# Linear Models for Optimization of Infrastructure for CO<sub>2</sub> Capture and Storage

Bjorn H. Bakken SINTEF Energy Research, Norway

**Ingrid von Streng Velken** Boston Consulting Group, Norway

> bjorn.h.bakken@sintef.no www.energy.sintef.no www.sintef.no/etransport



1

## **Background and motivation**

#### The 'eTransport' model

- Formal optimization model with several types of energy carriers, sources, transmission, conversion and demand
  - Expansion planning optimize infrastructure investments subject to multiple fuels, emissions and energy products
  - Full geographic representation of cables, lines, pipes
  - Identify mutual influence and dependency between alternative energy systems
  - Windows graphical user interface

How will profitability of gas pipelines and power plants change if infrastructure for CCS is included in the investment analysis?

- Challenge #1: Include mass flow [tonne/h] in the network structure, transforming eTransport into a multi-commodity optimization model
- Challenge #2: CCS components need energy supplies to operate in addition to the input and output mass flows of CO<sub>2</sub>



### **The eTransport model**

- Combined optimization of operation and investments in multiple energy carrier systems
  - From hourly operation to investment horizon of several decades
  - Energy flow (MWh/h)
  - Now: Mass flow (tonne/h)

#### Physical infrastructure and geographic distance included

- Lines/cables for electricity, pipes for gas, district heating,  $CO_2$  etc,
- Road/rail for biomass, waste etc,
- Ship for LNG, LPG, CO<sub>2</sub> etc

#### Full graphical user interface in Windows

- "Drag and drop" model building
- User dialogs
- Graphical display of results

Modular design enables easy replacement and addition of technologies





#### Flexible load segments with hourly time-steps



5

## **Operation and expansion planning**





### Relevant technology modules in the CO<sub>2</sub> Value Chain



- Any number and combination of modules is possible



#### Power plant with exhaust outlet



- Base load CCGT power station
- The fuel is converted to electricity and heat (optional)
- Exhaust gas with a certain CO<sub>2</sub>-concentration is produced
- The optimal amount of el. and heat is produced according to demand and market price



## **Generic CO<sub>2</sub> (or exhaust) source**



- Pure CO<sub>2</sub> supplied from outside the system boundary at a given price
  - The price can be negative if someone is willing to pay for disposal of CO<sub>2</sub>
- Can also represent an exhaust gas from industry with a certain concentration of  $CO_2$ . The supply is then connected to a **capture plant** where the  $CO_2$  is separated from the exhaust gases



## **CO<sub>2</sub> capture plant**



- Post combustion module independent of power plant and source(s)
- Absorber: MEA. Requires mechanical energy (el/gas). Size and cost depend on the total amount of flue gas and the CO<sub>2</sub> concentration
- Stripper: Regeneration of MEA by increasing the temperature. Low quality heat can be used; steam 150°C
- Chemicals are required to reduce water, SOx, NOx and other pollutants than might influence the capture process
- Producing a highly concentrated CO<sub>2</sub>stream (>99%)



# CO<sub>2</sub> pipeline



- Module includes both compressor, pump and pipeline
- The user specifies required inlet pressure, outlet pressure, diameter and length
- Increasing the pressure to ~80 bar (liquid CO<sub>2</sub>) using compressors
- Further compression is done by pumps
- Energy supplied can be electricity or gas, the efficiency is adjusted according to the energy carrier
- Cannot be used as intermediate storage





## **CO<sub>2</sub> liquefaction plant**



- Large scale transport of CO<sub>2</sub> by ships favours operating conditions close to CO<sub>2</sub>'s triple point where the density is fairly high, approx. 70 bar
- The liquefaction is done by compression in several steps followed by expansion and cooling
- Energy supplied can be electricity or gas, the efficiency is adjusted according to the energy carrier



# **CO<sub>2</sub> ship transport**



- Similar to LPG transport
- Liquid CO<sub>2</sub>

 $T = -50 \ ^{o}C$ 

- Currently, a simplified approach using continuous transport module with average flows of CO<sub>2</sub> and energy
- Required energy is calculated using the transportation length, speed and the hours needed for loading etc
- Energy supplied can be oil, gas or electricity
- If investment costs are very uncertain, the user can lease the ship for an hourly/daily rate



# **CO<sub>2</sub> intermediate storage**



- Intermediate storage capacity may be needed at several stages in the transport chain
- In particular, ship transportation as a discrete process requires storage
- 1,5 \*capacity of ship
- Energy supplied can be electricity or gas; the efficiency is adjusted according to the energy carrier

# **CO<sub>2</sub> injection pump**



- Pump for injection of CO<sub>2</sub> into oil wells or other underground storage
- The energy requirement is a function of the well head pressure
- Can be used after transportation by ships or pipelines
- The energy requirement is higher after ship transport than after pipelines
- Investment cost of offshore modifications can be included



