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The CageReporter project adapts the use of autonomous and tetherless underwater vehicles 
as a carrier of sensor systems for data acquisition, where the data are transferred from sea-
based fish cages to a centralized land base (Figure 1). The vehicle will use active motion con-
trol and acquire data from the cage environment while exploring the fish cages. The main 
project objective is to develop technology for autonomous functionality for adaptive mission 
planning to achieve high quality data acquisition from the cage space. One of the most im-
portant capabilities within this context is to operate in a dynamically changing environment in 
interaction with the biomass (bio-interactive) and the aquaculture structures. The project 
addresses many challenges within the aquaculture industry related to poor accuracy and 
representative sampling of important variables from the whole volume of the cage. A suc-
cessful project outcome will lead to new technology for collection of high-resolution data that 
could be utilized for assessment of the fish farm state, grouped within three main areas: A) 
fish, B) aquaculture structures and C) production environment. Examples of areas of applica-
tions are detection of abnormal fish behaviour, net inspection and mapping of water quality. 
CageReporter will provide a solution for continuous 24/7 inspection of the current situation 
and will be the mobile eyes of the fish farmer in the cage environment. The project idea is 
based on using low-cost technology for underwater communication, vehicle positioning, and 
camera systems for 3D vision. 

Development of technology for autonomous, bio-

interactive and high-quality data acquisition from 

aquaculture net cages 

Figure 1:  Resident (24/7), autonomous, non-tethered vehicle (AUV) for high quality data acquisition  
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The project will address many challenges within the aquaculture industry related to poor 
accuracy and representative sampling of important variables to describe both details and the 
whole picture. CageReporter will provide continuous and close follow up of the current situa-
tion and be the ''eye'' of the fish farmer inside the cage (Figure 1). The project idea is based 
on using low-cost technology for underwater communication, vehicle positioning and camera 
systems for 3D vision. 

MAIN GOAL 

The project will develop autonomous resident technology for high quality data capture de-
scribing the conditions in the cage volume associated with the fish, infrastructure and pro-
duction environment.  

Sub-Goal 1: Develop application-adapted underwater communications technology, 
position reference and 3D vision systems that reduce the cost by a factor of 5-10 com-
pared to conventional technology. 

Sub-Goal 2: The underwater vehicle will have autonomous functions that enable 
adaptive operation planning and bio-interactive data capture, with a minimum of 
operator interaction. 

Sub-Goal 3: High quality data and metadata must be obtainable from the entire cage 
volume. 

Sub-Goal 4: The integrated system consisting of underwater vehicle with autonomous 
functionality, the underwater positioning system and the 3D vision system will be 
validated in full-scale trials for the following case studies: A) Fish Conditions, B) Cage 
Inspection, and C) Production Environment. 

RESEARCH AREAS 

• H1: Underwater communication and position reference system 

• H2: Data acquisition and real-time analysis of high-quality vision data 

• H3: Autonomous systems 

• H4: Underwater docking system 

The CageReporter project will perform breakthrough work regarding which sensors, commu-
nication technology and autonomous systems should be combined to perform data capture 
in interaction with the fish, infrastructure and production environment. 

INNOVATION AND VALUE CREATION 

Within the aquaculture industry, there is currently only a minimum of technological solutions 
that can assist in bringing the fish through the production cycle into the sea, and within sever-
al areas the production process is suboptimal. Key variables such as feed mode and feed play, 
the number of fish, average weight and growth, sleep state, state of health and the condition 
of the cage are either inadequate control or the accuracy and detail level is inadequate. Inno-
vation will help address three of the industry's main challenges: escapes, salmon lice and 
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mortality, which today are factors that hinder further growth in the industry. Innovation will 
also provide the authorities with a new tool for monitoring the facilities in accordance with 
current rules and regulations. Documentation and standardization of operating conditions are 
becoming increasingly important. The Norwegian Food Safety Authority has called for better 
documentation from breeders, including better technology and methods for counting lice. 
Innovation addresses these challenges, thus enabling sustainable growth for future aquacul-
ture. 

There are currently no similar commercial products that the project page outlines, and the 
partners in the project therefore have the opportunity to be first in the market with new and 
ground-breaking technology and associated services. 

