Approximation of Scattered Data
with Multilevel B-splines

Oyvind Hjelle
August 29, 2001

Abstract

Multiresolution methods based on B-spline refinement for approximat-
ing scattered data are explored. The methods are extremely fast compared
to many other methods and produce fair results. The basic schemes were
adopted from Lee, Wolberg and Shin [12]. Several extensions are proposed
and numerical examples are presented at the end of the report.

Contents

6

Introduction
The Basic Schemes of Multilevel B-Splines
Cubic C? Continuous Splines on Uniform Partitions

Details of Algorithm 1

4.1 Step 4 of Algorithm 1
4.2 Step 5 of Algorithm 1
4.3 Zero-Coefficients and Data Compression

B-Spline Refinement on Uniform Partitions
5.1 Refinement of Bicubic C? Continuous Splines
5.2 Refinement of Bicubic C! Continuous Splines

Numerical Examples and Discussion

A Figures from Numerical Experiments

11
12

12
13
16

21

24

1 Introduction

The methods explored in this report take a set of scattered data as input and
produce tensor product B-spline surfaces as output. The algorithms run in a
multiresolutional setting over uniform partitions such that the final surface f is
composed of a sequence of surfaces at dyadic scales,

f=fot+tfit-+In (1)
where f; C S;, ¢ =0,...,h, and Sp,...,S, is a nested sequence of subspaces
of S,

SgC S C---CSy. (2)

Numerous papers have been written on this subject, especially on multireso-
lution analysis based on wavelets; see for example [2, 6, 13]. Multiresolution
analysis with splines on non-uniform partitions was considered in [5]. Typical
applications of multiresolution analysis are cartographic generalization and data
compression [4].

The basic algorithms used for the results presented in this report were pub-
lished in 1997 by Lee, Wolberg and Shin [12]. They called the schemes multilevel
B-splines. The methods had been used previously for image morphing [10, 11].
Our interest is mainly scattered data interpolation and approximation, which
is also the main focus in [12]. The methods are very fast compared to other
methods for scattered data interpolation and approximation. They can process
huge numbers of scattered data, they are numerically stable, and they produce
fair results if the scattered data are evenly distributed. For clustered data un-
evenly distributed in the domain, the methods may generate irregularities near
the scattered data in the final surface f.

There are two basic methods that produce identical results. One method is
based on B-spline refinement for producing one single spline surface f from the
scattered data. The other method is adaptive in the sense that only significant
information is stored at each level of the surface hierarchy in (1). The adaptive
version represents the surface compactly, as the (non-zero) spline coefficients
are stored in linear arrays. It can be used to produce surfaces with large tensor
product grids, for example (1 million) x (1 million), and thus deliver a surface
that gives a better approximation to the input data. Interpolation of the scat-
tered data is achieved if the tensor product grid of fj, in the finest spline space S},
is sufficiently dense. Naturally, the adaptive algorithm is slower than the non-
adaptive, and evaluation of the final surface f is slower since f is represented
as a sum of the surfaces f; in (1).

The purpose of this report is twofold. We present recipes for deriving the
mathematical details of the algorithms, and we present numerical experiments
to show the capability of multilevel B-splines for scattered data approximation.
The recipes are meant to comprise a mathematical toolbox when working with
multilevel B-splines on uniform partitions such that the methods can be easily
extended and adapted to specific needs in applications. In particular, we focus

on refinement operators for B-splines on uniform partitions. We assume that
the reader is familiar with basic B-spline theory.

Although this report is self-contained, the paper by Lee, Wolberg and Shin [12]
should be consulted for details on data structures and other aspects of imple-
mentation. We use the same mathematical notation as that of [12].

2 The Basic Schemes of Multilevel B-Splines

Given a set of scattered points P = {(2¢,Yc, 2c)} and let Q be a rectangular
domain in the zy-plane such that (z.,y.) is a point in Q. Further, let © =
Do, Py, ... ,P;, be a dyadic sequence of uniform tensor product grids over €2
corresponding to the nested sequence of spline spaces in (2). Since © is a dyadic
sequence, the number of grid lines in ®y, is twice the number of grid lines in &y 1,
and the grid lines in ®;_1 is a subset of the grid lines in &, for k=1, ... JhIL

The basic algorithm starts by calculating an initial (smooth) approximation
fo to P defined on the coarsest grid ®3. To proceed to the finer levels in
the multiresolutional setting of Equation (1), we quote from Lee, Wolberg and
Shin [12]: The first approximation possibly leaves large discrepancies at the
data points in P. In particular, fo leaves a deviation A'z, = z. — fo(z.,y.) for
each point (Z¢,yc, 2zc) in P. The next finer tensor product grid ®; is then used
to define a function f; that approximates the differences Py = {(z¢,yc, Alz) }.
The sum g; = fo + f1 now leaves a smaller deviation A%z, = 2. — fo(Ze,Ye) —
f1(xe,ye) for each point (x.,y., z.) in P.

In general, for each level k in the hierarchy, the point set P, = { (:ch7 Yo, AF Zc) }
is approximated by a function fi defined over the tensor product grid ®;, where
Akz, = 2, — Zi:ll fi(ze,ye) = Ak—1, — fr—1(zc,ye), and A2, = z.. As more
levels are included in the hierarchy, the approximation errors A*z, of the func-
tion g = ZLO fi gets smaller and smaller. The final approximation f = gy, is
defined as the sum of functions in (1) belonging to the nested sequence of spline
spaces (2).

