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Locally Refinable Splines over Box-Partitions

Tor Dokken ∗, Tom Lyche †, Kjell Fredrik Pettersen‡

February 22, 2012

Abstract

We address progressive local refinement of splines defined on axes
parallel box-partitions and corresponding box-meshes in any space di-
mension. The refinement is specified by a sequence of mesh-rectangles
(axes parallel hyperrectangles) in the mesh defining the spline spaces.
In the 2-variate case a mesh-rectangle is a knotline segment. When
starting from a tensor-mesh this refinement process builds what we de-
note an LR-mesh, a special instance of a box-mesh. On the LR-mesh
we obtain a collection of hierarchically scaled B-splines, denoted LR
B-splines, that forms a nonnegative partition of unity and spans the
complete piecewise polynomial space on the mesh when the mesh con-
struction follows certain simple rules. The dimensionality of the spline
space can be determined using recent dimension formulas [9, 10].

Math Subject Classification: 65D07, 65D17
Keywords: Box-partitions, LR-meshes, dimension of spline spaces, locally
refined tensor product B-splines, isogeometric analysis.

1 Introduction

Splines are used as a tool in a wide range of applications both in academia and
industry for the representation of functions and parametric curves, surfaces
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and solids in one, two or more variables. Although a number of alternative
spline bases exist, B-Splines or NonUniform Rational B-splines (NURBS)
are most often used in the univariate case. Similarly, multivariate splines
spaces on quadrilateral and hexagonal meshes are most often represented
using the tensor-products of univariate B-splines or NURBS. The popularity
of tensor-product B-splines stems from a number of reasons:

• Efficient and numerically stable algorithms for knot insertion, degree
raising and evaluation of values and derivatives.

• Coefficients have a geometric interpretation as corners in a control poly-
gon that mimics the shape of the spline.

• NURBS is the standardized representation for rational splines in the
STEP standard1, used in Computer Aided Design.

In this paper we introduce the concept of Locally Refined Splines (LR-splines)
that breaks the tensor-product mesh structure by introducing local refine-
ments. LR-splines are related to hierarchical B-splines introduced in 1988
by Forsey and Bartels [6]. The challenges of linearly independence of hierar-
chical B-splines were solved in 1998 in the PhD thesis of Kraft [8], and has
recently been further elaborated in [15]. For recent results on approximation
properties see [1]. T-splines were introduced in 2003 by Sederberg et. al.
[13, 14] as a way to model surfaces using fewer control points than hierarchi-
cal B-splines. In 2008 PHT-splines were introduced in [3] as an alternative
C1 bicubic approach to local refinement. In 2011 spline spaces over parti-
tions combining triangles and rectangles were addressed in [12]. A basis is
constructed using the concept of minimal determining sets.

The current interest in spline refinement was triggered by the introduction
of isogeometric analysis by T.J.R. Hughes et al. in 2005 [2, 7]. In isogeometric
analysis traditional Finite Elements are replaced by tensor-product NURBS.
Some of the advantages are accurate shape representation for analysis, easy
use of higher order smoothness, and simplified design optimization by re-
placing remeshing by model refinement. However, traditional tensor-product
splines lack local refinement [4]. Consequently spline representation such as
T-splines, hierarchical B-splines and LR B-splines have much to contribute
for practical deployment of isogeometric analysis in science and industry.

1ISO 10303 - Automation systems and integration – Product data representation and
exchange.
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The main features of LR B-splines can be summarized as follows:

• Direct spline space refinement (h-refinement). LR B-spline refinement
is performed in the spline space by the specification of what we call
Mesh-rectangles. In the case of bivariate LR B-splines the mesh-rectangle
is a segment of a constant parameter line, in the three-variate case an
axis parallel rectangle, while in the d-variate case it is specified as an
axis parallel hyper-rectangle. This is opposed to T-splines where the
refinement is specified using special points, denoted anchor points, in
the parameter domain.

• Local degree raising (p-refinement). Selected basis functions can be
degree raised to provide a spline space with different polynomial degrees
in different regions. The degree raised basis functions can be further
spatially refined when needed. However, we will not study such local
p-refinement in this paper.

• Spline space dimensionality. Following certain rules for refinement the
dimension of the LR-spline space is determined exactly using only topo-
logical properties of the mesh. This follows from recent results in [9]
and [10], and is opposed to general T-meshes where the dimension can
be dependent on the position of the mesh-lines [16].

• Multi-patch models. Although this paper addresses LR B-splines over
box shaped domains, a number of such domains can be stiched to form
more complex domain shapes.

The concepts of box-partitions, box-meshes and LR-meshes are addressed in
Section 2, while the definition of LR B-splines over LR-meshes is considered
in Section 3. Section 4 addresses the resulting spline spaces and their dimen-
sions. The spanning properties of the LR B-splines is the topic of Section 5.
How to ensure that the LR B-splines are linearly independent are discussed
in Section 6. In Section 7 partition of unity and convex hull properties of LR
B-splines are presented.

1.1 B-splines

We end this introduction by recalling some properties of B-splines that is
needed.

3



Definition 1.1. On a nondecreasing sequence y = (y1, y2, . . . , yp+2) we de-
fine a B-spline B[y] : R→ R of degree p ≥ 0 recursively by

B[y](x) :=
x− y1

yp+1 − y1

B[y1, . . . , yp+1](x) +
yp+2 − x
yp+2 − y2

B[y2, . . . , yp+2](x), (1)

starting with

B[yi, yi+1](x) :=

{
1; if yi ≤ x < yi+1;

0; otherwise,
i = 1, . . . , p+ 1.

We define B[y] ≡ 0 if yp+2 = y1 and in (1) terms with zero denominator are
defined to be zero.

Suppose y1 < yp+2. We recall that B[y] is a piecewise polynomial of
degree p on y with support [y1, yp+2]. Moreover, 0 ≤ B[y](x) ≤ 1 for x ∈ R
and if

y1 ≤ y2 ≤ · · · yp+2 = η
[m1]
1 < · · · < η

[ml]
l , (2)

then B[y] ∈ Cp−mj but not in Cp−mj+1 at ηj, j = 1, . . . , l. Here η1, . . . , ηl

are the distinct members among the components of y, and η
[mj ]
j means that

ηj is repeated mj times, j = 1, . . . , l. For each j the integer mj = m(ηj) is
called the multiplicity of ηj in y. We define the multiplicity function
mB : R→ N ∪ {0} by

mB(t) :=

{
m(ηj), if t = ηj, for some j, with 1 ≤ j ≤ l,

0, otherwise.
(3)

For more properties of B-splines we refer to [11].
Suppose we insert a knot z ∈ (y1, yp+2). We obtain two new local knot

vectors y1 := R(y, z, 1) and y2 := R(y, z, 2), where

R(y, z, 1) = (z1, . . . , zp+2), R(y, z, 2) = (z2, . . . , zp+3), (4)

and where (z1, . . . , zp+3) is the sequence (y1, . . . , yp+2, z) rearranged in a non-
decreasing order.

Definition 1.2. Tensor Product B-splines. Let d be a positive integer,
suppose p = (p1, . . . , pd) has nonnegative components, and let yk := (yk,1, . . .,
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yk,pk+2) be nondecreasing sequences k = 1, . . . , d. We define a tensor-
product B-spline B[Y ] = B[y1, . . . ,yd] : Rd → R from univariate B-
splines B[yk] by

B[y1, . . . ,yd](x1, . . . , xd) :=
d∏

k=1

B[yk](xk).

The support of B is given by the cartesian product

supp(B) := [y1,1, y1,p1+2]× · · · × [yd,1, yd,pd+2]. (5)

Suppose we insert a knot z in (yk,1, yk,pk+2) for some 1 ≤ k ≤ d. Then

B[Y ] = α1B[Y 1] + α2B[Y 2], (6)

where

Y s = Rk(Y , z, s) := (y1, . . . ,yk−1, R(yk, z, s),yk+1 . . . ,yd), s = 1, 2, (7)

and

α1 :=

{
1, yk,pk+1 ≤ z < yk,pk+2,

z−yk,1
yk,pk+1−yk,1

, yk,1 < z < yk,pk+1,

α2 :=

{
1, yk,1 < z ≤ yk,2,
yk,pk+2−z
yk,pk+2−yk,2

, yk,2 < z < yk,pk+2.

(8)

2 Boxes and Meshes

In this section we consider partitions defined from boxes and their corre-
sponding meshes.

2.1 Box Collections

We start by defining a number of useful concepts.

Definition 2.1. Given an integer d ≥ 1. A box in Rd is a cartesian product

β = J1 × · · · × Jd ⊆ Rd, (9)
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Figure 1: In the Figure to the left there are two (0, 1)-boxes (points/mesh-
rectangles) {0} and {1}, and one (1, 1)-box (element) [0, 1]. In the Figure
to the right there are four (0, 2)-boxes (points) (0, 0), (1, 0), (0, 1) and (1, 1),
four (1, 2)-boxes (line segments/mesh-rectangles) [0, 1] × {0}, {0} × [0, 1],
[0, 1]× {1}, and {1} × [0, 1], and one (2, 2)-box (element) [0, 1]× [0, 1].

where each Jk = [ak, bk] with ak ≤ bk is a closed finite interval in Rd. We also
write β = [a, b], where a = (a1, . . . , ad), and b = (b1, . . . , bd). The interval Jk
is said to be trivial if ak = bk and non-trivial otherwise. The dimension
of β, denoted dim β, is the number of non-trivial intervals Jk in (9). We call
β an `-box or an (`, d)-box if dim β = `. If dim β = d then β is called an
element, while if dim β = d−1, there exists exactly one k such that Jk = {a}
is trivial. Then β is called a mesh-rectangle, a k-mesh-rectangle or a
(k, a)-mesh-rectangle.