CONCLUSION 

Underwater robots are today used in a variety of different applications in different industrial 
segments. In most present applications, the vehicle is beneath the wave zone, where environ-
mental impacts are less challenging, and relates to fixed features. However, the external fea-
tures a robotic system faces in an aquaculture situation differ from those encountered in 
conventional operations. This project targets a novel research area by investigating the chal-
lenges of using underwater robots in "application-realistic" environments such as fish farms, 
where structures are flexible, and robotic systems must interact with animals during opera-
tions. 
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H1: UNDERWATER COMMUNICATION AND LOCATION  

REFERENCE SYSTEM 

A robust high-bandwidth and low cost com-
munication system is a key element of the 
project, and the realization of such a solution 
requires significant research efforts. Hydroa-
coustic communication is highly demanding 
in the presence of biomass in the signal path, 
as the acoustic signals are subjected to 
scattering and damping. Note that the densi-
ty of biomass changes considerably in the 
course of the production cycle, where the 
fish grows from an average weight of approx. 
100g to 5kg. Consequently, an important 
requirement is that the system will be able 
to handle this variability in biomass during 
the operations in fish cages. This brings sig-
nificant R&D challenges related to further 
developing underwater communication sys-
tem to achieve stable real-time communica-
tion with good coverage throughout the 
entire cage. 

The research need is also related to the de-
velopment of a cage-relative position refer-
ence system that reports the position of an 
underwater vehicle relative to the fish cage. 
Such a system is required for accurate posi-
tioning and motion control of an underwater 
vehicle inside the fish cages. The positioning 
of the vehicle in fish cages is an extra de-
manding task compared to conventional 
operations with fixed structures, since the 
fish net is deformed by waves and currents 
(Rundtop and Frank, 2016). In the following, 
this report describes the development and 

validation of the underwater communication 
technology and the position reference sys-
tem. In this study, the underwater position-
ing system developed by WaterLinked AS 
(i.e. wLink) has been used in combination 
with numerical methods to realize a position 
reference system, and the research need lies 
in developing a wLink configuration that 
provides good performance in combination 
with the numerical methods. In particular, in 
order to realize a cage-relative position ref-
erence system, wLink has been used in the 
Short Base Line (SBL) configuration with four 
acoustic receivers attached to the cage and 
an acoustic transmitter placed on the vehicle 
to measure the position of the vehicle rela-
tive to the cage. In addition, three acoustic 
transmitters have been placed in different 
locations in the fish cage, where the meas-
ured positions have been used in combina-
tion with a numerical model of the fish cage, 
to estimate an updated real-time map of the 
deformable fish cage. 

Based on the wLink technology, a low cost 
hydroacoustic subsea communication system 
was developed and adapted for use in the 
cage. The development and adaptation in-
cluded the optimization of sender and re-
ceiver technology, as well as development of 
algorithms for advanced signal processing to 
optimize bandwidth while ensuring stable 
real-time communication under conditions 
that affect the communication link. The de-
veloped solution was tested and validated at 
full scale farm sites. 

H1.1: UNDERWATER COMMUNICATION 

B.SU, E. KELASIDI, E. S. THORBJØRNSEN 
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In the project CageReporter, Water Linked 
has continued the development of the un-
derwater communication technology wLink. 
This development has resulted in the acous-
tic modem named 'Water Linked Modem 
M64', Figure 2. 

The Modem M64 uses WaterLinked's own 
transducer and electronics.  It has a trans-
mission rate of 64 bits per second and a 
range of 200 meters. The modem is omnidi-
rectional, meaning that the modem trans-
mits and receives in all directions. What 
makes the M64 modem unique is its small 
physical size and the highly robust datalink 
provides to the user. These capabilities are 
what makes the Modem M64 suitable for 
use in fish cages and other high reflective 
and noisy environments like in harbors.  

In many operations it is not practical to use 
cabled sensors since the cable itself can 
amount to significant cost. In addition, the 
installation can be cumbersome and time 
consuming which further adds cost. Cables 
are also by their nature prone to damage 
which may cut off the sensor entirely and 
trigger extensive costs for replacement. To 
avoid all this, the WaterLinked modem M64 
can be utilized to remove the need for the 
cable entirely (Figure 3). By connecting the 
M64 with the sensor and a battery pack, one 
receives a fully wireless sensor with a very 
robust setup. The sensor can be read by 
another Modem M64 which can reside in a 

fixed place topside. The M64 modems can 
also be mounted on ROVs, ships or other 
moving vehicles for dynamic interrogation of 
the sensors (Figure 4). By utilizing the Water-
Linked Underwater GPS system, all locations 
(i.e. position of a net, vehicle, feeding cam-
era, etc.) can easily be documented real-time 
during daily operations in fish cages. 

