3 iff φ1 = 0). Since both φ1 and φ2 are zero,

and the points c0 and c3 are distinct, we have two double points. This can only occur when the

curve degenerates to a conic.

A consequence of the previous propositions, and the linear independency of the basis func-

tions (see Appendix 4.B), is as follows.

Corollary 11. Suppose that no three control points are collinear and the weights are non-zero.

Then the following three statements are equivalent:

1. the cubic curve degenerates to a conic,

2. the coefficients (bi)i=0 are all zero,

3. the implicit polynomial q vanishes identically.

Proof.

(1) =⇒ (2) : By Theorem 10 we have φ1 = φ2 = 0, and thus φ3 = 0 by Proposition 4.

Then, by definition bi = 0 for i = 0, 1, 2, 3.

(2) =⇒ (3) : Trivial.

(3) =⇒ (1) : By the linear independence of the basis functions, the coefficients must all

be zero. Then, since the λis and uis are non-zero, we have φ1 = φ2 = 0. The result follows

from Theorem 10.

The results of this section are similar to those ofWang andWang [15]. In particular Theorem

2 of [15], defines the same conditions for conic degeneration, but for only positive weights.

4.2 An implicit equation for conics given in cubic Bézier form

In the case of conic degeneration we can use formulas for implicitization from the rational

quadratic parametric form of the conic section. However, a more direct approach is to use a

formula for the implicit polynomial in terms of the lines and weights defined for the cubic Bézier

curve. In addition, the following formula allows for cases which cannot be degree reduced using

the same end points (e.g., when the end point tangents are parallel).

Proposition 12. If the curve degenerates to a conic, its implicit equation is given by

u0u3L03(x, y)
2 − u1u2L01(x, y)L23(x, y) = 0.

The proof of this Proposition is deferred to Appendix 4.B.
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5 Collinear points, zero weights and numerical stability

5.1 Collinear and coincident points

As emphasised earlier, the method fails when any three of the four control points are collinear,

including the case when two of the points are coincident. In the collinear case, the basis func-

tions (Ki)
3
i=0 are no longer linearly independent, and thus do not provide a basis for the curve.

One remedy for this is to subdivide the curve using the de Casteljau algorithm, and treat the two

subdivided curves separately. In the case of coincident points, two subdivisions are necessary

to completely remove the collinearity.

So far, all the methods in this paper have been independent of the parametric form, and it

would be nice to find a method of dealing with these cases without resorting to parametric sub-

division. Unfortunately, explicit methods which incorporate all collinear configurations seem to

be rather more complicated than the simple methods presented in this paper. It appears that dif-

ferent configurations of points require different basis functions and coefficients. For example,

end point coindidence (c1 = c2), mid point coincidence (c1 = c2) and mixed point coincidence

(c0 = c1, or c2 = c3, or c0 = c2, or c1 = c3) all appear to require separate treatment. In

addition, there are also several cases of collinearity to consider.

Experimentally, it appears that the following basis functions support all cases, including

collinear and coincident control points.

L3
03, L01L

2
13, L2

02L23, L01L12L23, L12L
2
03, L02L23, L01L13.

However, the explicit formula for the coefficients no longer holds, and the symmetries that were

apparent earlier in this paper, appear to be lost. Due to the number of different cases and the

comparative complexity of an explicit formula when trying to incorporate collinear points, we

feel that parametric subdivision of the curve is currently the best option. However, this is the

subject of ongoing research.

It may be noted that the test for cases of collinearity is not a difficult one. Since, during

the implicitization we are using the λis as coefficients, if one is computed to be zero, we can

instruct the algorithm to deal with that case appropriately. In the case of running the algorithm

in floating point precision, we would specify collinearity to within given tolerance.

5.2 Zero weights

In the preceding sections we have mostly assumed that the weights are non-zero. In the CAGD

community, it is fairly common to define Bézier curves as having non-zero, or positive weights.

Indeed, if we allow some of the weights of a cubic curve to be zero, the curve often degenerates

to a conic or a line. In such cases it would be better to model the curve as a lower degree

parametric curve. However, if either w1 = 0 or w2 = 0 (but not both), then the curve does

not degenerate to a conic section. These cases were treated in Proposition 5. The implicit

representation given by Theorem 1, is still valid in these cases.
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5.3 Numerical issues

When the curve has control points which are close to collinear, or the curve is close to a de-

generate conic, issues with numerical stability need to be considered. Heuristically, it seems

that issues with numerical stability are not too great; the methods appear to work well even

when these ‘close to degenerate’ cases occur. However, when implementing in a given floating

point precision, the tolerances required to define when a case is considered degenerate should

be investigated further.