There are many possible ways of implementing this basic scheme, but the
algorithms explored later can be described by the following general pseudo code.

In an algorithmic setting, this will be slightly different as the grid must be adapted to the
specific type of B-spline basis that is used.

Algorithm 1
1. For each level k, k=0,...,h, in the hierarchy of (1)
2. Let P, = {plc”} = {(xc,yc, Akzc)}
3. For each point p* in P

4. Calculate the contribution from p¥ to coefficients in ®;, in a local

neighbourhood around pk

5. For each coefficient in ®y, compromise between the contributions from

the different points in Py, where the local neighbourhoods overlap

6. Calculate the differences A* 1z, = A*z. — fi.(zc,y.) for each point
n Py,

7. Let @y 1 be the next finer tensor product grid

8. Letk=Fk+1

9. GOTO 1.

We assume that the local neighbourhood in ®; of a point p* in Step 4 is
a fixed number of coefficients in ®;. More specifically, the coefficients will be
those corresponding to tensor product B-spline basis functions that are non-zero
at the location (z.,y.) of p¥. For cubic tensor product splines (whether C1 or
C? continuous), there are at most (4 x 4) non-zero bivariate basis functions that
are non-zero at a point (z,y) in €. Thus, the local neighbourhood of a point p*
includes at most 16 coefficients. Figure 1 shows the (4 x 4)-neighbourhoods of
two scattered points p; and po where the neighbourhoods overlap.

Figure 1: (4 x 4)-neighbourhoods of coefficients in the tensor product grid of
two scattered data points p; and ps.

From the general pseudo code in Algorithm 1 we can now estimate the
complexity of the algorithm. The number of coefficients in ®; is a quarter of

that in the next finer grid ®x41. Hence, if the number of coefficients of the
tensor product grid @, at the finest level is (m x n) and the number of points
in P is N, the time complexity of Algorithm 1 is O(N + mn) + O(N + mn) +
-+ + O(N + Fmn), which sums up to

O(hN + %mn) (3)

This is extremely efficient compared to many other algorithms for scattered
data approximation. For example, the optimal time complexity for computing
Delaunay triangulations is O(Nlog N) [9]. Other methods like radial basis
function interpolation [14] and the so-called Mask method [1] involve large linear
equation systems, which also give time complexity beyond (3).

If the final surface f is represented with all the surfaces fi in (1), the time
complexity for evaluating f in a point (z,y) is O(h) since all the surfaces must
be evaluated to get the value f(z,y) = ZZ:O fx(z,y). This can be made much
more efficient by successive B-spline refinement of the surfaces f;. Since the
surfaces fi belong to a nested sequence of subspaces as expressed in (2), it is
clear that f can be represented as one single tensor product B-spline surface
F C Sy by a tensor product grid ¥y at the finest level h. Recall that © is a
dyadic sequence of tensor product grids. The grid spacing is halved from one
grid @y, to the next finer grid ®;,1, and the grid lines in @, is a subset of the
grid lines in ®y41. Thus, a function fr C Sk defined by ®j can also be defined
by a tensor product grid with the same grid spacing as @41 in the spline space
Sk+1. If we denote by Rq /2 the refinement operator which takes fj from Sy
to Sk+1 by inserting grid lines halfway between the grid lines in @y, the tensor
product grid Wy, for FF == f can be expressed as,

h
Uy = RYjp®o + RIS B1 4o+ Ry jo®p1 + = Yy RSBy, (4)
k=0

where R’l /2 denotes that the refinement operator is applied ¢ times.

Instead of storing each ®j, explicitly in Algorithm 1 and refining the final
sequence O in a scheme following (4), ¥y, can be derived progressively by refine-
ment at each level of the hierarchy. This can be seen by writing Equation (4)
in the alternative nested form,

U, = Rl/g (.. (Rl/g (Rl/g ('Rl/gq)g + (1)1) + (1)2) + CI)3) ..) + Py, (5)

At level £ = 1 of Algorithm 1, the tensor product grid ¥y of g1 = fo + f1
can be expressed as ¥, = (Rl/QCPO + <I>1), and in general, at level k, ¥, =
Ri/2¥k—1 + ®. Thus, W) can be derived by halving the grid spacing as we
proceed from one level k to the next level £ + 1. As the number of operations
required for B-spline refinement is linear in the number of coefficients, the time
complexity with these adjustments of Algorithm 1 is the same as in (3). The

space complexity, on the other hand, will be less as we do not need to store all the
tensor product grids Wy. More details on Algorithm 1, including adjustments
with B-spline refinement, can be found in [12].

Note that the two versions of Algorithm 1, with or without B-spline refine-
ment, produce identical results. The critical part of the algorithm is,

Step 4, how a point p* = ((Ec, Yes Akzc) contributes to the coefficients of @ in a
local neighbourhood around p*, and

Step 5, how to compromise between the contributions from different points in Py
where the local neighbourhoods overlap.