The algorithms and protocols that Water-
Linked uses are designed to handle the de-
manding environments of a sea cage. Water-
Linkeds own signal processing has been opti-
mized considerably to filter out noise and 
other error sources which can lead to drop 
out of communication. These adjustments 
are both in hardware of the modem and 
software. Legacy modems typically use the 
carrier frequency to decide if the value sent 
is “0” or “1”. This is very vulnerable to inter-

DEVELOPED TECHNOLOGY 

Figure 2: Modem M64  

Figure 3: Illustration of wireless sensors installed 
on a fish cage 

Figure 4: Illustration of wireless sensor installed on 
the ROV  
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ference and packet loss and makes them 
unsuited for use in fish cages and other re-
flective environments. In contrast, the Mo-
dem M64 uses modern error correction tech-
niques which are more robust. In addition, 
the Modem M64 not only has an advanced 
auto-sync feature which makes it extremely 
easy to use, it is also, other than classic mo-
dems, fully omnidirectional . The omnidirec-
tional property is especially important for 
underwater vehicle applications where the 
modems are in constant motion and can be 
turned around all axes while still maintaining 
its robust data link. With WaterLinked's Mo-
dem M64, real time communication in fish 
cages is possible. The specification of the 
developed Modem M64 are given in Table 1 
and Figure 5. 

WaterLinked has developed several locators 
and receivers. In this project, the WL-21009 
Locator-A1, WL-21018 Locator-U1 and WL-
21005 Receiver-D1 were used in order to 
obtain results for the underwater positioning 
reference systems. The specifications and 
dimensions are given in Tables 2-4 and  
Figures 6-8. 

Communication Two-way communication, 
64 bit per second net data 
link, both ways 

Typical latency ~500ms 

Directivity Omnidirectional 

Acoustic range 200 m 

Depth rating 300 m 

Device length 112 mm 

Device diameter 30 mm 

Device weight 128 g 

Input voltage 10-18 V 

Table 1: Specifications of Modem M64 

Figure 5: Dimensions of Modem M64 [mm] 

Directivity Omnidirectional 

Depth sensor None 

Depth rating 300 m 

Default cable 
length 

1 m 

Max cable length 300 m (custom order) 

Signaling 1x twisted pairs 

Cable type PUR 6.3 mm 

Cable connector None 

Device length 41 mm 

Device diameter 20 mm 

Device weight in air 30 g 

Operating tempera-
ture 

-10 to 60 °C 

Table 2: Specifications of WL-21009 Locator-A1 

Figure 6: Dimensions WL-21009 Locator-A1 [mm] 
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Directivity Omnidirectional 

Depth sensor Integrated 

Depth rating 300 m 

Max operational range 100 m (wireless) 

Battery size 3.7 volt, 3300 mAh 

Battery lifetime 10 hours 

Device length 121 mm 

Device diameter 32 mm 

Device weight (air) 175 g 

Operating temperature -10 to 60 °C 

Table 3: Specifications of Wl-21018 Locator-U1 

Figure 7: Dimensions WL-21018 Locator-U1 [mm] 

Directivity Omnidirectional 

Depth rating 300 m 

Max cable length 100 m 

Signaling 2x twisted pairs 

Cable type PUR 6.3 mm 

Cable connector Binder Series-770 
(IP67) 

Device length 71 mm 

Device diameter 20 mm 

Device weight 36 g 

Input voltage 10-18 V 

Input current 35 mA 

Operating temperature -10 to 60 °C 

Table 4: Specifications of WL-21005 Receiver-D1 

Figure 8: Dimensions WL-21005 Receiver-D1 [mm] 
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WaterLinked has performed multiple tests of 
the acoustic Modem M64. Initially tests were 
performed at WaterLinkeds office in a test 
tank to verify and optimize the hardware, 
software and algorithms. The test tank is 
made of plastic and creates a test environ-
ment with lots of reflections and noise. Up to 
50 reflections of the initial signal have been 
observed before it disappears. This creates a 
very good test environment for developing 
the modem and algorithms used to remove 
noise and reflections.  After these initial 

tests, the modem has been tested in Brattøra 
(Figure 9,10,12) and Monkholmen (Figure 
11) in Trondheim. These areas both provide 
a reflective environment. The tests have 
been performed to verify that the communi-
cation link works well over longer distances 
and also when moving in water. Testing dis-
tance varied from a couple of meters up to 
200 meters. These tests, together with the 
results from the test tank, confirmed that 
the modem M64 provides a robust and very 
stable communication link in reflective and 
noisy environment (Figure 13). 