Several remarks are in order.

1. We often use Greek letters like α, β, γ for boxes.

2. A mesh-rectangle is part of an axes parallel hyperplane and has codi-
mension one in any space dimension. It is a point for d = 1, a line
segment for d = 2, a rectangle for d = 3 and a 3-box for d = 4. More-
over for d = 2, a k-mesh-rectangle is a vertical line segment for k = 1
and a horizontal line segment for k = 2.

3. A d-box contains 2d−`
(
d
`

)
`-boxes, ` = 0, 1, . . . , d.

6



Figure 2: The Figure shows an example of a box partiton E to the left, E∪Ω+

to the right, and their lower dimensional boxes.

4. A mesh-rectangle γ = [c, e] is called a face of a d-box [a, b] if ck =
ak < bk = ek for the nontrivial intervals and ck = ek = ak or ck = ek =
bk for the trivial one. The union of all faces of a d-box [a, b] is called
the boundary of the box. The interior of a box β is denoted βo.

In Figure 1 we show some examples of these concepts.

Definition 2.2. Box partition. Let Ω ⊆ Rd be a d-box in Rd. A finite
collection E of d-boxes in Rd is said to be a box partition of Ω if

1. βo1 ∩ βo2 = ∅ for any β1, β2 ∈ E where β1 6= β2.

2.
⋃
β∈E β = Ω.

A box partition contains a number of boxes of lower dimension. To for-
malize we start with the following definition.

Definition 2.3. Given a collection E of d-boxes and a point q ∈ Rd we define
βq = βq(E) as the intersection of all boxes in E containing q

βq(E) =
⋂
β∈E
q∈β

β. (10)

Let E be a box partition of a d-box Ω = [a, b] ⊂ Rd. In order to also
identify lower dimensional `-boxes on the boundaries of E we define the set

Ω+ = {J1× . . .×Jd : Jk ∈ {[ak− 1, ak], [ak, bk], [bk, bk + 1]}, ∀k} \ {Ω}. (11)
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If E is a box partition of Ω, then E ∪ Ω+ is a box partition of [a1 − 1, b1 +
1]× . . .× [ad − 1, bd + 1]. This is illustrated in Figure 2.

We can now define sets of boxes of lower dimension in a box partition.

Definition 2.4. Given a box partition E on a d-box Ω. We define the sets

F(E) :=
⋃
q∈Ω

{βq(E ∪ Ω+)}, (all boxes of all dimensions), (12)

Fo(E) :=
⋃
q∈Ωo

{βq(E)}, (all interior boxes of all dimensions), (13)

F`(E) := {β ∈ F(E) : dim β = `} for ` = 0, . . . , d, (14)

Fo` (E) := {β ∈ F0(E) : dim β = `} for ` = 0, . . . , d. (15)

In addition, for k = 1, . . . , d we define Fd−1,k(E) as the set of all k-mesh-
rectangles in Fd−1(E).

2.2 Meshes in Rd

To a box partition there corresponds a mesh consisting of mesh-rectangles.
It is natural to assign to each mesh-rectangle γ a multiplicity µ = µ(γ)
and thus provide support for different orders of continuity across different
mesh-rectangles.

Definition 2.5. Box-mesh and extended box-mesh. Let E be a box
partition of [a, b] ⊂ Rd.

1. The collection M = M(E) := Fd−1(E) of minimal (d − 1) boxes is
called a box-mesh on [a, b].

2. If to each γ ∈ M there is an associated integer µ(γ) ≥ 1, then (M, µ)
is called a µ-extended box-mesh, or an extended box-mesh when
the context allows. Note that µ :M→ N is a function.

3. We define

F(M) := F(E(M)) (16)

F`(M) := F`(E(M)) for any ` = 0, . . . , d (17)

βq(M) := βq(E(M)) for any q ∈ Ω. (18)

Fd−1,k(M) := Fd−1,k(E(M)), (19)

where E(M) denotes the unique box partition used to define M.

8



Note that a box-mesh is a µ-extended box mesh, where µ(γ) = 1 for all
γ ∈ M. For d = 2 an interior vertex in a box-mesh belongs to either 4 or
3 rectangles, known as a cross(+) or a T(>) vertex, respectively. Note that
we do not allow L-shaped elements in a box-mesh.

Definition 2.6. Tensor-mesh. Given d ∈ N and sequences (ak,1, · · · , ak,nk
)

in R with ak,1 < · · · < ak,nk
for k = 1, . . . , d. The box-mesh M := Fd−1(E)

corresponding to the box-partition

E = {[ai,ai+1] : 1 ≤ i ≤ n− 1}
= {[a1,i1 , a1,i1+1]× · · · × [ad,id , ad,id+1] : 1 ≤ ik ≤ nk − 1, k = 1, . . . , d}

(20)
is called a tensor-mesh.

In general, a tensor-mesh can be constructed from a collection of nonde-
creasing univariate knot vectors.

Definition 2.7. A tensor-mesh with knot multiplicities is a µ-extended
box-mesh (M, µ) such that M is a tensor-mesh and µ(γ) = µ(γ′) whenever
γ and γ′ are in the same hyperplane.

Sometimes it is convenient to extend a box-mesh to a tensor-mesh.

Definition 2.8. Let M and (M, µ) be a box-mesh and a µ-extended box-
mesh, respectively. We define the tensor-mesh expansion MT of M
as the smallest tensor-mesh containing M. The µT extension of µ with
respect to M, µT :MT → N ∪ {0}, is defined by

µT (β) :=

{
µ(γ), if β ⊆ γ ∈M,

0, if β * γ, all γ ∈M.

We call (MT , µT ) the µ-extended tensor-mesh expansion of (M, µ).

Figure 3 shows a a box mesh, an example of a µ-extention, and the
corresponding extended tensor-mesh expansion.

LR-meshes are constructed by successive refinement of box-meshes such
that in each refinement at least one d-box is split in two by a mesh-rectangle
γ, or by increasing multiplicity as described in the following definitions.

9



Figure 3: A box-mesh, an example of a µ-extension, and its tensor-mesh
expansion.

Definition 2.9. Splits. Given a mesh-rectangle γ and a d-box β in Rd. We
say that γ splits β if β \ γ is not connected. We say that γ is a minimal
split of β if it splits β and γ ⊆ β. If γ splits β, β \ γ has two components
β1 and β2 each being connected. We define Xβ,γ := {β1, β2}, where βj is the
closure of βj, j = 1, 2.

Given a box partition E of a d-box Ω and a mesh-rectangle γ in Rd. We
say that γ splits E if γ is a finite union ∪iγi of mesh-rectangles such that
each γi is either a minimal split of a box in E or is a mesh-rectangle inM(E).

Definition 2.10. Given a box partition E of a d-box Ω and a mesh-rectangle
γ in Rd that splits E. Let E1 be the set of all boxes in E that are split by γ,
and E2 = E \ E1. We define

E + γ := E2 ∪
( ⋃
β∈E1

Xβ,γ

)
, (21)
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Figure 4: An illustration of the three cases in Definition 2.11. The mesh-
rectangle γ = [1, 3]×{1} is inserted. The mesh-rectangle β1 = [1, 2]×{1} ⊆ γ
does not exist from before and is assigned multiplicity 1. On the other hand
β2 = [2, 3] × {1} ⊆ γ is already present and the multiplicity is increased by
one. The third case is illustrated by β3 = {1} × [0, 1] that is a subset of the
mesh-rectangle {1}× [0, 2] that existed before γ was inserted but that is not
a subset of γ.

which is another box partition of Ω. If M = Fd−1(E) we define

M+ γ := Fd−1(E + γ). (22)

Definition 2.11. Extended box partition split. Let (M, µ) be a µ-
extended box-mesh in Rd and let γ be a mesh-rectangle. The µ-extension µγ
of a mesh-rectangle β ∈M+ γ is defined as follows:

µγ(β) :=


1 if β * β′ for all β′ ∈M,

µ(β′) + 1 if β ⊆ β′ ⊆ γ for β′ ∈M,

µ(β′) if β ⊆ β′ * γ for β′ ∈M.

(23)

We say that γ is a constant split of (M, µ) of multiplicity µ(γ) if µ(γ) :=
µγ(β) is the same for all β ∈M+ γ with β ⊆ γ.

An illustration of definition 2.11 is shown in Figure 4.
We can now give a recursive definition of an LR-mesh.

Definition 2.12. A µ-extended LR-mesh is a µ-extended box-mesh (M, µ)
where either

1. (M, µ) is a tensor-mesh with knot multiplicities or

2. (M, µ) = (M̃+ γ, µ̃γ) where (M̃, µ̃) is a µ-extended LR-mesh and γ is
a constant split of (M̃, µ̃).
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Figure 5: A box-mesh (left) and an LR-mesh (right)

Figure 6: Construction of a 3 dimensional LR-mesh in parameter space.

If (M, µ) is a µ-extended LR-mesh then M is called an LR-mesh.

A box-mesh, and an LR-mesh are shown in Figure 5. The box-mesh on
the left is not an LR-mesh. Indeed, M1 is the boundary of the rectangle,
and there is no way we can insert one of the line segment so that it splits
the rectangle in two elements. The construction of a trivariate LR-mesh is
shown in Figure 6.

3 LR B-splines

In Definition 2.12 the LR-mesh was defined recursively, and we will now
define LR B-splines following a similar recursive approach.

3.1 Definition of LR B-splines

To define LR B-splines we need the concept of minimal support. To do this
we need tools for comparing and measuring minimal multiplicity of points in
a set with respect to a µ-extended box-mesh.