We will study these steps in detail in Section 4. In Section 5 we derive
explicit formulas for the refinement operator R/, of the algorithm, both for
C? and C! continuous bicubic B-splines. These exercises may be useful for
extending the algorithm and adapt it to specific needs in applications.

3 Cubic C? Continuous Splines on Uniform Par-
titions

B-splines on uniform partitions are attractive as formulas can written down
explicitly and implementation results in compact and easy-to-read code. In
order to get a better understanding of multilevel B-splines in the setting of
Algorithm 1, we first state some details on polynomial cubic C? continuous
splines. C'' continuous splines are studied in Section 5.2.

A B-spline basis function of degree three on a uniform partition (-2, —1,0, 1, 2)
is defined as the piecewise polynomial,

(t+2)* /6, —2<t< -1,
B —3t* — 612 +4) /6, ~-1<t<0,
B =2 -L0L2) =13 (33 62 1 4) /6, 0<t<t, (6)
2—1)*/6, 1<t<2

see Figure 2.

Let @ be a uniform tensor product grid overlaid on a rectangular domain Q.
Without loss of generality we assume that Q = [0,m) x [0,n), where m and n
are integers, and that ® is an (m + 3) X (n + 3) lattice that spans the integer
grid in €); see Figure 4. Let ¢,; be a coefficient of ® located at position (¢,7) of
the integer grid defined by ®. Further, let f be a bicubic spline function defined
by ® over 2. Then the function value of f at a position (x,y) € Q is given as,

f(z,y) = Z Z B (8)Bi(t) b (i) (j+0) (7)

3 3
k=

01=0

06T

0271

Figure 2: Uniform cubic B-spline basis function on the partition (-2, 1,0, 1, 2).

where i = || — 1,7 =|y] -1, s =2 — |z], and t = y — |y|]. By and B,
are uniform cubic B-spline basis functions, which are translates of the equations
in (6) covering the interval 0 <t < 1,

Bo(t) = (1-1)°/6
Bi(t) = (3t* -6t +4)/6 (8)
By(t) = (—3t3+3t>+3t+1)/6
Bs(t) t3/6
for 0 <t < 1; see Figure 3.
0.8
0.6
0.4
0.2
0 0.2 0.4 0.6 0.8 1

Figure 3: Uniform cubic B-spline basis functions in the C? continuous case on
the interval 0 <t < 1.

With this definition of uniform C? continuous cubic splines the necessary
formulae for Algorithm 1 become very simple and they are easy to implement.

A
n+l
n %n ¢mn
e o o Q
%0 Do > X
-1 01 m nmtl

Figure 4: The tensor product grid ® overlaid on the domain 2.

We will also see in Section 5 that the refinement operator Ry /o takes a simple
form and can be written down explicitly.

4 Details of Algorithm 1

We are now in a position to determine Step 4 and 5 of Algorithm 1. That is,
how to calculate the (4 x 4) coefficients in the neighbourhood around a point
Pt = (2, ye, A¥2.) of Py, and how to compromise between the contributions
from different points in Py where the local neighbourhoods overlap; see Figure 1.
For simple notation we assume, without loss of generality, that 1 < z.,y. < 2
such that ¢ = j = 0 in Equation (7). Furthermore, we derive the necessary
formulae for level k = 0 such that p¥ == p. = (2, ye, 2c) and fo == f.

4.1 Step 4 of Algorithm 1

It is natural to require exact interpolation of p. in Step 4 of Algorithm 1 if there
are no other scattered data points with a (4 x 4) neighbourhood of coefficients
that overlap with that of p.. In addition we may require a solution in the least
square sense that minimises the square sum of the 16 coefficients. This leads to

the following standard constrained minimization problem,

3 3
minimise J{Pu}) = ZZd)zz (9a)
k=0 k=0
3 3
subject to h({dp}) = WEL PR = Ze (9b)
k=0 1=0

where wy; = Bi(s)Bi(t) and s = ¢ — 1, t = y — 1. Introducing the Lagrange
multiplier A, J and h must satisfy

VJ = AVh (10)

where V is the gradient operator,

_ oJ _oJ 8J _

VI = (a‘f’oo R a‘f’:a:%) B (2d)00’ 2(/)01’ U ’2d)33)
_ dh _dh oh _

AVh = (A8¢00,A3¢01,... ,Aa¢33) = (Mwoo, Awors - - 5 Awss).

Thus, (10) and the interpolation constraint (9b) gives a linear system of 17
equations in A and the sixteen ¢,;’s.

2000 = Awogo
2(/501 = Jdwo1
3 3
DD warba =z
a=0 b=0

Eliminating A we get a unique solution and an explicit formula for each of the
16 coefficients,

Wkl Zc
3 3
D a0 2_b=0 wgb

The coefficients at positions in the integer grid of ® near (x.,y.) get larger
values since they are associated with larger values of wyg;. Thus, f(z,y) =
Zi:o 213:0 Wi Py has the value z. at (x.,y.) and then tapers off smoothly
away from (z., y.).