6 Examples

In this section we consider several examples for which the computations can easily be done by

hand. Figure 5 shows five different curves with various properties. We include two cases which

fail using the general method and need to be treated separately.

6.1 Three simple examples

For simplicity, the control points of the first three examples of Figure 5 are rearrangements of

the points (0, 0)T , (0, 1)T , (1, 1)T and (1, 0)T . For each case we compute the quantities (λi)
3
i=0

and (φi)
3
i=0, the coefficients (bi)

3
i=0, the double point s, and whether or not the curve exhibits an

unwanted singularity. For full clarity we describe the first example in detail.

We have

c0 =

(

0

0

)

, c1 =

(

0

1

)

, c2 =

(

1

1

)

, c3 =

(

1

0

)

,

and

w0 = w1 = w2 = w3 = 1.

The quantities λi are thus all equal to ±1 and we have u0 = u3 = 1 and u1 = u2 = 3. Using

the formula (5), we obtain

φ1 = −6, φ2 = −6 and φ3 = −8

and thus

b0 = 72, b1 = −18, b2 = −18, b3 = 8.

The double point of the curve can be computed from (13) as

s =
−324(1, 1)T + 432(1, 0)T

216
=

(

1

2
,−3

2

)

.

Clearly the double point does not lie within the convex hull of the control points. For the implicit

equation in a Cartesian system we can write

q(x, y) = 72x(y − 1)(x− 1)− 18x(1− x− y)2 − 18(x− y)2(x− 1) + 8y3.

Since φ1φ2 > 0, we know, by Proposition 9, that there is no unwanted branch in the region of

interest.
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(λ0, λ1, λ2, λ3) (b0, b1, b2, b3) (φ1, φ2, φ3) s φ1φ2

Ex. 1 (1,−1, 1,−1) (72,−18,−18, 8) (−6,−6,−8) (1
2
, −3

2
) 36

Ex. 2 (−1,−1, 1, 1) (72,−36,−36, 8) (12, 12,−8) (1
2
, 3
4
) 144

Ex. 3 (−1, 1, 1,−1) (72,−36,−36, 8) (12, 12, 8) (∞,∞) 144

Ex. 4 (1/3,−1, 1,−1/3) (0, 0, 0, 0) (0, 0, 0) n/a 0

Ex. 5 (−1/2, 0, 1,−1/2) (0, 0,−9/2, 9/16) (9/2, 3, 9/4) n/a n/a

Table 1: The computed quantities for a range of curves pictured in Figure 5. All examples use

the same weights u0 = u3 = 1 and u1 = u2 = 3.

We summarize the quantities for the five examples of Figure 5, in Table 1. Note that in the

third example we have a double point at infinity. In this case, the denominator in the formula

(13) vanishes, as expected.

6.2 Example of conic degeneration

This is the fourth example of Figure 5. Having detected that both φ1 = 0 and φ2 = 0, Theorem

10 tells us we have a conic section. We thus use the formula of Proposition 12 for the implicit

representation. This gives,

q(x, y) = u0u3L03(x, y)
2 − u1u2L01(x, y)L23(x, y),

= y2 + 9(x− y/3)(x+ y/3− 1).

Since we have a conic section the double point computations are not applicable.

6.3 Example with collinear control points

The disappearance of λ1 in this example indicates that a collinearity occurs between c0, c2 and

c3. We see that there appears a linear dependency in the basis functions, between K2 and K3,

and the coefficients b0 and b1 become zero. Following the suggestion of Section 5, we therefore

subdivide the curve a single time, at the parameter value t = 1/2. This gives two curves with

the following control points

c0 =

(

0

0

)

, c1 =

(

0

1/2

)

, c2 =

(

1/8

1/2

)

, c3 =

(

5/16

3/8

)

,

and

c0 =

(

5/16

3/8

)

, c1 =

(

1/2

1/4

)

, c2 =

(

3/4

0

)

, c3 =

(

1

0

)

.

These can each be treated in the same way as the previous examples, finding in both cases that

s = (−8, 36)T ; an acnode.