12



Figure 7: A µ-extended box-mesh, and three examples of sets X (dotted)
and the resulting value of νk(X).

Definition 3.1. Given a µ-extended box-mesh (M, µ). For any point q ∈ Rd,
any X ⊂ Rd, and any k = 1, . . . , d, we define

µk(q) = max
(
{0} ∪ {µ(γ) : q ∈ γ ∈ Fd−1,k(M)}

)
, (24)

νk(X) = inf{µk({q}) : q ∈ X}. (25)

See Figure 7 for some examples.

Definition 3.2. The tensor-product B-spline given by B(x) = B(x1, . . . , xd) =
B1(x1) · · ·Bd(xd), has support in the µ-extended box-mesh (M, µ) if

mBk
(t) ≤ νk(supp(B) ∩ φk,t) (26)

for every k = 1, . . . , d and every t ∈ supp(Bk). Here mBk
(t) is the knot

multiplicity of Bk at t, (see (3)), and φk,t is the axes parallel hyperplane
φk,t = Rk−1 × {t} × Rd−k.

B has minimal support in (M, µ) if it has support in (M, µ), and in
addition

mBk
(t) = νk(supp(B) ∩ φk,t), (27)

for every k = 1, . . . , d and every t ∈ supp(Bk)
o.
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Figure 8: A µ-extended box-mesh M at the top left, and 3 examples of
bilinear B-splines and their relation to M. The B-spline indicated by the
knotline multiplicities at the top to the right does not have support in M
since a part of a knotline of the B-spline is not present in M. The two
examples below has support in M, but only the B-spline to the right has
minimal support in M. In the B-spline to the left the internal vertical
knotline has lower multiplicity than the corresponding mesh-rectangle inM.

Definition 3.2 is illustrated in Figure 8.
We now have all the concepts we need to define an LR B-spline.

Definition 3.3. LR B-splines. Let (M, µ) be an µ-extended LR-mesh in
Rd. A function B : Rd → R is called an LR B-spline on (M, µ) if B is a
tensor-product B-spline with minimal support in (M, µ).

3.2 B-Splines on an LR-mesh

Given a µ-extended LR-mesh (M, µ) and a multi-degree p = (p1, . . . , pd)
we now define a collection B of LR B-splines of degree p on (M, µ). Recall
that (M, µ) is defined as a sequence of µ-extended LR-meshes (M1, µ1), . . . ,
(Mq, µq) where (M1, µ1) is a tensor-mesh with knot multiplicities and (M, µ)
= (Mq, µq). Moreover, (Mj+1, µj+1) = (Mj + γj, µj,γj) with γj a mesh-
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rectangle that splits E(Mj) as in Definition 2.9, and µj,γj is as in Defi-
nition 2.12. We start with the complete collection B1 of tensor-product
B-splines of degree p on (M1, µ1). Suppose we have defined Bj for some
1 ≤ j < q. We always assume that γj is such that there is a B ∈ Bj that
does not have minimal support in (Mj +γj, µj,γj). We define Bj+1 as follows.

1. As long as there is a B ⊂ Bj that does not have minimal support in
(Mj+1, µj+1) we proceed as follows. Let γ be a (k, a)-mesh-rectangle
that splits the support of B, where γ is a union of mesh-rectangles in
Mj+1. If B(x) = B1(x1) · · ·Bd(xd) for x = (x1, . . . , xd) ∈ Rd then we
insert a in the univariate B-spline Bk using (6) and get two univariate
B-splines Bk,1 and Bk,2, and two tensor-product B-splines obtained
from B by replacing Bk by Bk,1 and Bk,2, respectively. We update Bj
by removing B and adding the two new tensor-product B-splines. We
also remove duplicate B-splines if necessary.

2. When all B ∈ Bj have minimal support we set Bj+1 = Bj.

Note that the process of going from Bj to Bj+1 often involves a number
of steps resulting in a sequence of LR B-spline collections Bj,1,Bj,2, · · · ,Bj,rj ,
where Bj,1 = Bj and Bj,rj = Bj+1. We can combine all these collections into
a global sequence of B-spline collections

(B̃1, B̃2, . . . , B̃s) = (B1,1, · · · ,B1,r1 ,B2,1, · · · ,B2,r2 , . . . ,Bq,1, · · · ,Bq,rq). (28)

Figure 9 illustrates a bilinear example. The initial tensor-product mesh,
with all knot multiplicities equal to one, is shown top left. First the horizontal
line segment [1, 4] × {3} is inserted (top second from left) splitting the two
B-splines 124 × 125 and 124 × 256 into three B-splines depicted in light
grey in the graph. Then the horizontal line segment [2, 5] × {4} is inserted
(top second from right) splitting the two B-splines 245× 125 and 245× 256
into three depicted in medium grey in the graph. Then the vertical line
segment {3} × [2, 5] is inserted (top right), splitting two B-splines 124× 235
and 245× 245 into four. However, two of these (depicted in dark grey in the
graph) are split by the two first knot lines inserted, resulting in two B-splines
at the bottom of the graph.

The collection B of LR B-splines only depends on the final meshM. The
proof of the following theorem is found in Appendix A.
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124x125 124x256 

124x123 124x356 

124x235 

245x125 245x256 

245x124 245x456 

245x245 

123x235 234x235 234x245 345x245 

234x234 234x345 

Figure 9: Bilinear spline insertion and graph. Initial mesh (left), Final mesh
(right), Corresponding graph (bottom). The B-splines on the final mesh are
represented in the graph by nodes having no outgoing edges.
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Theorem 3.4. The collection B of LR B-splines in Section 3.2 does not
depend on the order of insertion of the mesh-rectangles or the order of the
subsequent single refinements.

4 Spline Spaces

In Section 3 the construction of the LR B-splines was addressed. In this
Section we will consider the structure of spline spaces spanned by LR B-
splines. However, first we will address the dimension of spline spaces over
box-meshes.

4.1 Spline Spaces over Box-meshes

Let E be a box partition of [a, b] ∈ Rd given as in Definition 2.2 and let
(M(E), µ) be the corresponding µ-extended box-mesh. Let p = (p1, . . . , pd)
be a vector of nonnegative integers and set xi = xi11 · · ·x

id
d for i = (i1, . . . , id)

≥ 0. We define polynomials of component degree at most pk, k = 1, . . . , d
by

Πd
p := {f : Rd → R : f(x) =

∑
0≤i≤p

cix
i, ci ∈ R for all i}.

Given a function f : [a, b] → R, and let γ ∈ Fd−1,k(E) be any k-mesh-
rectangle in [a, b] for some 1 ≤ k ≤ d. We say that f ∈ Cr(γ) if the partial
derivatives ∂jf(x)/∂xjk exist and are continuous for j = 0, 1, . . . , r and all
x ∈ γ.

Definition 4.1. We define the piecewise polynomial space 2

Pp(E) := {f : [a, b]→ R : f |β ∈ Πd
p, β ∈ Ẽ}, (29)

where Ẽ is obtained from E by using half open intervals [ci,k, ei,k) if ei,k < bk
and closed intervals otherwise. We define the spline space

Sp(M, µ) := {f ∈ Pp(E(M)) : f ∈ Cpk−µ(γ)(γ),

∀γ ∈ Fod−1,k(M), k = 1, . . . , d}.
(30)

2We can also use variable degrees. Suppose for each β ∈ E there is a vector pβ ∈ Rd

with nonnegative integer components. Pp(E) := {f : [a, b]→ R : f |β ∈ Πd
pβ
, β ∈ Ẽ}.
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We also set

Sp(M) := {f ∈ Pp(E(M)) : f ∈ Cpk−1(γ),

∀γ ∈ Fod−1,k(M), k = 1, . . . , d}.
(31)

The use of Ẽ instead of E ensures that each x ∈ [a, b] belongs to exactly
one of the sub-boxes.

4.2 Dimension of spline spaces over Box-meshes

In [9] the dimensionality of spline spaces over planar T-grids when the con-
tinuity across mesh-rectangles is fixed in both parameter directions, is ad-
dressed. This idea inspired a generalization in [10]. In that paper the di-
mension of a spline over a µ-extended box-mesh in Rd is addressed, and the
following dimension formula presented

dimSp(M, µ) =
d−1∑
`=0

(−1)d−`

 ∑
β∈F`(M)

d∏
k=1

(pk − µk(β) + 1)


+ fd

d∏
k=1

(pk + 1)−
d−1∑
`=0

(−1)d−` dimH`,

(32)

where fd := #
(
Fd(M)

)
is the number of elements in E(M) and

µk(β) = max
(
{0} ∪ {µ(γ) : β ⊂ γ ∈ Fd−1,k(M)}

)
. (33)

• The first sum is only dependent on the topology of the box-mesh by
relating to the degree and mesh-rectangle continuity (pk − µk(β) + 1).

• The second sum contains homology terms, H`, ` = 0, . . . , d − 1, that
can be regarded as correction factors in the case when the topological
counting over all boxes in F is not sufficient to determine the dimen-
sionality of the spline space. See [10] for more details.

Example 4.2. Consider the univariate (d = 1) case and a knot vector

t1 ≤ t2 ≤ · · · ≤ tn = η
[µ1]
1 < · · · < η[µm]

m , (34)
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where n :=
∑m

i=1 µi, m ≥ 2, and 1 ≤ µi ≤ p + 1, i = 1, . . . ,m. Using (32)
we obtain

dimSp(M, µ) = −
∑

β∈F0(M)

(p− µ(β) + 1) + (m− 1)(p+ 1) + dimH0

= −
m∑
i=1

(p− µi + 1) + (m− 1)(p+ 1) + dimH0

= n− p− 1 + dimH0 = (n− p− 1)+.