H1.2 MODEM M64 VALITADION TESTS 

Figure 9: Test in Brattøra – highly reflective  
environment 

Figure 10: Online monitoring system in Brattøra tests 

Figure 11: Munkholm test with one modem M64 
on dock and the other on the boat 
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Figure 12: Obtained trajectory and accuracy of the underwater positioning system in Brattøra tests 

Figure 13: Data from four receivers showing acoustic signals over time  
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This activity presents the development of a 
relative position reference system where the 
main challenge was to develop a realistic real
-time map of the fish cage. The analytical 
study was conducted in order to decide on 
the placement of the acoustic transmitters. 
The proposed configuration has been tested 
in full scale. The obtained experimental data 
have been used to develop and validate nu-
merical methods that estimate a high-

21009 Locator-A1) were installed in a cage 
(Cage 7) at the Rataren site: the first one was 
attached to the lower edge of the sea-lice 
skirt (in 6.3 m depth), the second one was 
attached to the bottom tip of the net (in 32 
m depth), the third one was attached to the 
connection rope between the net and the 
sinker tube (in 16.2 m depth).  
Four receivers (WL-21005 Receiver-D1) were 
used to pick up the acoustic signals from 
each locator. Receivers #1-3 were placed 
along a rope connecting two points along the 
walkway (xm distance) and hanging down to 

H1.3 POSITION REFERENCE SYSTEM 

LAB AND FIELD DEPLOYMENT 

The WaterLinked positioning system consists 
of a topside positioning computer and a cer-
tain number of locators and receivers: the 
locators are sending acoustic signals which 
are picked up by the receivers and the top-
side positioning computer uses advanced 
algorithms to triangulate and calculate the 
positions of the locators based on the signals 
received by the receivers. This system has 
been tested at the Hosnanøya  and Rataren 
sites (SINTEF ACE full-scale laboratory facili-
ty) in 2018 and 2019, and at the Ocean Basin 
Laboratory (SINTEF Ocean) in 2019 (Figure 
14). Based on the results of the model-scale 
testing at the lab and the initial full-scale 
tests at Hosnøyan and Rataren, the WL-
21009 Locator-A1, WL-21018 Locator-U1 and 
WL-21005 Receiver-D1 were chosen for the 
final deployment at the Rataren site-Cage 7 
(Figure 15) in 2019. 

 As shown in Figure 16, three locators (WL-

Figure 14: ROV testing at the Ocean Basin  
Laboratory (SINTEF Ocean) 

Figure 15: SINTEF ACE Rataren site 

resolution real-time map of the fish cage. 
The work further included the development 
of algorithms for state estimation to increase 
accuracy and reduce target noise. Well es-
tablished methods of processing and state 
estimation were used (Fossen, 2011). The 
position reference system was validated 
through multiple trial series where position-
ing accuracy was evaluated. 
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6m depth in the middle where a weight was 
attached (Figure 16): two of the receivers 
were placed at 4 m depth on both sides of 
the weight, and the third one was placed at 2 
m depth. Receiver #4 was placed at 2 m 
depth on the opposite side of the cage 
(Figure 16). All locators and receivers were 
connected by cables to the topside cabinet, 

from where the obtained signals were send 
out through the integrated 4G modem.  

WaterLinked also provides an online moni-
toring system (Figure 17) for data collection 
and setting up parameters for the positioning 
system, e.g. locator type, search range and 
the local coordinate system for calculating 

Figure 16: Field deployment at the Rataren site 

Figure 17: WaterLinked online monitoring system 
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relative positions of the locators. Acoustic 
signals from the receivers and calculated 
positions of the locators can be displayed 
and recorded instantaneously through the 
designated web address.  

For positioning the ROV in the field trial, a 
wireless locator (WL-21018 Locator-U1) 
attached to the ROV and four separated 

receivers (WL-21005 Receiver-D1) were used 
(Figure 18). The configuration of the receiv-
ers was adjusted in order to calculate ROV 
positions in the same local coordinate  
system as that used for the net (Figure 19). 
Instead of using 4G, a PC was directly con-
nected to the topside cabinet through a local 
network for importing real-time positioning 
data to a numerical estimation model.  

