## Parallel Solver for Vehicle Routing Problem

A status/idea report

2010

### Parallel Solver - Ambitions

Why parallelize?

- Faster computation times
- Better solutions
- More robust solutions

Where parallelize?

- Algorithmic level, metaheuristics
- Iteration level, neighborhood evaluation (generation)
- Solution level
- ...?

#### Parallel Solver - Ambitions cont'd

Platforms:

- Use of GPU: Large number of computational units, ideally single instruction multiple data
- Multicore, thread-based parallelism: Relatively few computational units, high level of independence, shared memory or communication
- Multiprocessor similar to multicore
- ...?

| Ambitions | Approach | So far |
|-----------|----------|--------|
| 00        | • 00     | 00     |
|           |          |        |

#### Model

Used model based on paper "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-based Metaheuristics" by Stefan Irnich

• Solution represented as a giant route or giant tour



- At each node *i*: interval [*a<sub>i</sub>*, *b<sub>i</sub>*] given, in which resource must lie
- For each allowed path  $i \rightarrow j$  a resource extension function (REF)  $f_{i,j}$  given
- Resource feasible path: Can find  $T_i$  such that for all nodes  $f_{i,j}(T_i) \leq T_j$
- For now: Only classical REFs:  $f_{i,j}(T) = \max(a_j, T + t_{i,j})$

#### Segment - Hierarchy

Why classical REF? Simple, can build segment hierarchy



Aggregation: [3-6] contains:  $3 \rightarrow 5$ ,  $3 \rightarrow 6$  and  $4 \rightarrow 6$  and maybe inverse [0-9] contains:  $0 \rightarrow 6$ ,  $0 \rightarrow 9$  and  $3 \rightarrow 9$  and maybe inverse

- Why segment hierarchy? Gives constant time feasibility check Example: Exchange two nodes, e.g. 5 and 20: path up to first:  $0 \rightarrow 4$ :  $0 \rightarrow 3$ ,  $3 \rightarrow 4$ reconnect first:  $4 \rightarrow 20$ :  $20 \rightarrow 6$ : path to second:  $6 \rightarrow 19$ :  $6 \rightarrow 9$ ,  $9 \rightarrow 18$ ,  $18 \rightarrow 19$ reconnect second:  $19 \rightarrow 5$ :  $5 \rightarrow 21$ : path to end:  $21 \rightarrow 32$ :  $21 \rightarrow 27$ ,  $27 \rightarrow 32$
- Maximum number of segments in one path: 2I-1 (I: depth of hierarchy)
- How to do feasablity check with segments, see paper(s) by Irnich
- Effort to create hierarchy:  $O(n^{2^{l}/(2^{l}-1)})$

So far

| Ambitions | Approach | So far |
|-----------|----------|--------|
| 00        | 000      | ●O     |
|           | 0        |        |

#### So far

Working currently on a CPU implementation to have reference CPU version

Next goal: Implement neighbourhood evaluation on GPU Probable challanges:

- Memory management
- Organize evaluation and hierarchy traversal in such a way that each thread in a warp follows same execution pattern

| Ambitions | Approach | So far |
|-----------|----------|--------|
| 00        | 000      | ○●     |
|           |          |        |

# Thank you for your attention!