The last equality follows from [10] where it is shown that dimH0 = (p+ 1−
n)+. Thus dimH0 = 0 in the normal case where n ≥ p+ 1.

For d = 2 equation (32) becomes

dimSp(M, µ) =
∑

β∈F0(M)

(p1 − µ1(β) + 1)(p2 − µ2(β) + 1)

−
∑

β∈F1,1(M)

(p1 − µ1(β) + 1)(p2 + 1)

−
∑

β∈F1,2(M)

(p1 + 1)(p2 − µ2(β) + 1)

+ f2(p1 + 1)(p2 + 1)− dimH0 + dimH1.

(35)

Example 4.3. Consider the two dimensional tensor-product case.

tk,1 ≤ · · · ≤ tk,nk
= η

[µk,1]

k,1 < · · · < η
[µk,mk

]

k,mk
, (36)

where mk ≥ 2 and 1 ≤ µk,i ≤ pk + 1, i = 1, . . . ,mk, k = 1, 2. The equation
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(35) becomes

dimSp(M, µ) =

m1∑
i=1

m2∑
j=1

(p1 − µ1,i + 1)(p2 − µ2,j + 1)

−
m1∑
i=1

m2−1∑
j=1

(p1 − µ1,i + 1)(p2 + 1)

−
m1−1∑
i=1

m2∑
j=1

(p1 + 1)(p2 − µ2,j + 1)

+ (m1 − 1)(m2 − 1)(p1 + 1)(p2 + 1)− dimH0 + dimH1

=

(
m1−1∑
i=1

(p1 + 1)−
m1∑
i=1

(p1 − µ1,i + 1)

)

·

(
m2−1∑
j=1

(p2 + 1)−
m2∑
j=1

(p2 − µ2,j + 1)

)
− dimH0 + dimH1

= (n1 − p1 − 1)(n2 − p2 − 1)− dimH0 + dimH1

= (n1 − p1 − 1)+(n2 − p2 − 1)+,

since it follows from [10] that

dimH0 = (p1 + 1− n1)+(p2 + 1− n2)+,

dimH1 = (n1 − p1 − 1)+(p2 + 1− n2)+ + (p1 + 1− n1)+(n2 − p2 + 1)+.

Example 4.4. Consider the two dimensional box-mesh, where the multiplic-
ity of boundary edges is equal to the degree + 1 in both parameter directions
giving µ(γv) = p1 + 1 for vertical boundary edges γv, and µ(γh) = p2 + 1 for
horizontal boundary edges γh. Across all interior vertical edges we require
the continuity to be Cr1, 0 ≤ r1 < p1 implying multiplicity of µ(γv) = p1− r1

for internal vertical edges γv. Across all horizontal interior edges we require
the continuity to be Cr2, 0 ≤ r2 < p2 implying multiplicity of µ(γh) = p2− r2

for internal horizontal edges γh. With this in mind (35) reduces to

dimSp(M, µ) =(p1 + 1)(p2 + 1)F2 − (p1 + 1)(r2 + 1)F h
1

− (r1 + 1)(p2 + 1)F v
1 + (r1 + 1)(r2 + 1)F0

− dimH0 + dimH1,

(37)

where
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Figure 10: A biquadratic case where the continuity across internal vertical
edges is C1, e.g., r1 = 1, and the continuity across internal horizontal edges
is C0, e.g., r2 = 0. We find dim(Sp(M, µ)) = 3× 3F2− 3× 1F h

1 − 2× 3F v
1 +

2× 1F0 = 22 based on the counting: F2 = 5, F h
1 = 3, F v

1 = 3, and F0 = 2.

• F2 is the number of rectangles,

• F h
1 and F v

1 are the numbers of horizontal and vertical interior edges,

• F0 is the number of interior vertices.

In [10] it is shown that dimH0 = 0 in this case, and dimH1 = 0 for the
LR-mesh constructed in Section 3.2. The formula (37) corresponds to [9],
where the homology terms are expressed using a different homology. For an
example see Figure 10.

5 Dimension Increase and Spanning Property

It is important to establish the dimension increase when a mesh-rectangle
is inserted, and situations where the LR B-splines span the full spline space
defined by the µ-extended LR-mesh.

In the following definition we introduce a concept that formalizes the
relation between the µ-extended LR-mesh (M, µ) and its corresponding col-
lection of LR B-splines B.

Definition 5.1. Hand-in-hand LR-refinement. Suppose (M, µ,p) is
a µ-extended LR-mesh in Rd with p ≥ 0 a given degree. Let B be the
corresponding collection of LR B-splines of degree p. Let γ be a constant
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split mesh-rectangle as in Definition 2.11, and B′ the corresponding collec-
tion of LR B-splines of degree p on (M + γ, µγ,p). We say that (M +
γ, µγ,p) goes hand-in-hand with (M, µ,p) if span(B)B∈B = Sp(M, µ) and
span(B)B∈B′ = Sp(M+ γ, µγ).

The following theorem gives a sufficient condition so that the collection of
LR B-splines spans the spline space in the special case when the refinement
leads to a dimension increase by one.

Theorem 5.2. Let (M1, µ1), (M2, µ2), . . ., (Mq, µq) = (M, µ) be a se-
quence of µ-extended LR-meshes with corresponding collections of LR B-
splines B1, . . . ,Bq of degree p ≥ 0 as in Section 3.2. If dimSp(Mj+1, µj+1) =
dimSp(Mj, µj) + 1, j = 1, . . . , q − 1 then

Sp(Mj, µj) = span(B)B∈Bj , j = 1, . . . , q.

In other words, each step in the refinement process goes hand-in-hand.

Proof. As B1 is the tensor-product B-spline basis over (M1, µ1) it follows
that Sp(M1, µ1) = span(B)B∈B1 .

Now assume that Sp(Mj−1, µj−1) = span(B)B∈Bj−1
, for some j > 1. From

the assumption we know that dim(Sp(Mj, µj)) = dim(Sp(Mj−1, µj−1)) + 1.
The collection of B-splines Bj has to contain some minimal support B-splines
not in Bj−1. These B-splines are linear independent of the B-splines in
Bj−1 as they contain part of a mesh-rectangle counting multiplicity, not in
(Mj−1, µj−1). Consequently dim(span(B)B∈Bj) ≥ dim(span(B)B∈Bj−1

) + 1.
However, these new B-splines belong to Sp(Mj, µj). Consequently Sp(Mj, µj)
= span(B)B∈Bj .

5.1 Refinements in 2-dimensional meshes

We now look at how we can describe the spline space dimension change
for refinements on a 2-dimensional mesh, and how this is used to test the
hand-in-hand property of LR B-splines.

In this subsection we consider the following situation. Suppose (M, µ,p)
is a general µ-extended LR-mesh in R2 and p = (p1, p2) ≥ 0 a given bidegree.
Let the 2-mesh-rectangle γ = [b, e]× {a} be a constant split of (M, µ). Let
(bj, a), j = 1, 2, . . . , n with b = b1 < b2 < . . . < bn = e be the points defined
by the intersection of γ and all vertical mesh-rectangles in M.
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Figure 11: This illustration shows attachment of 4 inserted horizontal seg-
ments. Only mesh-rectangles in the same hyperplane as the inserted mesh-
rectangle have to be considered and vertical multiplicities are irrelevant for
this example. Going from top to bottom the first segment has multiplicity
1 and is attached at both ends. The next segment has multiplicity 2 while
there is no horizontal neighboring segment to the right and the one to the
left has multiplicity one. This segment is not attached at either end. The
third and fourth segments are both attached at the left end, but not at the
right.
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Definition 5.3. Given (M, µ,p) and a constant split γ = [b, e] × {a} of
(M, µ) of multiplicity m := µ(γ) as above, and let q be one of the endpoints
(b, a) or (e, a) of γ. Let µ2(q) be the horizontal multiplicity as given by
(24) with respect to (M, µ). We say that γ is attached to (M, µ) at q if
µ2(q) ≥ m.

Examples of different attachments are shown in Figure 11 and considered
in Example 5.7.

Definition 5.4. Define µ̃1, . . . , µ̃n to be the vertical multiplicities µ̃i = µ1(bi, a)
except that µ̃1 = p1+1 if γ is attached to (M, µ) at q1 := (b, a) and µ̃n = p1+1
if γ is attached to (M, µ) at q2 := (e, a). If γ is a 1-mesh-rectangle, the
multiplicities µ̃i and attachment properties are defined in the same way by
swapping the parameter directions.

The following result describes the dimension change during refinements
on a mesh in R2, based on the dimensional formula in (35). Figures 12 and
13 illustrate the different configurations.

Theorem 5.5. Suppose (M, µ,p) is a µ-extended LR-mesh in R2 and p =
(p1, p2) ≥ 0 a given bidegree. Let the mesh-rectangle γ be a constant split of
(M, µ), and let µ̃i be as in Definition 5.4. Then

dimSp(M+ γ, µγ) = dim Sp(M, µ) +
n∑
i=1

µ̃i − p− 1 + ∆h1 −∆h0, (38)

where ∆hi is the change in the dimension of the homology term Hi in (35),
and where p = p1 if γ is a 2-mesh-rectangle and p = p2 if γ is a 1-mesh-
rectangle.