Figure 18: WL-21018 Locator-U1 used to obtain real-time position of the ROV in fish cage 

Figure 19: Configuration of the local coordinate system in the field trial 
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Figure 20 shows an example of the recorded 
trajectory of a ROV (Remotely Operated 
Vehicle) at the Ocean Basin Laboratory, 
where the ROV was lying on the bottom of 
the tank and a wireless locator was used for 
positioning. The corresponding time series of 
the measured positions is shown to be rea-
sonably stable (Figure 21). As it was not pos-
sible to have the ROV lying on the bottom of 
the cage during the field trial in order to 
assess the precision of the measurements, 
the ROV was controlled to keep the desired 
position by using a nonlinear Dynamic posi-
tion (DP) controller. Figures 22 - 27 show 
that the measured positions were stable and 
no significant errors occurred (i.e. jumping 
signals or loss of signals) on the measured 
positions. The precision of the measure-
ments during both the lab tests and field 
trials show that the accuracy of the  
positioning system is suited to obtain accu-
rate position measurements of static (i.e. 
tests in the tank where the ROV is sitting on 
the bottom of the tank) and moving objects  
(i.e. tests in the cage where the ROV is keep-
ing the desired position in the cage using DP 
controller) underwater and for the imple-
mentation of autonomous control functions 
for the navigation of the underwater vehicle. 

In addition, it should be mentioned that with 
better tuning of the control gains of the DP 
controller we were able to obtain even 
better accuracy for the position of the sys-
tem during dynamic positioning of the vehi-
cle, thus enabling the ROV to navigate in the 
cage without inputs from the ROV operator 
or the site manager of the fish farm. 

Figure 21: Time series of the measured ROV positions (corresponding to Figure 20) 

Figure 20: Recorded trajectory of the ROV sitting at 
the bottom of the Ocean Basin Laboratory 
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Figure 22: Recorded trajectory of the ROV in the field trial for desired position X=-3.3m, Y=-9.9m and 
Z=4.5m 

Figure 23: Time series of the measured ROV positions in the field trial (corresponding to Figure 22) 
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Figure 24 :Recorded trajectory of the ROV in the field trial for desired position X=-3.3m, Y=-9.9m and 
Z=2.5m 

Figure 25: Time series of the measured ROV positions in the field trial (corresponding to Figure 24) 



18 

 

Figure 26: Recorded trajectory of the ROV in the field trial for desired position X=-3.3m, Y=-9.9m and 
Z=0.5m 

Figure 27: Time series of the measured ROV positions in the field trial (corresponding to Figure 26) 
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Figure 28 shows an example of the measured 
positions from the three locaters on the net 
cage over a period of 37.5 hours (3 tidal peri-
ods),. It is evident that the measured posi-
tions deviate from the idealized configura-
tion (Figure 19), because the actual net cage 

did not have an exactly cylindrically-conical 
shape at all times. The trajectory of Locator 
#1 shows the displacement of the net ele-
ments at 6.3 m depth to be in accordance 
with the main direction of tidal flow, while 
the displacement of the net at 16.2 m depth 
(Locator #3) is shown to be in another direc-
tion. This indicates a possible change of flow 
direction with water depth due to local varia-
tions (e.g. geomorphology or fluid-structure 
interactions). The corresponding time series 
of the measured positions (e.g. Figure 29) 
show that the positioning system had a noise 
level of about 2 m, which is suited for the 
estimation of cage deformations on an aver-
age level (i.e. neglecting short-period  
deviations). 

Figure 28: Recorded trajectories (red) of the three locators on the net. The blue crosses denote the calcu-
lated mean positions and the blue circles denote the corresponding standard deviations 

Figure 29: Time series of the measured locator positions (corresponding to Figure 28) 
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NUMERICAL ESTIMATION MODEL 

FhSim is a software framework that has been 
under continuous development at SINTEF 
Ocean since 2006 (Reite et. al. 2014; Su et. 
al. 2019). It provides numerical models for 
time-domain simulation of flexible net cages 
in current and waves. FhSim also contains a 
module for system state estimation based on 
a nonlinear extended Kalman filter (Einicke 
and White, 1999). By using this method, a 
numerical model can be combined with sen-
sor data to create a more realistic estimation 
of the actual system. However, it is found to 
be difficult for real-time implementation 
considering a net-cage system with a large 
number of states. For this reason, a simpli-
fied net-cage model with an adaptive current 
field was used to estimate net-cage defor-
mations based on the measured positions of 
the net (Figure 30). Error signals, i.e. the 
deviation of the estimated positions com-
pared to the measured positions, are used to 

adapt the magnitude and direction of the 
current at various depths. The adaptation is 
using a PID controller with integral saturation 
for each error signal.  