It may be noted that although the implicit equation vanishes identically, the double point

can still be computed without subdivision if we choose the correct formula; that is by choosing

the barycentric formula (14), with respect to the three non-collinear points c0, c1 and c3. We
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b0 + b1 + b2 + b3 =

Example 1: Non-singular segment

b0 + b1 + b2 + b3 =

Example 2: Singular segment (cusp)

b0 + b1 + b2 + b3 =

Example 3: Double point at infinity

b0 + b1 + b2 + b3 6=

Example 4: Degeneration to a conic

b0 + b1 + b2 + b3 6=

Example 5: Collinear control points

Figure 5: The quantities computed for each of these examples are shown in Table 1. The fourth

and fifth examples fail. The fourth is a curve which degenerates to a conic, whereas the fifth has

three collinear points. These cases need to be treated separately.
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then get

s =
−243/2(0, 1)T + 27(1, 0)

−27/8
=

(

−8

36

)

.

6.4 Example with an unwanted singularity

For this example we use the control points for the curve pictured in Figure 3, given by

c0 =

(

1/4

0

)

, c1 =

(

9/8

1/2

)

, c2 =

(

13/16

3/4

)

, c3 =

(

17/32

19/24

)

,

with w0 = w1 = w2 = w3 = 1. Using the same computations as in the previous examples we

get

(λi)
3
i=0 = (11/192, 15/64, 53/96, 3/8),

(bi)
3
i=0 = (312435/4194304,−66285/2097152, 220957/18874368, 1441/1048576),

(φi)
3
i=1 = (−491/4096, 379/3072, 131/2048),

s = (363241/470596, 146294/352947),

φ1φ2 = −186089/12582912.

The negative value of φ1φ2 indicates that we have an unwanted singularity, the location of which

is given by s. Since the curve exhibits an unwanted singularity, we compute the lines S̃1 and S̃2,

which intersect the double point:

S̃1(x, y) = 965/8192x− 1215/8192y − 965/32768,

S̃2(x, y) = −12773/49152x− 10865/65536y + 17649/65536.

For a given point (x, y), we can then use boolean operations on the signs of q(x, y), S̃1(x, y)

and S̃2(x, y) in order to define which points lie ‘inside’ and ‘outside’ the curve.

7 Discussion and conclusion

For the sake of brevity, we have omitted extended discussions of interesting features that arise

in using this method in the previous sections. In this section we mention some of these features

before concluding the paper.

An alternative representation for the implicit coefficients is to divide through by the non-
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zero factor u0u1u2u3λ0λ1λ2λ3 :

b̃0 =
λ1λ2
λ0λ3

− u1u2
u0u3

,

b̃1 =
λ21
λ0λ2

− u21
u0u2

,

b̃2 =
λ22
λ1λ3

− u22
u1u3

,

b̃3 =
λ0λ3
λ1λ2

− u0u3
u1u2

.

This form highlights more clearly the symmetry between the uis and the λis. It also appears

that this approach aids the numerical stability of the implementation, being only quadratic in

the numerators and denominators.

It is interesting to note that the exponents which appear in the formulas for the coefficients

(3), are reminiscent of the exponents of the terms of the discriminant of a univariate cubic poly-

nomial in monomial form2. The relationship between the coefficients and the cubic discriminant

should be the subject of further research.

Experiments show that parts of the method appear to be extensible to higher degrees. In

particular, it is not difficult to define basis functions for quartic curves using the same heuristic

reasoning as in Section 2. However, the number of basis functions appears to increase exponen-

tially, and attempts to find an explicit formula for the coefficients appear to be more difficult. An

extension of the theory to surfaces also appears to be much more difficult due to the complicated

limiting control surfaces involved. However, this could be a direction for future research.

7.1 Conclusion

This paper has shown that it is possible to represent the implicit form of all non-degenerate

rational planar cubic Bézier curves as a linear combination of four basis functions, when no

three control points are collinear. The method has been described in terms of purely geometric

quantities and symmetries have been highlighted. The resulting coefficients of the implicit

polynomial lead naturally to a geometric characterization of several aspects of the curve. The

method has a compact representation and can easily be implemented on a GPU, as an alternative

to the methods in [8, 9]. Additionally, the formulas which aid in locating the singularity, and

whether or not it is unwanted, are simple and computationally inexpensive.
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Appendix 4.A Some geometric properties

Here we state some simple geometric properties that are used in the proofs of the next section.

Proposition 13. For any four points c0, c1, c2 and c3 we have the following:

λ0 + λ1 + λ2 + λ3 = 0.

Proof. This can be verified by simply writing out the expression using Definition 2, and check-

ing that all terms cancel out.

This proposition shows that there is some degeneracy in the representation; that is, one of the

λis can always be written as a combination of the other three. This is reflected in the simplified

forms presented in the paper. However, for the sake of symmetry, we have proceeded for the

most part, to use all four λi values.