Proof. We assume γ = [b, e] × {a} is a horizontal 2-mesh-rectangle of mul-
tiplicity m := µγ(β) after insertion. The multiplicity before insertion is
µ(β) := m − 1. The case for 1-mesh-rectangles is similar. Let b = b1 <
b2 < . . . < bn = e be the knots such that (bi, a), i = 1, . . . , n are the points
in F0(M + γ) that lie on γ. We look at how the combinatorial part of the
dimension formula changes from (M, µ) to (M + γ, µγ) by considering the
contribution to the dimension changes into two parts:

Part 1. 2-boxes and 2-mesh-rectangles: For given i = 1, . . . , n− 1, we are
looking for changes on 2-boxes on the form [bi, bi+1]×J for a nontrivial interval
J := [a1, a2] containing a, and for the 2-mesh-rectangle β = [bi, bi+1] × {a}.
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If m = 1, β did not exist inM. We then replace the 2-box [bi, bi+1]× [a1, a2]
by the 2-boxes [bi, bi+1]× [a1, a] and [bi, bi+1]× [a, a2], a1 < a < a2, this gives
a combinatorial change in (35) of +(p1 + 1)(p2 + 1). Also, the introduction
of β gives a formula change of −(p1 + 1)(p2 − µγ(β) + 1) = −(p1 + 1)p2.
Altogether the change is (p1 + 1)(p2 + 1)− (p1 + 1)p2 = p1 + 1. And if m > 1,
nothing is changed to the topological structure of M, but we get a change
in the dimension formula for β which is

− [−(p1 + 1)(p2 − µ(β) + 1)] + [−(p1 + 1)(p2 − µγ(β) + 1)]

= (p1 + 1) [(p2 − (m− 1) + 1)− (p2 −m+ 1)] = p1 + 1

just as for m = 1. So for any m, the total change for all i is (n− 1)(p1 + 1).
Part 2. 1-mesh-rectangles and points: For given i = 1, . . . , n, we are

looking for changes on 1-mesh-rectangles on the form {bi}×J for a nontrivial
interval J := [a1, a2] containing a, and for the point β = (bi, a). If m = 1
and (for i = 1 or n), γ is not attached to (M, µ) at β, we replace (like for
case 1) the 1-mesh-rectangle {bi} × [a1, a2] with the mesh-rectangles {bi} ×
[a1, a] and {bi} × [a, a2]. This means going from 1 to 2 contributions of
−(p1 − µ̃i + 1)(p2 + 1). At the same time β comes in with the contribution
(p1 − µ̃i + 1)(p2 −m+ 1). The total change is

(p1 − µ̃i + 1)(p2 −m+ 1)− (p1 − µ̃i + 1)(p2 + 1) = µ̃i − p1 − 1

because m = 1. If m > 1 and (for i = 1 or n), γ is not attached to (M, µ)
at β, the dimension formula changes at β by

−(p1− µ̃i + 1)(p2−µ1(β) + 1) + (p1− µ̃i + 1)(p2− (µγ)1(β) + 1) = µ̃i−p1−1,

just as for m = 1. Finally, if γ is attached to (M, µ) at β, nothing changes
because µ1(β) = (µγ)1(β) ≥ m. But then µ̃i = p1 + 1, so regardless of the
value of m and whether γ is attached to (M, µ) at β or not, the change is
µ̃i − p1 − 1. Summing this up for all i gives a change of

n∑
i=1

µ̃i − n(p1 + 1).

Combining part 1 and 2 the total change is

(n− 1)(p1 + 1) +
n∑
i=1

µ̃i − n(p1 + 1) =
n∑
i=1

µ̃i − p1 − 1,
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giving the change in the dimension formula. The result about the homology
terms follows from [10].

The homology terms in Theorem 5.5 are zero in certain cases.

1. H0 = 0 in (35) as long as Sp(M, µ) is non-trivial (contains other spline
functions than the zero function),

2. H1 = 0 for an ordinary tensor-mesh.

3. ∆h1 ≤ 0 if
∑

i µ̃i ≥ pk + 1. In particular, if H1 = 0 in the dimension
formula for dim Sp(M, µ) then H1 = 0 for dimSp(M + γ, µγ). This
follows since we assumed in Section 3.2 that γ splits at least one B-
spline so that

∑
i µ̃i ≥ pk + 2.

We next consider the special case of LR-meshes with interior mesh-rectangles
of multiplicity one.

Corollary 5.6. Suppose d = 2 and thatM1 is a (p1+1, p2+1) regular tensor-
mesh, i.e., the boundary faces have multiplicity pk + 1, k = 1, 2. Assume
µ(γ) = 1 for all interior mesh-rectangles γ in Mj, j = 1, . . . , q. Then
dimSp(Mj+1) = dimSp(Mj) + 1, j = 1, . . . , q − 1 in the following three
cases

[A] For k = 1, 2 each new k-mesh-rectangle intersects exactly p3−k + 2
interior orthogonal mesh-rectangles and ends in interior T-vertices at
both ends.

[B] An existing mesh-rectangle is extended with one segment that ends in
an interior T-vertex.

[C] The inserted mesh-rectangle starts at the boundary and intersects ex-
actly one interior orthogonal mesh-rectangle, and ends in an interior
T-vertex.

Proof. For these kinds of insertions it follows from the discussion after The-
orem 5.5 that the homology terms are zero. Consider (38). In all three cases
it is easy to see that

∑n
i=1 µ̃i − p − 1 = 1, where p = p1 for a horizontal

segment and p = p2 for a vertical one.

The three cases are illustrated in Figure 12.
The following example addresses the 2-variate case when the refinement

goes hand-in-hand and has a dimension increase by 1.
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Figure 12: To the left a bi-linear µ-extended LR-mesh illustrating the 3 cases
in Corollary 5.6. The multiplicity is 2 along the boundary, and 1 for interior
mesh-rectangles. Mesh-rectangle A has two segments and ends in a T-vertex
at both ends; Mesh-rectangle B extends an interior mesh-rectangle by one
segment and ends in a T-vertex; Mesh-rectangle C starts from the boundary,
and has one segment. Note that extending C to touch the lower boundary
would increase the dimension of the spline space by two, and is thus not
covered in Corollary 5.6.

Figure 13: The illustration shows refinements related to mesh-rectangles of
multiplicity higher than 1, and to the filling of gaps between already existing
mesh-rectangles. To the left the result of the refinement in Figure 12 with
mesh-rectangle D inserted on top of mesh-rectangle C, thus increasing the
multiplicity from 1 to 2. To the right we first insert the mesh-rectangle E
(mesh-rectangle F has not been inserted yet) that ends in a T-vertex with
multiplicity 2. This increases the dimension of the spline space by 2. Then
we fill a gap by mesh-rectangle F, that further increases the dimension of the
spline space by 2.
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Example 5.7. In Theorem 5.5 assume that span(B)B∈B = Sp(M, µ), and
that the homology terms H0 and H1 are zero, and that

∑
i µ̃i = p + 2. In

this case the homology terms remain zero, and we have dimSp(M+γ, µγ) =
dimSp(M, µ) + 1. By Theorem 5.2 (M, µ) goes hand-in-hand with Sp(M+
γ, µγ).

Now consider in more detail the possible attachment relations for γ.

• If γ is attached at no end, we have a mesh-rectangle spanning exactly
the width of the domain of one or more B-splines. The sum of the
multiplicities of the orthogonal mesh-rectangles intersected equals p+2.

• If γ is attached at one end, the other end has to have multiplicity 1,
and the number of vertices on γ has to be 2, i.e., there are no interior
vertices on γ.

• If p ≥ 1 it is not possible that γ is attached at both ends as each
attachment imposes multiplicity of p+ 1, contradicting the assumption∑

i µ̃i = p+ 2.

Recall that n is the number of points defined by the intersection of γ
and all orthogonal mesh-rectangles in M. In the case when n > 2 and∑

i µ̃i − p1 − 1 > 1 we can often, but not always, split the refinement into a
sequence of refinements each giving a dimension increase by one, and then
use the results of Example 5.7.

When n = 2 we cannot split the refinement into a sequence of smaller
refinements and obtain a dimension increase greater than one in the following
cases, see Figure 13 (right).

• Attachement at both ends. If n = 2 and µ̃1 = µ̃2 = p + 1 we get
a dimension increase of

∑
i µ̃i − p− 1 = p+ 1. This is the case in gap

filling.

• Attachement at one end. With n = 2 we have for example µ̃1 = p+1
and µ̃2 > 1, giving a dimension increase

∑
i µ̃i − p− 1 = µ̃2 > 1.

How to determine if the hand-in-hand condition is satisfied in the cases
above is addressed in Section 5.2.

For completeness we also address the case when
∑

i µ̃i − p − 1 ≤ 0 in
Theorem 5.5, i.e., situations where we do not split any LR B-spline.
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Example 5.8. Suppose
∑

i µ̃i − p − 1 ≤ 0, assume in Theorem 5.5 that
span(B)B∈B = Sp(M, µ), and that the homology terms H0 and H1 are zero.
In this case γ cannot be attached at any end since then the first or last µ̃i is
equal to p+ 1, implying that the other end has multiplicity 0, i.e., that γ has
length zero.

• If
∑

i µ̃i − p− 1 < 0, there is a risk that the homology term increases.
Such a refinement will never split any LR B-spline, so it is not relevant
case for LR B-splines.

• If
∑

i µ̃i − p − 1 = 0, we know that the homology term remains zero.
But the spline space does not change since now dimSp(M + γ, µγ) =
dimSp(M, µ) as demonstrated in Theorem 5.5. We do not split any
LR B-spline, but this case can be useful as an intermediate state in
some refinements.

5.2 More Complex Refinements

The study of when two µ-extended meshes go hand-in-hand is simplified by
considering the restriction Bγ of a B-spline B to a mesh-rectangle γ. More
precisely we have the following definition.