Note that the choice of coefficients in (11) does not give affine invariance for
f. If 2z, is changed to a different 2/, then the gradient field of f is also changed.
This is due to the fact that the object function J in (9a) tends to minimise
the deviation of f from zero over the domain. A solution proposed in [12] is to
make an initial approximation f_ 1, for example a least squares linear fit to the

Pp = . (k,1)=1(0,0),(0,1),...,(3,3). (11)

10

original scattered data Py, and build the approximation function f over f_j.
Thus, the initial data for Algorithm 1 will be P§ = {(z¢, Ye, 2c — f=1(2c, Ye)) }
and the object function J will tend to minimise the deviation of f from f_
over the domain.

An alternative way to construct the object function is to let it tend to min-
imise the deviation of f from z. in the local neighbourhood of (zc,ye),

3

minimise J{ b }) Z (P11 — 2e) 2

k=0 k=0

subject to the same interpolation condition as in (9b). This gives a minimum
at J({¢w}) = 0 with the solution

Pp = %o, (k1) =1(0,0),(0,1),...,(3,3).

That is, all the 16 coefficients are equal and f takes the constant value z. inside
the rectangular grid cell of ® where (z,y.) is located. This can be combined
with the solution in (11) through a linear blend,

Wl Ze
b =(1-) +aze, (k1) =(0,0),(0,1),...,(3,3), (12)
Za:O Zb:O Wap
with « € [0,1], which also satisfy the interpolation condition f(z¢,yc) = ze.
Compared to (11), the effect is that the approximation function f tapers off
slower away from (z¢,y.) if 0 < o < 1.

4.2 Step 5 of Algorithm 1

For each point p, = (¢, Ye, 2c), Equation (12) gives a different coefficient ¢, for
#;; where the local neighbourhoods of (4 x 4) coefficients overlap,

Wee
q‘)c:(l—a)ﬁ—ﬁ—azc, tE[O,l]
D a0 20 Wap
In Step 5 of Algorithm 1 we compromise between the different ¢.’s to get a
unique value for ¢,;. This can be done simply by a weighted average,

b, = 2 Webe (13)
Y Yewe
where the weights w. are the values of the tensor product basis functions at the
locations (., y.) of points with overlapping neighbourhoods. The contributions
from points located near ¢,; in the tensor product grid now get larger values
since they are associated with larger we.

Alternatively, as proposed in [12], ¢,; can be chosen to minimise e(¢;;) =

i
> (’lUcd)jj - wc¢c)2 . Differentiating e(¢;;) with respect to ¢;;, gives
%5 =5 (14)

11

Although experiments show that using (14) gives better approximation to the
scattered data in most cases, the alternative with (13) is less sensitive to out-
liers in the data. If ¢;; has contribution from one point p. only, both alterna-
tives (13) and (14) reduces to ¢,; = ¢.. Thus, ¢,; is determined by (12) and
leaves no approximation error due to the interpolation condition (9b).

4.3 Zero-Coefficients and Data Compression

When a coefficient qﬁfj in the tensor product grid ®; does not belong to any (4 x
4)-neighbourhood of coefficients of any data point in P, then qﬁfj has no influence

on f(z¢,y.) for any point (x., y¢, z.) in P. Thus, d)lfj can be assigned an arbitrary
value, without affecting the approximation error. The natural approach in this
case is simply to assign zero to (/Sf”] At level & = 0 of Algorithm 1, the tensor

product grid ®¢ can be made sufficiently coarse such that any d)?j of ®¢ belongs
to at least one (4 x 4)-neighbourhood of coefficients around data points in Py.
But as ®; gets denser at increasing levels k, more and more coefficients of
®;, falls outside the (4 x 4)-neighbourhoods, and more gzﬁfj’s must be assigned
zero. This may cause anomalies, especially if the scattered data are unevenly
distributed in the domain. The approximation function f = ", fi is pulled
more and more towards the data points locally with increasing levels k, while
the neighbourhoods with no data are not changed.

On the other hand, the fact that more and more coefficients can be assigned
zero at the finer levels can be utilised for data compression in an adaptive
version of Algorithm 1. The tensor product grids @, which become more and
more sparse with increasing k, can be represented compactly in linear arrays by
storing only those coefficients that are non-zero. Thus, the grid ®; at the finest
level may be extremely dense, for example, (1 millionx1 million) grid lines.

Note that with this approach we cannot benefit from computational sav-
ings of using B-spline refinement. In that case the refinement operator Ry /2
fills in non-zero coefficients such that the tensor product grids ®; at each level
represent full matrices of coefficients; see the next sections. The adaptive algo-
rithm also involves sorting at each level k of the hierarchy such that the overall
computational complexity becomes O(N log N); see [12] for details.

5 B-Spline Refinement on Uniform Partitions

In this section we derive explicit expressions for the refinement operator R/o
introduced in Section 2. With the restrictions to uniform partitions, the refine-
ment operator results in simple formulae which can be implemented compactly
in optimised code. Two cases are considered; cubic C? continuous splines and
cubic C' continuous splines on tensor product grids. The motivation for con-
sidering C! continuous splines is the fact that they can, in some sense, possess
more shape preserving properties than C? continuous splines (on the expense of
smoothness); see for example [8]. A general algorithm for B-spline refinement,

12

the so-called “Oslo algorithm”, without restriction to uniform partitions was
developed by Cohen, Lyche and Riesenfeld [3].
5.1 Refinement of Bicubic C? Continuous Splines

The refinement operator Ry/o takes fi from the spline space Sk to Ski+1 by
inserting grid lines halfway between the grid lines in ®; to obtain ®4q. If
we denote by R;(t), i =0,1,2,3, the univariate B-spline basis functions in the
refined space, then the R;(t) are (dyadic) scalings of the basis functions in (8),

Ri(t) = Bi(2t)

on the interval 0 <t < 0.5,

1
Ro(t) = ¢(1- 2t)>
Ri(t) = 43 -4 + % (15)
Ro(t) = —4t® 4262 4t + é
4
Rs(t) = gt?’;
see Figure 5.
0.8
0.6
0.4
0.2

0 o01 Q2t03 04 05

Figure 5: The univariate cubic B-spline basis functions R;(t) = B;(2t), i =
0,1,2,3 in the refined space Sy in the C? continuous case.

