A Decision Support System for Coordinating Vessel Routing, Inventories and Trade in the LNG Supply Chain

Marte Fodstad, Kristin Tolstad Uggen, Frode Rømo, Arnt-Gunnar Lium

Trondheim October 2009
The project

- Goal: Develop a decision support tool for tactical planning for the LNG value chain
- How: Close cooperation
 - Industrial partners knows the business needs and possibilities
 - SINTEF knows the methodology
- Main result: The software “LNGScheduler”
The LNG Business - geography

- Main regional markets
 - North America
 - Europe
 - Asia
- Accounts for 28% of the natural gas trade between countries
- Heading against natural gas as a global commodity

Source: bp.com
The LNG Business - growth

- Fast growing business
 - Around 8% annual growth expected
- 224 LNG tankers operating in March 2007, 145 new tankers ordered
- Increasing use of short term contracts (spot)

Three LNG Growth Scenarios:

Source: Jensen Associates
Tactical value chain planning

- Main decisions: Production rate, regasification rate, routing and scheduling of vessels, loading/unloading volume, spot vs contract sales
- Traditionally
 - Manual planning in spread sheets and the like
 - Split planning in sub tasks
 - Terminal management, fleet management, contract management
 - Regional planning

Source: Suez Energy International, Michalek 2006
Consequences for tactical planning

• Increasing number of vessels and terminals
 – => combinatorics make problem intractable for manual planning

• Increasing flexibility and dynamics in the value chain
 – => making rules of thumb for planning harder
 – => the risk of sub optimization because of split planning increases
 – => increased need for frequent replanning
Methodology

• Mathematical programming / Operations research / Optimization
• Makes the analytical core of a optimization based decision support software

Properties of an optimization model

• Gives solutions (plans) based on the problem description
 – Not an evaluation of suggested solutions or policies
 – Treats the whole picture simultaneously
The model

• Extended inventory routing problem
 – Routing of vessels
 – Inventory management
 – Extension: contract management and NG markets

• Maximize profit
 – LNG/NG purchase and sales
 – Operation costs
 • Fuel costs, port costs, channel costs, charter cost

• Contains linear and discrete elements => mixed integer linear problem (MILP)
The LNG Value Chain – as we model it
Contract structures

• Given, but time varying price
• Upper and lower limit on purchase and sales within day or period
• Destination clauses
 – Limited possibility to deliver gas outside the contracted destinations
• Destination dependent pricing
 – Net back pricing
 – Profit sharing
• Limits on number of visits and frequency of visits in a port
• Etc…
Computational challenges

• Vessel routing is a classical optimization problem known to be computationally hard
• Our model extends the routing with terminals, contracts and markets

• We try different solution strategies using commercial optimization software and tailor-made solvers

• State-of-the art algorithmic work:
 – Solution times very case dependent
 – 0.5-1 year horizon cases solved to near optimal solutions within 10 hours, first solution typically within an hour
 – More research needed
Some results

Normal Plot of the Standardized Effects
(response is ObjVal, Alpha = 0.05)

<table>
<thead>
<tr>
<th>Effect Type</th>
<th>Not Significant</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Wait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Spot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standardized Effect
Percent

NTNU
Including spot markets

- Example: geographical swap

Production port

Consumption port 1
- Obligation: 130,000 m³
- Contract price: 70 $/m³
- Spot price: 72 $/m³

Consumption port 2
- Spot price: 85 $/m³

Profit: 9.1 mill $
Profit: 10.79 mill $
Increase: 1.69 mill $
Partial loading/unloading

![Graph showing inventory over 30 days with peaks at days 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, and 31.]
Partial loading/unloading

Possible loading days

- Falling prices
- Spot opportunity
- Transportation capacity window
Areas of use

- Develop yearly main plan
- Terminal meetings with negotiations for slots
- Respond on spot opportunities
- Fleet evaluation

- The tool is currently being tested on real planning situations by our industrial partners
Summary

• Development in the LNG/NG business gives new possibilities but makes planning more challenging
• An extended inventory routing problem seems like a good way of modeling the LNG value chain
• Business partners are doing initial tests in real decision processes
• Small real life cases can be solved with existing algorithms, but more research is needed to treat larger problems
The end…

Thank you