This method was first tested with simulated 
data, i.e. two simulated positions of the net 
under given current and wave conditions. In 
the estimation model, the magnitude and 
direction of the current were unknow and 
they were continuously adapted. At the same 
time, the adapted current forces were also 
applied in the estimation of net-cage defor-
mations, until a best fit to the simulated data 
was achieved. Figure 31 and Figure 32 show 
an example of the position errors (i.e. esti-
mation errors which are defined as differ-
ences between the measured and estimated 
positions) and the estimated current veloci-
ties, which demonstrates the potential of 
using two measured positions (in the hori-
zontal plane) for the estimation of net-cage 
deformations by adapting the current pro-
files (i.e. current velocities and directions at 
various depths).   

Figure 30: A simplified net-cage model with an adaptive current field based on two measured positions of 
the net 
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The mean positions of the three locators 
measured during three tidal periods in the 
field trial (see e.g. in Figure 28)  and were 
used to determine a representative configu-
ration of the positioning system in the simpli-
fied numerical estimation model (Figure 33), 
where each locator is related to a fixed point 
on the net cage. Figure 34 shows an example 
of the estimated net deformation based on 
the two measured positions (Locator #1 and 
Locator #3) from the field trial. The time 
series of measured positions and the corre-
sponding errors of estimations are shown in 
Figure 35 and Figure 36, respectively. It 
should be noted that only two locators were 
used in the estimation model, while the third 

one (Locator #2) was used for verification. As 
shown in the example, for all three locators, 
the maximum estimation error was below 3 
m (Figure 36), which was in the same range 
as the deviation of the measured data in a 
period of 1 hour (Figure 35). Figure 37 shows 
another example of the positions measured 
on another day where the deviations of one 
locator (x-position of Locator #3) were sig-
nificantly higher, while the estimation results 
(Figure 38) were found to be still as good as 
the previous one (Figure 36). The estimation 
model has been verified by 11 data sets 
(each lasted one hour) from the field trials, 
and it proved to be suitable for real-time 
applications. 

Figure 31: Errors of the estimated positions relative to the "measured" positions 

Figure 32: Estimated current velocities (dotted lines) and the comparison with the "actual" current veloci-
ties (solid lines) 
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Figure 33: Configuration of the positioning system in the numerical estimation model 

Figure 35: An example of the time series of measured positions 

Figure 34: An example of the estimated net deformation where the blue points denote the measurement 
data and the grey points denote the estimated positions of the net cage  
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Figure 36: Errors of the estimated positions relative to the measured positions (corresponding to Figure 

35) 

Figure 37: An example of the time series of measured positions with higher noise level 

Figure 38: Errors of the estimated positions relative to the measured ones (corresponding to Figure 37) 
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The estimation model is furthermore able to 
calculate the distance between the ROV and 
the closest net panel, considering net defor-
mation and measured positions of the ROV. 
Figure 39 shows an example of the recorded 
trajectories of the ROV and the three loca-
tors on the cage, where the ROV was first 
aiming to keep a constant position (Figure 
39) and then follow a straight line (Figure 39) 
by using a DP (dynamic positioning) control-
ler (Fossen 2011). The calculated distance 
between the ROV and the net is shown in 
Figure 40, where the ROV was aiming to 
keep its position in the first 40 seconds and 
follow a straight line afterwards. Herein the 
minus distance means the ROV is inside the 
cage: when following the straight line it was 

moving further away from the net before it 
reached the central line of the cage and then 
moving closer to the net on the other side. 
By taking into account net deformation and 
the resulting orientation of surrounding net 
panels, this result is reasonably accurate and 
shown to be suitable for autonomous net-
following navigation. As shown in Figure 41, 
all the measured data and estimation results 
can be instantaneously visualized in FhSim, 
which is also useful for real-time applications 
with regards to both autonomous navigation 
and manual operations. During the field trial, 
FhSim had been used as a tool to display 
cage deformation and for instant observa-
tion of the distance between the ROV and 
the net.  