A univariate spline function f(t) can now also be expressed in the refined
space Sk41 on the interval 0 <t < 0.5,

13

3 3

F@#) = riRi(t) =Y ciBi(t), (16)

=0 i=0

where {r;} and {c¢;} are spline coefficients in Sy and S respectively. Inserting
from the equations (8) and (15), and sorting the terms by degree in ¢ in both
spaces we get,

4 4
(—§T0—4T2+4T1—|—§T3) t3—|—(27“2—47“1—|—2T0)t2+(—7"0—|—7“2)t

(i 201
603"

= —lc—lc—i—lc—i—lc 3+ lc —c—i—lc t2
= g0 T 2T T gl 5¢2 1T 5%

+ L + L t+ 1 + 2 + L
——co+ =c —cg+=-c1+=ca).
5C0 T 5¢ 0T 3T e
Comparing term by term for each degree in ¢, we get a linear system of 4
equations in the unknowns r;,

1 2 1 1 2 1

5 3 5 0 T0 601()+3011+662
-1 0 1 0 rt | _ | —gco+3c

2 —4 2 0 T9 B %Co —cC1 + %CQ

4 _ 4 _1 _ 1 1
—3 4 4 3 r3 GCO+201 202+603

The solution gives the coefficients in the refined space in terms of the known
coefficients in the original space,

TOZ%(Co—‘y-Cl)
1 =§(Co+601+62)
7"22?(01-5-02)
r3 =3 (c1 +6c2 +c3)

Note that 79 is just a “translate” of rg, and likewise for r3 and r1. This is due
to symmetry of the B-spline basis function around a grid point; see Figure 2.
ro and ry correspond to new grid points in the refined grid I’ halfway between
existing grid points in the original grid I, and r3 and r; correspond to new grid
points in the same position as those in the original grid. If we denote by ¢5; a
coefficient associated with a grid point in I’ which coincides with that of ¢, in
I, then the coefficients in I’ are obtained from those in I by (see also Figure 6),

ool —

bn; = <(ds 1 +60; + Pit1) (17a)

, 1
Poip1 = §(¢i+¢i+l)‘ (17b)

14

i’=2i 2i+1 2i+2

@ B

° °
|
{
[

Figure 6: New coefficients (primed) of the refined grid I’ in the univariate C?
case.

We now turn to the bivariate case to find the coefficients of the refined
tensor product grid ®g.q in terms of the coefficients of ®;. Let f(s,t) =
>k > cBr(s)Bi(t) denote a uniform tensor product B-spline surface in the
space defined by ®;. This equation can be rewritten as

Z Clel(S)
l

Notice that, for each row number k£ in ®j, the sum in the square brackets
describes a uniform B-spline curve in the variable s. Thus, each row in the
tensor product has a corresponding B-spline curve. We can now refine these
curves for all k using the univariate refinement operator in (17),

D oraBi(s)| =YY raRi(s) Bu(t). (18)
l k l

The result so far is the original spline surface expressed by a new tensor product
grid @}, where new grid lines in the t-direction have been inserted halfway
between the grid lines of ®;. Similarly as above we can rewrite (18) as

Z 77 B (t)
%

such that for each column [in @}, the sum in the square brackets describes a
uniform B-spline curve in the variable ¢. Again, these curves can be refined by
the univariate refinement operator in (17),

Zrkle(t)

k

Fls,t) = 3 Bilt)
k

f(s,t) = Bi(t)
k

Y

F(s,t) = 3" Rils)
l

f(s,t) = ZR[(S)

= Z Z TklRl(S)Rk(t).

15

Thus, refinement has been done in both directions of the tensor product grid
such that {rp;} are coefficients of the refined grid ®p41. It is now an easy
exercise to determine the bivariate refinement operator Ry /o from the univariate
operator (17). From the coefficients on the right hand side of (17a) and 17b we
make the matrices My = [1/8,6/8,1/8] and M> = [1/2,1/2]. The following
matrix products does the job,

[1/8] [1/64 6/64 1/64
MIMy=|6/s| [1/8 6/8 1/8] = | 6/64 36/64 6/64

| 1/8 | | 1/64 6/64 1/64

[1/8 [1/16 1/16
MIMy = | 6/8 | [1/2 1/2] — | 6/16 6/16

| 1/8] | 1/16 1/16
o= (3] (o) - [o)
MQTMQ:[%] (12 12 _ }ﬁ }m

Similar as in the univariate case, let (75/22-’2]- correspond to a grid point in @y
which coincides with ¢,; in ®;. Then the coefficients of ®; 1 are obtained from
those in @ by the matrix products above,