Proposition 14. Assume we are given four points (ci)
3
i=0 with no three collinear. Then, when

the respective denominators are non-zero, we can define

m1 =
c0λ0 + c1λ1 − c2λ2 − c3λ3

λ0 + λ1 − λ2 − λ3
=

c0λ0 + c1λ1
λ0 + λ1

=
c3λ3 + c2λ2
λ3 + λ2

,

m2 =
c0λ0 − c1λ1 + c2λ2 − c3λ3

λ0 − λ1 + λ2 − λ3
=

c0λ0 + c2λ2
λ0 + λ2

=
c1λ1 + c3λ3
λ1 + λ3

,

m3 =
c0λ0 − c1λ1 − c2λ2 + c3λ3

λ0 − λ1 − λ2 + λ3
=

c0λ0 + c3λ3
λ0 + λ3

=
c1λ1 + c2λ2
λ1 + λ2

.

(4.17)

If any of these points do exist, they define the intersection of the lines L01 and L23, L02 and L13,

or L03 and L12 respectively.
3

Proof. That the various equalities hold, when the denominators are non-zero, is a consequence

of Proposition 13. The fact that they intersect at the respective lines is then a triviality, since

3At least one of these points exists in the affine plane, since if two of the denominators vanish, then the two

pairs of corresponding lines are parallel; but then the third point will be the intersection of the two lines passing

through opposite vertices of the parallelogram thus formed. These lines must necessarily be non-parallel, thus the

point of intersection is finite.
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each point can be written as a scaled linear combination of the points which define the line. For

example, m1 must lie on the line L01, by the identity m1 = c0λ0+c1λ1

λ0+λ1
, and on the line L23, by

m1 =
c3λ3+c2λ2

λ3+λ2
.

Appendix 4.B Linear independence and proofs of Theorems

4.B.1 Linear independence

In the following proposition we establish linear independence of the basis functions, in the

applicable cases.

Proposition 15. Suppose no three of the points (ci)
3
i=0 are collinear. Then the functionsK0, K1, K2, K3

are linearly independent.

Proof. Assume that

ρ(x, y) =
3

∑

i=0

biKi(x, y) = 0, for all (x, y) ∈ R
2.

We prove linear independence by evaluating ρ at four distinct points. Assume that the points

m1 andm2 defined by (4.17) exist. Then we can evaluate ρ at c1, c2,m1 andm2. For example,

atm2 we have

ρ(m2) =
λ20λ1λ2λ

2
3b0 − λ31λ

3
2b3

λ0 + λ2
.

After rearranging the rows to obtain a triangular matrix and dividing through by any common

factors, we can set up the linear system with respect to evaluation at the four points as follows:











λ20λ
2
3 0 0 −λ21λ22

0 λ20λ3 0 −λ31
0 0 λ23λ0 −λ32
0 0 0 1





















b0
b1
b2
b3











= 0.

Now, the determinant of the matrix can be computed as

λ50λ
5
3

which never vanishes since the control points are not collinear. Care needs to be taken in the

case when L01 and L23, (resp. L02 and L13,) are parallel, as the denominator of m1 (resp. m2)

vanishes. However, a similar linear system can be set up by using homogeneous coordinates, in

which case the vanishing denominator is not a problem. Thus, the proof holds in all cases.

4.B.2 Proof of Theorem 1

The proof of Theorem 1 is essentially a long exercise in expanding the rational function q◦p, in
order to show that it is identically zero. We assume the conditions of Theorem 1 for the entirety

of this section (i.e., that the cubic is non-degenerate and no three control points are collinear).
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We know, by Proposition 15 that the basis functions (Ki)
3
i=0 are linearly independent, and

by Proposition 10 that not all the coefficients (bi)
3
i=0 are zero. Thus the polynomial q is not

identically zero, and the theorem is proved if we can show that q ◦ p vanishes identically.

We first consider the composition of Lij(p(t)) for all i 6= j.

Lemma 16. The rational cubic function Lij(p(t)) can be given in Bernstein form by

Lij(p(t)) =
1

w(t)

3
∑

k=0

k 6=i,j

λijkwkBk(t),

where Bk(t) =
(

3
k

)

tk(1− t)3−k and w(t) denotes the denominator of (1).

Proof. We first note that by Definition 1,

Lij(p(t)) =
1

w(t)

∣

∣

∣

∣

∣

∣

p0(t) p1(t) w(t)

ci,0 ci,1 1

cj,0 cj,1 1

∣

∣

∣

∣

∣

∣

.