Definition 5.9. Let B : Rd → R be a tensor-product B-spline given by

B(x1, . . . , xd) = B[y1, . . . ,yd](x1, . . . , xd) =
d∏
i=1

B[yi](xi), (39)

and γ = J1 × · · · × Jd ⊆ Rd a (k, a)-mesh-rectangle. Define γ̃ = J1 × · · · ×
Jk−1 × Jk+1 × · · · × Jd ⊆ Rd−1.

We define the (d− 1)-variate B-spline Bγ : Rd−1 → R by

Bγ(x) =


d∏
i=0
i 6=k

B[yi](xi) for x ∈ γ̃

0 for x /∈ γ̃

for every x = (x1, . . . , xk−1, xk+1, . . . , xd) ∈ Rd−1.

A lower bound for the increase in dimension when a mesh-rectangle is
inserted can be determined from a collection of Bγ’s. We even have equality
when the two corresponding meshes go hand-in-hand.
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Theorem 5.10. Suppose (M, µ,p) is a µ-extended LR-mesh in Rd with
p ≥ 0 a given degree. Let γ be a constant split (k, a)-mesh-rectangle in Rd of
multiplicity µ(γ), (cf. Definition 2.11) and let B and B′ be the correspond-
ing collection of LR B-splines of degree p on (M, µ,p) and (M + γ, µγ,p),
respectively. Let B′(γ) be the collection of all LR B-splines B ∈ B′ such
that supp(B)o ∩ γ 6= ∅, and such that the knot a occurs with multiplic-
ity µ(γ) in the knot vector yk when B is written on the form (39). If
span(B)B∈B = Sp(M, µ), then

dim span(Bγ)B∈B′(γ) ≤ dimSp(M+ γ, µγ)− dimSp(M, µ),

where Bγ is defined in Definition 5.9. Equality holds if and only if (M +
γ, µγ,p) goes hand-in-hand with (M, µ,p).

Proof. Define m := µ(γ) − 1 and let F : Rd → R be a spline function in
Sp(M+γ, µγ). For sufficiently small ε > 0 the functions F+ = F |Rk−1×(a,a+ε)×Rd−k

and F− = F |Rk−1×(a−ε,a)×Rd−k are polynomial in xk, i.e.,

F+ =

pk∑
i=0

f+
i (xk − a)i

F− =

pk∑
i=0

f−i (xk − a)i

for spline functions f+
i , f

−
i in the variables (x1, . . . , xk−1, xk+1, . . . , xd). The

expressions for F+ and F− can be used to extend them to functions on Rd.
Let γ+ = J1×· · ·×Jk−1×R×Jk+1×· · ·×Jd. We define the jump function J(F )
on Rd to be F+ − F− on γ+ and 0 outside γ+. Because F ∈ Sp(M+ γ, µγ),
it is C(pk−m−1) over γ, therefore we have

J(F ) =

pk∑
i=pk−m

J(F )i(xk − a)i

for some spline functions J(F )i on Rd−1. If we let Sd−1 be the set of all spline
functions in d− 1 variables, we now have a linear map φ : Sp(M+ γ, µγ)→
Sd−1 defined by φ(F ) = J(F )pk−m.

The only difference in the smoothness constraints between Sp(M, µ) and
Sp(M+γ, µγ) is that functions in Sp(M+γ, µγ) are C(pk−m−1) while functions
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in Sp(M, µ) are C(pk−m) over γ. Therefore the kernel of φ is Sp(M, µ) =
span(B)B∈B and we have inclusions

kerφ = Sp(M, µ) = span(B)B∈B ⊆ span(B)B∈B′ ⊆ Sp(M+ γ, µγ) .

For any linear map ψ : V → W between vector spaces, we have dim kerψ +
dimψ(V ) = dimV , therefore

dimSp(M, µ)+dim span(φ(B))B∈B′ = dim span(B)B∈B′ ≤ dimSp(M+γ, µγ).

Therefore the result of the theorem follows if we can show span(J(B)pk−m)B∈B′
= span(Bγ)B∈B′(γ).

For a B-spline function on the form (39), a jump across a k-mesh-rectangle
γ, can be expressed as a jump in the k-th parameter direction, giving

J(B) = J ′(B[yk])
d∏
i=1
i 6=k

B[yi]

on γ+ and 0 outside γ+, where J ′(f) is the jump function of a univariate
spline f over xk in xk = a given as the difference between the polynomial
expressions of f on the lefthand and righthand sides of a. If we write

J ′(B[yk]) =
d∑
i=0

J ′(B[yk])i(xk − a)i

it is well-known that ifM is the multiplicity of a in yk, the numbers J ′(B[yk])i
are zero for i ≤ pk −M and non-zero for i = pk −M + 1 (if M > 0). We
then have J(B)pk−m = J ′(B[yk])pk−mBγ. Suppose B ∈ B′. If supp(B) ∩ γ =
∅, the function Bγ is zero, and if a occurs at most m times in yk, then
J ′(B[yk])pk−m = 0. Therefore J(B)pk−m is non-zero if and only if B ∈ B′(γ).
Therefore span(J(B)pk−m)B∈B′ = span(Bγ)B∈B′(γ), completing the proof.

Theorem 5.10 reduces the problem of establishing when the refinement
goes hand-in-hand to finding the dimension of the d − 1 dimensional B-
spline space dim span(B′(γ)) and see if it is equal to dim Sp(M + γ, µγ) −
dimSp(M, µ). In the Examples following we will address the 2-variate case,
in which B′(γ) spans a univariate spline space restricted to γ. We will for all
examples assume that γ is minimal in the sense that the refinement cannot
be split into a sequence using shorter mesh-rectangles.
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Example 5.11. Attachment at no end. There are two cases:

•
∑

i µ̃i − p − 1 = 1. In this case the dimension increase is just 1, and
the hand-in-hand holds if B′(γ) contains at least one B-spline.

•
∑

i µ̃i − p − 1 > 1. In order to verify the hand-in-hand property we
have to find dim span(Bγ)B∈B′(γ), the dimension of a univariate spline
space, and see that this is the same as

∑
i µ̃i − p− 1.

Example 5.12. Attachment at one end. As the refinement cannot be
split into subrefinements it follows that n = 2, and span((Bγ)B∈B′(γ)) is a
polynomial space for which we have to find the dimension. However, as the
B-splines in question all stop at the end of γ that is not attached, it suffices

to find a subcollection (Bi)
∑

i µ̃i−p−1
i=1 of (Bγ)B∈B′(γ) such that Bi has a knot of

multiplicity i at this end.

Example 5.13. Attachment at both ends. Also in this case we need to
find dim span((Bγ)B∈B′(γ)). By inserting knots in (Bγ)B∈B′(γ) such that the
knot multiplicity at both ends of γ is p+1 we can express (Bγ)B∈B′(γ) in terms
of the Bernstein basis of degree p via the Oslo Algorithm. The rank of the
knot insertion matrix determines dim span(Bγ)B∈B′(γ).

The next examples look at the C2 and C1 bicubic cases when all boundary
mesh-rectangles have multiplicity 4. We assume that the refinements are
minimal.

Example 5.14. In the C2 bicubic case the interior mesh-rectangles have
multiplicity 1. There are six cases, three with a dimension increase by 1,
three with a dimension increase by 4.

• The cases of dimension increase 1 go hand-in-hand are addressed in
Corollary 5.6 cases [A], [B] and [C]:

– Attachment at no end and not touching the boundary at any end.

– Attachment at one end, the other end not touching the boundary.

– Attachment at no end, touching the boundary at one end.

• The cases of dimension increase 4 have µ̃i = 4 at both ends,

– Attachment at no end and touching the boundary at both ends.
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– Attachment at one end, the other end touching the boundary.

– Attachment at both ends.

Theorem 5.10 shows that the dimension increase can be determined by
looking at the univariate B-splines restricted to γ, and check if they
span a univariate spline space of dimension 4 on γ. Since there are
no interior knots this can be done by conversion to the cubic Bern-
stein basis on γ and check the rank of the corresponding knot insertion
matrix.

Example 5.15. In the C1 bicubic case all interior mesh-rectangles have
multiplicity 2. We have six cases, three with a dimension increase by 2, three
with a dimension increase by 4.

• The three cases of dimension increase 2 are

– Attachment at no end and not touching the boundary at any end.
In this case there are three points on γ each with µ̃i = 2.

– Attachment at one end with the other end not touching the bound-
ary. In this case there are two points on γ, the attachment point
has µ̃i = 4, while the other point has µ̃i = 2.

– Attachment at no end and touching the boundary at one end. In
this case there are two points on γ, the boundary point has µ̃i = 4,
while the other point has µ̃i = 2.

According to Theorem 5.5 we have a dimension increase of
∑

i µ̃i−p−
1 = 6− 3− 1 = 2. However, as the B-splines in question all stop at the
end of γ that is not attached or touching the boundary, it suffices to find
two B-splines in (Bγ)B∈B′(γ) such that one has a knot of multiplicity 1
at this end, and the other has multiplicity 2 at this end.

• The three cases of dimension increase 4 are the same as those addressed
in Example 5.14 for the C2 case.

6 Linear Independence

For linear independence of the LR B-splines it is sufficient that the refine-
ments goes hand-in-hand and that the increase in the number of B-splines
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Figure 14: Linear dependence of bi-quadratic LR B-splines. In this LR-mesh
all mesh-rectangles have multiplicity 1.

going from (Mj,µj,p) to (Mj+1,uj+1,p) equals the increase in dimension
of the corresponding spline spaces for all j.

The following example, illustrated in Figure 14, shows that this is not
always the case.