1

‘25/21‘,2]‘ = a[@q,jfl + @141+ Piv1,j—1 T Piv1,j+1
+6 (¢i—1,j + @i i1+ b jp1 + ‘f’z‘+1,j) + 369, ;]
¢/2i,2j+1 = 1_16 [¢z‘—1,j + P11t Pigrj + Pig1j41 6 (d%‘,j =+ ¢i,j+1)]
¢/2i+1,2j = 1_16 [d%‘,j—l + @i g1+ Pigaj—1 + P41 +6 (d%‘,j =+ ¢i+1,j)]
Poit1,9j41 = i [Bi 5+ Pijir + Pigrj + Pig1] -

The refinement operator Ry /2 can now be implemented as four separate func-
tions operating on the coefficient matrix ®;, to obtain the new refined coefficient
matrix Ppq.

5.2 Refinement of Bicubic C! Continuous Splines

The B-spline basis functions for C' continuous polynomial splines, which are
outlined below, do not possess the symmetry property of basis functions in the
C? case. We must now consider two B-spline basis functions,

(=513 — 9t2 — 3t + 1) /2, —-1<t<0,

(1—1)3/2, 0<t<1, (19)

Bt —1,-1,0,0,1) {

16

on the partition (—1,—1,0,0,1), and

(t+1)3/2, ~1<t<0,

B(ﬂ_l’o’o’l’l):{ (56 — 92 + 3t + 1) /2, 0<t<l,

on the partition (—1,0,0, 1, 1); see Figure 7.

Figure 7: Cubic B-spline basis functions on the partitions (—1,—1,0,0,1) and
(-1,0,0,1,1).

The translates B(t + ¢) of (19) and (20) covering the interval 0 < ¢ < 1 are

given as,

Bo(t) = (1—-1)°/2

Bi(t) = (5t°—92+3t+1)/2 (21)
By(t) = (-5t°+6t%) /2

By(t) = %/

see Figure 8.

In the univariate case we now associate two coeflicients with each grid point.
Thus, given a grid point with index 4, then the coefficients “left” and “right” of
i are ¢o; 4, and ¢, respectively. In the refined partition the grid point index &’
that correspond to an old grid point ¢ is i’ = 2¢. Thus, the coefficients “left” and
“right” of an existing grid point in the refined grid are ¢; ; and ¢}, respectively,
and the coefficients in new positions “left” and “right” of a new grid point are
Priyr and @i o.

The tensor product spline function f at a position (z,y) € € is given as,

3 3

f(z,y) = Z ZBk(S)BI(t)¢(¢+k)(j+z)

k=0 1=0

where i =2 |z| -1, j=2|y|—1,s=x— |z],and t =y — |y], and B; and By
are the basis functions in (21).

17

0.8

0.6

0.4

0.2

Figure 8: Cubic B-spline basis functions in the C! continuous case on the interval
0<t<l.

The univariate B-spline basis functions R;(t) = B;(2t), ¢ = 0,1,2,3, in the
refined space are now,

1
Ro(t) = 5(1-2t)°

1
Ri(t) = mﬁ—wﬁ+&+§
Ro(t) = —20t2 +12t2
Rg(t) = 4t3,

on the interval 0 <t < 0.5; see Figure 9.
We proceed exactly as in the C? continuous case and get the following for-
mulae for the refinement operator in the univariate case (see also Figure 10),

T Z(/)%_l + leqﬁgi (“left” of existing grid point) (22a)

Py = %qugi_l + zd)% (“right” of existing grid point) (22b)
Paip1 = é%iq + gﬁf?% + %¢2i+1 (“left” of new grid point) (22c)
Phive = 71L¢2i + g¢2i+l + é¢2i+2 (“right” of new grid point) (22d)

Note that all these four expressions must be considered while the C? case only

involved the two expressions in (17) due to symmetry of the basis function.
Again we proceed as for C? continuous splines to obtain the refinement op-

erator Ry in the bivariate case. Four coefficients are now associated with each

18

0.8

0.6

0.4]

0.2

0 0.1 O.2t0.3 04 05

Figure 9: The cubic B-spline basis functions R;(t) = B;(2t), i =0,1,2,3 in the
refined space Si41 in the C'! continuous case.

(04i -1 (04i (04i +1 ¢4i +2
o 0 [I)
X | | |
i’=2i 2i+1 2i+2

¢2i—1 %i %i +1 %HZ
| —F |
i i+1

Figure 10: New coefficients (primed) of the refined grid I’ in the univariate C*
case.