Now, by expanding the determinant, we have that

w(t)Lij(p(t)) = (ci1 − cj1)
3

∑

k=0

ck0wkBk(t) + (cj0 − ci0)
3

∑

k=0

ck1wkBk(t)

+ (ci0cj1 − ci1cj0)
3

∑

k=0

wkBk(t),

=
3

∑

k=0

((ci1 − cj1)ck0 + (ci0 − cj1)ck1 + (ci0cj1 − ci1cj0))wkBk(t),

=
3

∑

k=0

λijkwkBk(t).

(4.18)

Clearly, when k = i or k = j, the corresponding term in the sum is zero meaning we only need

sum over k 6= i, j.

A consequence of summing only over k 6= i, j is that we can remove factors of t and 1 − t

when certain coefficients disappear. That is, we can write

w(t)L01(p(t)) = t2(u2λ3(1− t)− u3λ2t),

w(t)L12(p(t)) = (u0λ3(1− t)3 − u3λ0t
3),

w(t)L23(p(t)) = (1− t)2(u0λ1(1− t)− u1λ0t),

w(t)L02(p(t)) = t(u1λ3(1− t)2 − u3λ1t
2),

w(t)L13(p(t)) = (1− t)(u0λ2(1− t)2 − u2λ0t
2),

w(t)L03(p(t)) = t(1− t)(u1λ2(1− t)− u2λ1t).

(4.19)

Thus by Lemma 16 and the above identities, we can express the compositions (Ki ◦ p)3i=0 as

follows:
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Lemma 17. For each i = 0, 1, 2, 3, we can expressKi(p(t)) in the form

Ki(p(t)) =
t2(1− t)2

w(t)3
Gi(t),

where

G0(t) = (u2λ3(1− t)− u3λ2t)(u0λ3(1− t)3 − u3λ0t
3)(u0λ1(1− t)− u1λ0t),

G1(t) = (u2λ3(1− t)− u3λ2t)(u0λ2(1− t)2 − u2λ0t
2)2,

G2(t) = (u1λ3(1− t)2 − u3λ1t
2)2(u0λ1(1− t)− u1λ0t),

G3(t) = t(1− t)(u1λ2(1− t)− u2λ1t)
3.

The common factor of
t2(1−t)2

w(t)3
can be ignored in showing that q ◦ p ≡ 0; it is thus sufficient

to show that
3

∑

i=0

biGi(t) ≡ 0. (4.20)

It is a simple, yet lengthy exercise to compute the coefficients of this polynomial in the degree

five Bernstein basis, in order to show that they are all zero. We compute the coefficient of

B5
0(t) = (1 − t)5 as an example. By observation, the coefficients gi,0 of B

5
0(t) of each of the

functions (Gi)
3
i=0 are as follows:

g0,0 = u20u2λ1λ
2
3,

g1,0 = u20u2λ
2
2λ3,

g2,0 = u0u
2
1λ1λ

2
3,

g3,0 = 0.

Thus, the coefficient of B5
0(t) of (4.20), is given by

3
∑

i=0

bigi,0 = 0.

We can perform similar computations to show that the other coefficients (of B5
j (t) =

(

5
j

)

tj(1−
t)n−j, j = 0, . . . , 5) are all zero, thus proving the theorem.

4.B.3 Proof of Proposition 12

We first prove the following Lemma

Lemma 18. Let q2(x, y) = u0u3L03(x, y)
2 − u1u2L01(x, y)L23(x, y). Then for any cubic curve

p(t), given by (1), we have

q2(p(t)) =
t2(1− t)2

w(t)2
r(t),

where r(t) is given by (15).
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Proof. Using (4.19) we can write

q2(p(t)) =
t2(1− t)2

w(t)2
(a0(1− t)2 + 2a1t(1− t) + a2t

2)

where

a0 = u0u
2
1u3λ

2
2 − u0u1u

2
2λ1λ3 = Φ2,

a1 = u21u
2
2λ0λ3 + u0u1u2u3λ1λ2 − 2u0u1u2u3λ1λ2 =

1

2
Φ3,

a2 = u0u
2
2u3λ

2
1 − u21u2u3λ0λ2 = Φ1.

(4.21)

Thus, the terms inside the parentheses are given by r(t).

The proof of Proposition 12 is then immediate, since r(t) ≡ 0 when the curve degenerates

to a conic, by Theorem 10.
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