Example 6.1. Suppose p1 = p2 = 2, and all mesh-rectangles have multiplic-
ity 1. In the µ-extended LR-mesh to the left in Figure 14 we insert the vertical
segment 4 × [1, 2]. The two tensor-product B-splines (1, 2, 3, 6) × (1, 2, 4, 5)
and (3, 6, 8, 9) × (1, 2, 3, 4) are refined. We remove these two and get 4 new
B-splines (1, 2, 3, 4)×(1, 2, 4, 5), (2, 3, 4, 6)×(1, 2, 4, 5), (3, 4, 6, 8)×(1, 2, 3, 4)
and (4, 6, 8, 9) × (1, 2, 3, 4). Thus the number of B-splines increases by two,
while the dimension of S2,2(M, µ) only increases by one. So there is one
B–spline too much in B.

Different strategies can be employed to address the issue of a refinement
resulting in too many B-splines and thus producing a collection of B-splines
that is not a basis for Sp(M, µ).

• Discard refinement. We discard the problematic refinement, and choose
an alternative refinement in the vicinity that does not have this prob-
lem. The approach is simple, and seems not to restrict the flexibility
of the refinement much. Testing indicates that the situation of too
many B-splines occurs very seldom. E.g., in the bicubic case typically
in 0.01% of the refinements tested.

• Perform extra refinement. The alternative refinement suggested above
will frequently also resolve the original issue so that once more trying
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to insert the discarded refinement will not produce extra B-splines.
Tests have shown that in some cases a number of refinements has to be
performed before the original linear dependency issues is resolved.

• Eliminate a B-spline. The dependencies of the basis functions in Figure
14 can be expressed

720B[2368; 1246] = 108B[5678; 2346] + 135B[2356; 2456]

+108B[3567; 3456] + 268B[3456; 2345]

+324B[4567; 2345] + 360B[2346; 1245]

+384B[3468; 1234]

(40)

Thus the basis function B[2368; 1246] can be replaced and positive
weights maintained. Testing in the bi-cubic case shows that such posi-
tive substitution can be done in around 80% of the cases. If the elimi-
nation does not allow such positive isolation of the B-spline eliminated,
the result can potentially be that the elimination will produce a basis
where some basis functions have a negative weight when scaled to form
a partition of unity.

7 Partition of unity

The nonnegative partition of unity property of tensor-product B-splines gives
the convex hull property, and is essential for interpreting the B-spline coeffi-
cients as control points. After performing local refinement the LR B-splines
will generally not sum to one. Consequently adjustments of the new collection
of LR B-splines that reinstate the partition of unity property is necessary.
It is also important to preserve nonnegativity. Let B be a collection of LR
B-splines, and assume that the span of these B-splines contains constants.
To turn B into a partition of unity collection we see two alternatives:

• Rational scaling. We make a scaled partition of unity collection BR
of B by

BR =

(
B∑

B′∈B B
′

)
B∈B

. (41)
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• Scaling by weights. We make a weighted partition of unity BS :=
(BS := γBB)B∈B by introducing weights γB such that∑

B∈B

γBB ≡ 1. (42)

In general T-splines employ rational scaling to ensure partition of unity.
We will in the following use scaling by weights since rational basis func-

tions are harder to differentiate. Recall, see (28), that the process of going
from B1 to the final collection Bq of LR B-splines can be described by a se-
quence (B̃k)sk=1. Going from B̃k to B̃k+1 involves picking a B-spline B0 ∈ B̃k
that can be split and use univariate knot insertion as described in (6) to
obtain two new B-splines,

B0 = α1B1 + α2B2. (43)

Then
B̃k+1 = (B̃k \ {B0}) ∪ {B1, B2}.

Note that B1 and/or B2 could already belong to B̃k. The proof of the fol-
lowing lemma is found in Appendix B.

Lemma 7.1. Given k with 1 ≤ k ≤ s−1, suppose
∑

B∈B̃k γk,BB = 1 for some

positive γk,B ∈ R. Then
∑

B∈B̃k+1
γk+1,BB = 1, where for B ∈ B̃k+1 the γk+1,B

are all positive and more precisely γk+1,B = γk,B, if B ∈ B̃k \ {B0, B1, B2},
and

γk+1,Bl
=

{
γk,B0αl, if Bl /∈ B̃k,
γk,Bl

+ γk,B0αl, if Bl ∈ B̃k,
, l = 1, 2, (44)

where B0, B1, B2, α1, α2 are given by (43). If f =
∑

B∈B̃k ck,Bγk,BB for some
ck,B ∈ R then f =

∑
B∈B̃k+1

ck+1,Bγk+1,BB, where ck+1,B = ck,B, if B ∈
B̃k+1 \ {B0, B1, B2} and

ck+1,Bl
=

{
ck,B0 , if Bl /∈ B̃k,
(ck,Bl

γk,Bl
+ ck,B0γk,B0αl) /γk+1,Bl

, if Bl ∈ B̃k,
l = 1, 2. (45)

The stability of univariate B-splines is described by condition numbers.
In the univariate case a constant K can be found such that 1

K
‖c‖∞ ≤

‖
∑

j cjBj‖∞ ≤ ‖c‖∞. Moreover, K only depends on the degree of the B-
splines. Since univariate B-splines form a nonnegative partition of unity the
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upper bound follows trivially. We now show that the same upper bound
holds for the scaled LR B-splines. Finding a lower bound for LR B-splines is
an open question.

Theorem 7.2. For the final collection B = Bq of LR B-splines (cf. Sec-
tion 3.2), there exist positive constants γB ∈ R giving a nonnegative partition
of unity ∑

B∈B

NB = 1 where NB := γBB.

If f =
∑

B∈B cBNB : [a, b] → R for some cB ∈ R we have the lower and
upper bound

min
B∈B

cB ≤ f(x) ≤ max
B∈B

cB, x ∈ [a, b].

In particular,
‖f‖∞ ≤ ‖(cB)B∈B‖∞.

If cB ∈ Rs for all B ∈ B and some s ≥ 2 then the convex hull property holds,
i.e., f lies in the convex hull of (cB)B∈B.

Proof. This follows from Lemma 7.1 by noting that γB = γs,B and cB =
cs,B.

8 Conclusions and remaining challenges

This paper is a first step in establishing a theoretical foundation for the
theory of LR-splines and a practical framework for the implementation of
LR B-splines. The emphasis has been on generality. We have introduced
the hand-in-hand strategy to ensure that the LR B-splines span the spline
space defined by the LR-mesh. For the 2-variate case we have discussed how
this can be used for ensuring linear independence of the LR B-splines. In
addition to linear independence in higher dimensions and conditioning of the
basis, a number of open questions still remains to be solved:

• The hand-in-hand strategy is based on the homology terms being zero.
This is well understood in the 2-variate case, see [9, 10]. In general
understanding the homology terms is more complex, especially since in
higher dimensions elements can touch each other in many ways that
possibly might give nonzero homology terms.
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• We have in the 2-variate case defined 3 attachment configurations that
help understand and structure the use of the hand-in-hand concept.
The number of attachment configurations is significantly higher in the
3-variate case, as mesh rectangles can touch and intersect in many
ways.

• In univariate spline theory Marsdens identity [11] gives closed expres-
sions for the reproduction of polynomials. Coefficients for writing poly-
nomials in terms of LR B-splines can be updated during the refinement
process, but it would be nice to have closed expressions.

• In univariate spline theory the Schoenberg-Whitney theorem states ex-
actly where to select interpolation points in order to guaranty a unique
interpolant. Uniqueness of interpolation for LR B-splines has not been
touched in this paper.

• We have not addressed where to refine, consequently there are many
open questions related to the numerical stability of different refinement
strategies.

A LR B-splines are well defined

In this appendix we prove Theorem 3.4. It is based on two lemmas.
The first step is to look at sequences of univariate splines. For this we

need a definition.

Definition A.1. Given two knot vectors t = (t1, . . . , tm) and τ = (τ1, . . . , τn).
We say that t includes τ if t1 ≤ τ1 and tm ≥ τn, and in the case t1 = τ1,
the multiplicity (number of occurrences) of t1 in t is at least the same as the
multiplicity of τ1 in τ , and in the case tm = τn, the multiplicity of tm in t is
at least the same as the multiplicity of τn in τ .

Lemma A.2. Given a degree p, sequences Bt1 , . . . , Btn of univariate p-degree
B-splines, τ2, . . . , τn of real numbers and s2, . . . , sn ∈ {1, 2} such that for
every i = 2, . . . , n, τi ∈ (ti−1,1, ti−1,p+2), and ti = R(ti−1, τi, si). Also given
ν ∈ (t1,1, t1,p+2). Then there is a sequence Bt′1

, . . . , Bt′n of univariate p-degree
B-splines and a σ ∈ {1, 2} such that

• t′1 = R(t1, ν, σ).
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• ti includes t′i for i = 1, . . . , n.

• For every i = 2, . . . , n, either t′i = t′i−1 or t′i = R(t′i−1, τi, s
′
i) for some

s′i = 1 or 2.

• For the smallest i such that τi = ν (if any), we have t′i = t′i−1.

Proof. We use induction on n. For n = 1, we can chose σ to be either 1
or 2, both will work. Next we assume n > 1 and that the lemma holds for
B-spline sequences of length n − 1. We can also restrict to the case s2 = 2
as s2 = 1 is identical by symmetry. We have four cases:

Case 1, both t1,2 < ν, t1,2 < τ2 and ν 6= τ2: We derive t2 from t1 by
removing t1,1 and inserting τ2. From the assumptions we have t2,1 = t1,2 <
ν < t1,p+2 = t2,p+2. Therefore we can use the lemma on the sequences
Bt2 , . . . , Btn , τ3, . . . , τn and s3, . . . , sn, which by the induction hypothesis
gives us the desired sequence Bt′2

, . . . , Bt′n where t′2 = R(t2, ν, σ
′) for some

σ′ ∈ {1, 2}. We put σ = 2 and s′2 = σ′. We derive t′2 from t2 by removing
(t1,p+2, t1,2)σ′ (i.e. t1,p+2 if σ′ = 1 and t1,2 if σ′ = 2) and inserting ν, and so
t′2 is derived from t1 by removing t1,1 and (t1,p+2, t1,2)σ′ and inserting ν and
τ2. If we define t′1 = R(t1, ν, σ), we derive t′1 from t1 by removing t1,1 and
inserting ν. But then t′2 = R(t′1, τ2, s

′
2) and we are done.