19

point in the tensor product grid. From the four equations (22a) — (22d) we
make the matrices My = [3/4,1/4], Ma = [1/4,3/4], M3 = [1/8,5/8,1/4] and
M, = [1/4,5/8,1/8]. We form sixteen matrix products

MlTMl, MITMQ, MITM3, o ,1\44TM47 and the coefficients of ®441 in the re-
fined space Si+1 are obtained from those of @ in Sj by the following sixteen
equations,

1
d)ﬁli—l,4j—1 T [9‘/)21'—1,23'—1 + 3(Pgi—1,2j + P2i2j—1) + ¢2i,2j]
, 1
Gaia; = 16 [‘7)21'—1,23'—1 + 3(Pai—1,2j + P2i2j—1) T 9¢2i,2j]
1
¢£1i+1,4j+1 = a[¢2¢—1,2j—1 +5 (¢2¢—1,2j + ¢2i,2j—1) + 25¢; 9;
+2 (Pgi_10j41 T Poiy12j-1) T 10 (Poiy1 05 + Painji1) +4Pois1 0541
1
¢£1i+2,4j+2 = a[4¢2¢,2j + 50940941 T2 (¢2z’+2,2j + ¢2i,2j+2) + P2i42,2j42
+25¢9;41 2541 + 10 (¢2¢+1,2j + ¢2i,2j+1) + 5091 1,9542]
1
(/5211'—1,4]‘ = 16 [3 (¢2¢—1,2j—1 + ‘7>2¢,2j) +9bg;_1,9; + (7521‘,2]'—1]
, 1
Paiaj—1 = 6 [3 (¢2¢—1,2j—1 + ‘7>2¢,2j) + Poi1,95 + 9¢2i,2j—1]
1
¢£1i—1,4j+1 = @[3‘2"%—1,2]‘—1 + 15¢9; 1 25 + P9i95—1 + 5Po;0j + 2¢9; 0511 + 6Po;_y 251 1]
1
¢£1i+1,4j—1 = @[3‘2"%—1,2]‘—1 + Poi_1.2j + 1509, 9,1 + 5P9; 0j + 209,11 0j + 6Po; 11 051
1
¢£1i—1,4j+2 = 3 [64721'71,23‘ + 209,95 + 19091 241 + 5P2; 2541 + P2i0j42 T 3¢2i71,2j+2:|
1
¢£1i+2,4j71 = 3 [64721',2]'71 + 209,95 + Poiya,0j + 190011 951 + dPoip125 T 3¢2i+2,2j71]
1
¢£1i,4j+1 = 3 [‘2"21'71,23‘71 + 509, 1,95 T 30251 T 1509, 95 + 209, 1 9541 + 6¢2i,2j+1]
1
¢£1¢+1,4j = 3 [‘2"21'71,23‘71 + 309;_1,25 T 9Pa; 251 T 1509, 95 + 209,11 251 + 6¢2i+1,2j]
1
Priajez = 3 [2009:_1.9; + 609 05 + 5o 19511 + 15Pg; 0541 + Poi 19540 + 3P2i 2j40]
1
‘7)21142,43‘ = 3 [2(7521',23'71 + 609 05 + 509111951 T 150911 9; + Poi1095 1 T 3‘7)2i+2,2j]
, 1
Priv1,4j42 = a[z (‘7>2i—1,2j + ¢2i+1,2j+2) +10 (¢2¢,2j + ¢2i+1,2j+1)
+5 (¢2i71,2j+1 + ¢2i,2j+2) + 25¢9; 941 + 4Poit1,2j T Poi—1,2j42]
1
¢£1i+2,4j+1 = a[Q (¢2i,2j—1 + ¢2i+2,2j+1) +10 (¢2¢,2j + ¢2i+1,2j+1)

+5 (Poip19j—1 + Poiyo0j) + 4boioji1 + 25Poi1 95 + Pairoai1)-

20

6 Numerical Examples and Discussion

The algorithms have been tested on a variety of different types of measure-
ment data: interpreted seismic data representing geological faults and horizons,
seabed data obtained from multi-beam echo sounders, data from 3D scanning
devices, different GIS-data representing terrain, and parametrised 3D scattered
data.

Common to all these data sets are that they contain noise and outliers. Re-
call that exact interpolation of a data point p. is achieved if there are no other
scattered data points with a corresponding (4 x 4) neighbourhood of coefficients
which overlap with that of p.. Thus, the tensor product grid at the finest level
in the surface hierarchy should not be too dense as this would yield exact inter-
polation of the data and result in oscillations and anomalies as explained earlier.
Even if the data were accurate without noise and outliers, exact interpolation
may cause local peaks near the scattered data.

Some of the data sets mentioned above have some nice properties which
make them well suited for approximation with multilevel B-splines. They are
typically well distributed and they are densely sampled in the domain. Thus,
many scattered data points contribute to each coefficient in the tensor product
grid by Equation (13) and (14). Even if there are coincident points in the
domain with different z-values, these equations ensure that the spline surface
possesses a good weighted average of the scattered data points.

A spline surface with 4097 x 8193 coefficients was created from a large data
set consisting of approximately 53 million data points. The data set was a
mixture of terrain data and seabed data from multi-beam echo sounders from a
huge area of 137km x 300km from the coast of Norway. Thus, the size of each grid
cell was approximately 33.4 x 36.6 meters. This gives an average of 1.6 points per
grid cell, and since the data were well distributed in most of the domain, many
scattered data points contributed to each spline coefficient. The algorithms
performed remarkably well on this data set, though some irregularities could be
observed in areas where the scattered data were sparse. (We have no images
from this experiment.)