## CO<sub>2</sub> demand (given quantity) and market (given price)





- If there is a given demand of CO<sub>2</sub> this is represented by a CO<sub>2</sub> load module.
- The load requires a certain quantity of CO<sub>2</sub> [tonne/h] - e.g. an oil field that needs CO<sub>2</sub> for Enhanced Oil Recovery
- Penalty cost for non-delivery
- A CO<sub>2</sub> market can be industry or an oil field willing to pay for CO<sub>2</sub>-delivery
- An aquifer for storage of CO<sub>2</sub> can be modeled as a market with a negative price to cover the injection costs
- No obligation to deliver





#### Regional case with CO<sub>2</sub> capture, EOR and offshore electrification



#### **Case objectives**

- Compare gas fired power plants with and without CCS
- Taxes and emission penalties
- Market price of CO<sub>2</sub>
  delivered to platform
- Ship transport versus pipelines
- Optimal pressure in pipelines
- NB: Highly fictive case using best available data (2006)



# Case parameters

|                                                          | Investment<br>[mUSD] | Operation<br>[mUSD/year] | Lifetime<br>[years] |
|----------------------------------------------------------|----------------------|--------------------------|---------------------|
| Power plant 860 MW                                       | 409                  | 62                       | 25                  |
| Capture plant                                            | 240                  | 37                       | 25                  |
| CO2 pipeline                                             |                      |                          |                     |
| to Draugen (135 km)<br>- Low pressure<br>- High pressure | 162<br>180           | 3.2<br>3.6               | 30<br>30            |
| to Heidrun (250 km)<br>- Low pressure<br>- High pressure | 233<br>261           | 4.6<br>5.2               | 30<br>30            |
| Ship (15 000m <sup>3</sup> )                             | 46                   | 2.3                      | 30                  |
| Liquefaction                                             | 76                   | 3.8                      | 30                  |
| Storage (24 000 m <sup>3</sup> )                         | 60                   | 1.2                      | 30                  |
| Injection-pumps +<br>equipment offshore                  |                      |                          |                     |
| - gas turbines                                           | -                    | 20                       | -                   |
| - after pipelines                                        | 8                    | 0.2                      | 30                  |
| - after ship transport                                   | 33                   | 0.6                      | 30                  |
| Electricity cable                                        |                      |                          |                     |
| - to Draugen                                             | 46                   | 0.7                      | 30                  |
| - Draugen-Heidrun                                        | 34                   | 0.5                      | 30                  |



. . . . .





## **Initial results and sensitivities**

- Power plant with CCS not competitive with conventional power plant with initial assumptions
- Overall CO<sub>2</sub> tax has to exceed 69 USD/tonne CO<sub>2</sub> to make investments in CCS competitive with a conventional power plant (today 15.4 USD/tonne CO<sub>2</sub>)
- The price of pressurized CO<sub>2</sub> delivered to Draugen must exceed 90 USD/tonne to make CCS competitive with conventional power plant
- Average electricity price below 52 USD/MWh makes offshore electrification competitive
- Transportation: High pressure pipeline is best, closely followed by low pressure pipe including gas fuelled injection pump and finally ship transport



#### More complicated case

#### Additional assumptions

- EOR possible both at Draugen and Heidrun, but in different time windows
- Demand for CO<sub>2</sub> for EOR at Draugen lasts only from 2010 to 2020, replaced by a demand at Heidrun the same year
- Oil production at Draugen is expected to end in 2025, leading to zero energy demand at Draugen after 2025
- EOR is expected to prolong the production at Heidrun to 2030

#### Main results

- Due to the reduced lifetime of Draugen field, investments in electrification are not competitive. The electricity is sold to the Nordic market instead
- The best solutions are to build CO<sub>2</sub> pipelines to Draugen in 2010 and to Heidrun in 2020
- Low pressure pipelines are chosen before high pressure pipelines; injection pumps get energy from offshore gas turbines
- Intermediate solution with no CO<sub>2</sub> pipeline to Heidrun
- Less competitive solution with one CO<sub>2</sub> ship operating first to Draugen, then to Heidrun



# **Summary**

- Energy planning model 'eTransport' optimizes infrastructure investments subject to multiple fuels and energy products
- To be able to include infrastructure for CCS in the investment analysis, mass flow [tonne/h] is introduced in the network structure, and each component receives external energy supply to operate
- Relevant technology modules in the CCS value chain implemented in a mathematical framework consistent with models for gas, electricity and heat
- The purpose of the framework is comparison of different design options not a detailed system design
- Tested on fictive case studies with best available data
- Further work and better data needed to test the models and include more technologies



# Linear Models for Optimization of Infrastructure for CO<sub>2</sub> Capture and Storage

- IEEE Trans. on Energy Conversion, Vol. 23, No.3, Sept. 2008 -

Bjorn H. Bakken SINTEF Energy Research, Norway

#### Ingrid von Streng Velken

Boston Consulting Group, Norway

bjorn.h.bakken@sintef.no www.energy.sintef.no www.sintef.no/etransport