Figure 39: An example of the recorded trajectories of the ROV and the three locators on the net cage 
where the green cross denotes the constant position from the net and the red line denotes the followed 
straight line by the ROV 
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Figure 40: Time series of the calculated distance (minus distance means the ROV is inside the cage)  
between the ROV and the closest net panel (corresponding to Figure 24) 

Figure 41: Real-time visualization of net deformation and ROV operations in FhSim (corresponding to 
Figure 24) 
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CONCLUSION 

This report presents the development and 
validation of a low cost and hydroacoustic 
subsea communication system adapted for 
use in the cage. In particular, the obtained 
experimental data have been used to devel-
op and validate numerical methods that 
estimate a high-resolution real-time map of 
the fish cage. The developed underwater 
positioning system from WaterLinked AS (i.e. 
wLink) have been used in combination with 
numerical methods to realize a position ref-
erence system, and the research need lies in 
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developing a wLink configuration that pro-
vides good performance in combination with 
the numerical methods. The position refer-
ence system is validated through multiple 
trial series where positioning accuracy is 
validated. The obtained results both for the 
real-time map estimation and underwater 
positioning of the vehicle showed good accu-
racy and will be further used for autonomous 
navigation concepts of underwater vehicle 
moving in the cage that are developed in this 
project. 
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H2:  DATA CAPTURE AND REAL-TIME DATA QUALITY  

ANALYSIS 

A key element of the project is to capture 
high-quality vision data from the cage. To 
obtain relevant high-quality vision data using 
the currently available state-of-the-art sys-
tems (e.g. systems based mostly on station-
ary sensors) is highly demanding process, 
and in many cases fails to obtain data de-
scribing the dynamic farming environment 
with sufficient resolution and accuracy. Bio-
mass production at a single site can have up 
to 15.000 tonnes of salmon, in a water vol-
ume up to 50.000 m3. In the future, these 
volumes are expected to increase even 
more, meaning that such large volumes can-
not be considered as homogeneous environ-
ments, and thus it is not possible to obtain 
accurate and detailed information based on 
vision data collected using stationary sensor 
systems. The distribution of fish and varia-
bles related to the production environment 
vary in the cage, both through the day and 
with season. An autonomous underwater 
vehicle being equipped with a 3D vision sys-
tem will be able to collect data from the 
whole volume of the cage. It is essential to 
develop a system that is able to capture data 
that describes the conditions of fish, cage net 
and production environment since this infor-
mation can be used for a better mapping of 
environmental effects (escapes, feed lice, 
lice), improvement of fish welfare and eco-
nomics. An important feature of the devel-
oped system is the real-time quality control 
of the obtained data in order to sort out data 
that does not meet objective quality criteria. 
Based on quality-assured data, a better deci-
sion support system can be developed for 
more objective decisions during operations 
in fish farms. 

H2.1 SENSOR SYSTEM FOR 3D VISION 

This section present results regarding the 
development of an underwater 3D vision 
system for use in fish cages, aiming to moni-
tor the condition of the fish, inspect the fish 
cage facility as well as provide vision for a 
Remotely Operated Vehicle (ROV), which it 
will be mounted to. The R&D challenges to 
develop a 3D vision sensor system are relat-
ed to the development of a camera and 
lighting systems that provide high-quality 
data under varying light conditions and visi-
bility in the water (Figure 42). This is particu-
larly demanding for high turbidity water, 
which provides optical dispersion and damp-
ing, limiting the observation volume. To pre-
vent artificial lighting interfering with the 
fish, wavelengths invisible to the fish are 
assessed in combination with light-sensitive 
camera sensors. The project partner, SEAL-
AB, has since its founding had ambitions to 
utilize and develop an underwater stereo 
vision system. Different applications have 
been tested earlier, including plenoptic cam-
eras as well as rigs with two 2D cameras. 
This, SEALAB had knowledge and experience 
concerning stereo applications prior to this 
project. However, prioritizing other neces-
sary work areas over stereo projects meant 
that the CageReporter project was essential 
to push this in a progressive direction. In this 
activity, SEALAB has provided hardware and 
software to capture and store the desired 
stereo data. This data has subsequently been 
used both by SINTEF and SEALAB for devel-
oping  algorithms to achieve stereo vision.  

E. KELASIDI, E. MOEN, C.SCHELLEWALD, M. YIP, B.M. REMMEN 
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5. This equipment has to be encapsulated in 
a waterproof casing and arranged in such a 
way that it can be mounted as payload on a 
ROV. Figure 43 shows a 3D rendering of the 
stereo camera setup, taken during develop-
ment stages. 