The terrain data in Figure 11 consists of approximately 48,000 points from
digitised contours over a domain of 14.9km x 27.8km. Since the data are digitised
contours, they are not well distributed in the domain. If the tensor product grid
is made too dense, for example 1025 x 2049 coefficients as in Figure 14, many of
the contours are visible in the 3D surface as “terraces”. In this case each grid
cell is approximately 14.5 x 13.6 meters and the average deviation (measured
vertically) of the spline surface from the given data is 0.23 meters. If the tensor
product grid is reduced to 257 x 513 coefficients with grid cells 58.1 x 54.4 meters,
leaving an average error of 1.77 meters, many of the visual irregularities would
disappear. This would be sufficient for visualization, but for terrain analysis in
GIS-applications, one must probably operate at one dyadic level lower with grid
cells 116.2 x 108.7 meters, which makes the model smoother (see Figure 13).
This leaves an average error of 3.93 meters. The terrain models shown are C?
spline surfaces and the plots are scaled by a factor of four in the z-direction.

21

On an 800 Mz PC with 256 Mb RAM, the CPU-time used to create the spline
surface with 129 x 257 coefficients was 1.7 seconds, and 3.7 seconds was used to
create the finest surface with 1025 x 2049 coefficients (cf. Equation 3).

The 3D scattered data in Figure 15, sampled from a head and a foot, were
parametrised over rectangular domains by a method developed by Floater [7].
Each point in the parameter domain corresponds to a scattered data point in
3D space. The rectangular boundary of the domains correspond to boundaries
of the physical models (below the neck in the head-model and above the ankle
in the foot-model). Due to the (shape preserving) parametrisation method that
was used, the points are unevenly distributed in the parameter domain; see the
figures in the middle. Thus, extremely dense tensor product grids were necessary
to recover all details in the models - for example, the foot-model in the figure
is represented by 16384 x 16384 B-spline coefficients. The adaptive approach
explained in Section 4.3 was in this case used to limit storage requirements.
Some irregularities are visible in the 3D plots near the boundaries where the
tensor product grids are dense compared to the density of the parametrised
points.

Acknowledgments This work was supported by the Research Council of Nor-
way through basic funding to SINTEF. The author thanks Tor Dokken, Michael
Floater and Kai Hormann for fruitful discussions on multilevel splines and re-
lated topics during this work; and Kyrre Strom for useful help when deriving
explicit formulae for refinement operators.

22

References

[1]

[13]
[14]

E. Arge, M. Daehlen, and A. Tveito. Approximation of scattered data using
smooth grid functions. Journal of Computational and Applied Mathematics,
59:191-205, 1995.

C. K. Chui. An Introduction to Wavelets. Academic Press, Boston, 1992.

E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-Splines and subdivi-
sion techniques in computer aided geometric design and computer graphics.
Computer Graphics and Image Processing, 14(2):87-111, 1980.

M. Dahlen and . Hjelle. Compact representation of seismic sections.
Technical Report 910125-3, SINTEF, 1992.

M. Dachlen and T. Lyche. Decomposition of splines. In T. Lyche and L. L.
Schumaker, editors, Mathematical Methods in Computer Aided Geometric
Design 11, pages 135-160. Academic Press, New York, 1992.

I. Daubechies. Ten Lectures on Wawvelets. STAM Publications, Philadelphia,
1992.

M. S. Floater. Parametrization and smooth approximation of surface tri-
angulations. Computer Aided Geometric Design, 14(3):231-250, 1997.

J. E. Lavery. Univariate cubic L, splines and shape-preserving, multiscale
interpolation by univariate cubic Ly splines. Computer Aided Geometric
Design, 17(4):319-336, 2000.

D. T. Lee and B. J. Schachter. Two algorithms for constructing a De-
launay triangulation. International Journal of Computer and Information

Sciences, 9(3):219-242, 1980.

S. Lee, K.-Y. Chwa, J. Hahn, S. Y. Shin, and G. Wolberg. Image meta-
morphosis using snakes and free-form deformations. In Computer Graphics,
SIGRAPH’95, volume 3, pages 439448, 1995.

S. Lee, G. Wolberg, K.-Y. Chwa, and S. Y. Shin. Image metamorphosis
with scattered feature constraints. IEFEE Transaction on Visualization and
Computer Graphics, 2(4):337-354, 1996.

S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with
multilevel B-splines. IEEE Transactions on Visualization and Computer
Graphics, 3(3):229-244, 1997.

Y. Meyer. Ondolettes et Operateurs. Hermann, Paris, 1990.

M. J. D. Powell. The theory of radial basis function approximation in
1990. In W. Light, editor, Advances in Numerical Analysis, Vol II, pages
105-210. Oxford Science Publications, 1992.

23

A Figures from Numerical Experiments

Figure 11: Contour data as input to the surface model shown in the next figures.

Figure 12: Surface model at a coarse (and smooth) level with 33 x 65 B-spline
coefficients.

24

Figure 13: Surface model with 129 x 257 B-spline coefficients.

Figure 14: Surface model with 1025 x 2049 B-spline coefficients. This is too
dense relative to the density of the contour data shown in Figure 11. There are
anomalies in the 3D model visible as “terraces” along the contour data.

25

Figure 15: 3D measurement data from a head and a foot parametrised over rect-
angular domains. The adaptive Multilevel B-spline scheme was used to create
the 3D models. The foot-model consists of 16384 x 16384 B-spline coefficients.

26