Case 2, ν = τ2. Put σ = 2, and t′1 := R(t1, ν, σ) = R(t1, τ2, s
′
2) = t2. We

can then put t′i = ti for i = 2, . . . , n. Because t′2 = t′1, we are done.
Case 3, both ν ≤ t1,2 and ν < τ2. Put σ = s′2 = 2, t′1 := R(t1, ν, σ)

and t′2 := R(t′1, ν, s
′
2). Then t′2 is derived from t1 first by removing t1,1 and

inserting ν to get t′1 and then by removing ν and inserting τ2. This means
that t′2 = R(t1, τ2, s

′
2) = t2, and so again we complete the process by putting

t′i = ti for i = 3, . . . , n. There is no conflict with the last condition in the
lemma because ν 6= τi for all i since ν ≤ ti,1.

Case 4, both τ2 < ν and τ2 ≤ t1,2. This covers all situations that are not
under case 1, 2 or 3. We have t2,1 = τ2 < ν < t1,p+2 = t2,p+2, so just as
for case 1, we can use the induction to get the sequence Bt′2

, . . . , Bt′n where
t′2 = R(t2, ν, σ

′) for some σ′ ∈ {1, 2}. We let σ = σ′ and put t′1 := R(t1, ν, σ).
If σ′ = 1 then t′2 is derived from t1 by removing t1,1 and t1,p+2 and inserting
τ2 and ν, while t′1 is derived from t1 by removing t1,p+2 and inserting ν. With
s′2 = 2 we get t′2 = R(t′1, τ2, s

′
2). On the other hand, if σ′ = 2, then t′2 is

derived from t2 by removing τ2 and inserting ν, then t′2 = t′1. In either case
we have extended to the desired sequence Bt′1

, . . . , Bt′n , and we are done
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Figure 15: An LR-mesh and corresponding bilinear LR-graph .

Before the second lemma, we notice that the process of constructing the
LR B-splines can be presented in a graph. Given an d-dimensional meshM,
and p = (p1, . . . , pd), and recall the notation (4) for the knot specifications
corresponding to knot insertion. We define a directed graph G(M,p) where
the nodes are all the d-variate B-splines B = BJ of fixed degree p with
support in M, and where there is an edge from BJ to BJ ′ whenever J ′ =
Rk(J ,m, s) for some k,m, s (clearly, if such an edge exists for s = 1 then
there is also an edge for the same k and m when s = 2, and vice versa). We
then say that m splits B (or J) in the kth direction. The sinks (nodes with
no outgoing edge) are the B-splines with minimal support inM. An example
of a graph G(M,p) for a two dimensional mesh M and degrees p = (1, 1)
is shown in Figure 15. There are 37 bilinear tensor-product B-splines that
can be defined on the mesh shown in this figure. In this graph the nodes
are ordered from top to bottom according to the number of missing indices
in the knot specifications. There are four missing indices in the top row and
no missing indices in the bottom row. The knot specifications of the 7 final
minimal support B-splines are shown in gray, while the dotted boxed give
knot specifications that are not given initially or not the result of a knot
insertion.

Lemma A.3. Given a d-dimensional meshM, a multidegree p = (p1, . . . , pd),
and a path from a node B to a sink node B′ on G(M,p). Also suppose ν
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splits B in the kth direction for some ν and k. Then we can pick σ ∈ {1, 2},
such that there exists a path from BRk(T ,ν,σ) to B′ on G(M,p).

Proof. The path from B to B′ is given as

B = BT 1 → . . .→ BTN
= B′ (46)

where T i = (ti,1, . . . , ti,d) = Rki(T i−1, τi, si) for i = 2, . . . , N . Set a1 = 1 and
let a2 < . . . < an be all the a ≥ 2 such that ka = k. Then tai,k = tai+1,k =
. . . = tai+1−1,k (or up to tN,k for i = n), while tai,k = R(tai−1,k, τai , sai) for i =
2, . . . , n. We can now use Lemma A.2 on the sequences

(
Bta1,k

, . . . , Btan,k

)
,(

τa2 , . . . , τan
)

and
(
sa2 , . . . , san

)
, and the number ν, giving a new sequence

Bt′1
, . . . , Bt′n of univariate pk-degree splines.
We lift this to a sequence BT ′1

, . . . , BT ′N
where

T ′i =
(
T i,1, . . . ,T i,k−1, t

′
l,T i,k+1, . . . ,T i,d

)
(47)

where l is the biggest l such that al ≤ i. We want to show that this sequence
is the path we are looking for.

When ki 6= k, we have T ′i = Rki(T
′
i−1, τi, si). When ki = k then i = ai′

for some i′. Then either t′i′ = t′i′−1 or t′i′ = R(t′i′−1, τai′ , s
′
i), giving T ′i =

T ′i−1 or T ′i = Rk(T
′
i−1, τai′ , s

′
i). Therefore there is a path from

(
BT ′1

)
to(

BT ′N

)
on G(M,p). From Lemma A.2, there is a σ = 1 or 2 such that t′1 =

R(t1,k, ν, σ), then T ′1 = Rk(T , ν, σ). The multivariate knot specifications T ′N
and TN , are equal on the other parameter directions than the kth, while TN,k
includes T ′N,k. If a knot has higher multiplicity in T ′N,k than in TN,k, this
knot would split TN in the kth direction, contradicting the fact that B′ is a
sink. Therefore T ′N = TN , and so BT ′N

= B′ completing the proof.

For a collection C of nodes on a directed graph, we let S(C) be the set
of all sink nodes N on the graph such that there is a path from a node in C
to N .

Proof of Theorem 3.4. LetM be the final mesh after all insertions, and p be
the multi-degree of the B-splines used. Let the sequence B1, . . . ,Bn be the
collections of tensor-product B-splines at each step in the refinement process.
Hence, B1 is the set of classical minimal support tensor-product B-splines
on the starting tensor mesh, Bn is a set of minimal support tensor-product
meshes on M, and for every step i = 2, . . . , n,

Bi =
(
Bi−1 \ {BJi

}
)
∪ {BRki

(Ji,mi,1), BRki
(Ji,mi,2)} (48)
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for some J i, ki and mi such that mi splits J i in the kith direction. To prove
the theorem, we need to show that Bn only depends on B1 and the meshM,
and not the intermediate sets Bi for i = 2, . . . , n− 1.

The Bi can be regarded as sets of nodes on G(M,p). In that context
we can show that S(Bi−1) = S(Bi) for i = 2, . . . , n because clearly S(Bi) ⊂
S(Bi−1), while inclusion the other way follows from Lemma A.3. This gives
S(B1) = S(Bn) = Bn because Bn only has sink nodes.

B LR B-splines Form a Nonnegative Parti-

tion of Unity

Proof of Lemma 7.1. There are 4 cases.

1. B1, B2 /∈ B̃k. Since B̃k+1 =
(
B̃k \ {B0}

)
∪ {B1, B2} we find∑

B∈B̃k+1

γk+1,BB =
∑

B∈B̃k\{B0}

γk,BB + γk,B0α1B1 + γk,B0α2B2. (49)

Using (43) this reduces to
∑

B∈B̃k γk,BB = 1.

2. B1 /∈ B̃k, B2 ∈ B̃k. In this case∑
B∈B̃k+1

γk+1,BB =
∑

B∈B̃k\{B0,B1}

γk,BB + γk,B0α1B1 + (γk,B2 + γk,B0α2)B2.

Again using (43) this reduces to
∑

B∈B̃k γk,BB = 1.

3. B1 ∈ B̃k, B2 /∈ B̃k. This is similar to the previous case.

4. B1, B2 ∈ B̃k. Now B̃k+1 = B̃k \ {B0} and∑
B∈B̃k+1

γk+1,BB =
∑

B∈B̃k\{B0,B1,B2}

γk,BB + (γk,B1 + γk,B0α1)B1

+ (γk,B2 + γk,B0α2)B2 =
∑
B∈B̃k

γk,BB = 1.

This proves (44). Clearly (45) follows for B ∈ B̃k+1 \ {B0, B1, B2}. For
Bl /∈ B̃k we have ck+1,Bl

= ck,B0 , while for Bl ∈ B̃k we get ck+1,Bl
if we add a

contribution to ck,Bl
, and rescale.

It remains to prove that γk+1,B is positive. There are three cases:
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• γk+1,B = γk,B, if K ∈ B̃k \ {B0, B1, B2}. In this case the weight is left
unchanged, so the new weight is positive.

• γk+1,B = γk,B0αl, if B = Bl /∈ B̃k, l = 1, 2. As it is assumed that the B-
spline corresponding to B0 does not have minimal support in the mesh
corresponding to B̃k+1, the knot value is inserted between the first and
last knot value of B0. From (8) is follows that αl > 0, and that γk+1,B

is positive as it is the product of two positive numbers.

• γk+1,B = γk,B + γk,B0αl, if B = Bl ∈ B̃k, l = 1, 2. In this case we add
γk,B0αl, that is proved positive above, to the old weight that is positive,
ensuring that γk+1,B is positive.
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