Camera specifications 

Sensor: 1/2,5- type Exmor R CMOS  

Video format  4K, 1080p, 720p, 480p 

Optical zoom 20x 

Video Output Y/Cb/Cr 4:2:2, R/G/B 4:4:4 

Dimensions:  

Length 250 mm 

Diameter 125 mm  

Weight in air 11 kg 

Weight in water 2.3 kg  

Table 5: Underwater camera used to develop the 3D vision system 

3D stereo system with two 4K cameras 

and lights  

 

SENSOR SYSTEM  WITH HARDWARE AND SOFTWARE 

For the development of the 3D vision system 
(Table 5) two 4K cameras were mounted on 
a stereo rig to capture the left and right vid-
eo stream representing the main compo-
nents in a stereoscopic vision. The specifica-
tions of this camera are summarized in Table 

Figure 42: Frame from video of salmon with SEALAB camera system 
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Figure 43: Render of the stereo camera 

SETUP 

Specifications 

Brightness 8000 Lumen 

Control Interface  RS485 

Electric Specifications 48VDC, 1.4A (Max) 

Dimmable  255 steps 

Light System Photo 

 

Table 6: Light system used to develop the 3D vision system 

Figure 44: System architecture 

As indicated above, two 4K cameras have 
been used to build the stereo vision system. 
Figure 44 shows an illustration of the system 
architecture. Topside refers to the location of 
the operator and represents the control 
center of this system as well as where the 
data is collected and image processing tech-
niques will be executed. This topside was 
located on the boat MS Torra for full scale 
demonstrations in this project. The Main Pod 
connects all the components together and 
communicates with the Camera Housings, 

Lights and the Topside. The Camera Housing 
and Light are the components where the 
cameras and the lights are located. A figure 
of the lights and a summary of their specifi-
cations can be found in Table 6. This system 
was mounted to an underwater vehicle in 
this project, however, as the system is inde-
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At the Topside, video and control signals 
from both camera housings as well as the 
control signals for the lights are transferred 
by fibre optic cables. This is achieved over 
three separate fibre optic cables, one for 
each camera housing and one for the light 
control. Together with these signal cables, a 
set of copper cables are required to supply 

Figure 45: Y-Split 

TOPSIDE 

Table 7: Hybrid cable used between topside and camera system 

Specifications1 

Brightness 8000 Lumen 

Control Interface  RS485 

Electric Specifications 48VDC, 1.4A (Max) 

Dimmable  255 steps 

Umbilical Illustration 

 

1MacArtney Underwater Technology, “Hybrid cable, Kevlar - Type 3444”, https://www.macartney.com/what-we-
offer/systems-and-products/stock-cables/hybrid-cables/hybrid-cable-kevlar-type-3444/  

the system with 48 VDC. Between the Top-
side and the Main Pod, a hybrid subsea um-
bilical is used consisting of 4 single mode 
fibre optic cables, 4 multi-mode fibre optic 
cables and 4 copper wires  

(Hybrid cable Type 3444; MacArtney). Table 
7 shows some of the specifications of this 
cable. It was decided to use a Y-split at the 
end of the umbilical connected to the Main 
Pod, as they did not have a hybrid connector 
which fulfilled the requirements regarding 
the number of copper pins and optical fibre 
connections. Figure 45 shows the Y-Split, 
where the black connector is for the optical 
fibre and the red for the copper. 

pendent it could also be used independently. 
The umbilical from the topside to the main 
pod will be attached on the underwater vehi-
cle's umbilical.  

https://www.macartney.com/what-we-offer/systems-and-products/stock-cables/hybrid-cables/hybrid-cable-kevlar-type-3444/
https://www.macartney.com/what-we-offer/systems-and-products/stock-cables/hybrid-cables/hybrid-cable-kevlar-type-3444/
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CPU INTEL Core i9-9900K 

GPU MSI GeForce RTX 2080 Ti 
VENTUS 11G 

CAPTURE CARD Pro Capture Dual HDMI 4K 
Plus LT 

MEMORY 32GB DDR4 

STORAGE 14 TB (4GB SSD + 10GB SATA) 

Table 8: Topside computer specifications 

The topside computer that was used was 
configured and installed for this specific pur-
pose. Table 8 shows the specifications of this 
computer containing a Pro Capture Dual 
HDMI 4K Plus LT. This is a video capture card 
from Magewell which connects the camera 
inputs. This card has both Windows and 
Linux compatible drivers and has proven to 
be a good choice. In addition, the software 
used to capture video was OBS Studio 
v24.0.3 as well as FCB control software 
v6.1.0.0 for configurating the cameras. 

MAIN POD 

Connecting the Topside with the cameras 
and the lights is the main functionality of the 
Main Pod. Figure 46 illustrates the hardware 
contained in the Main Pod. The Power block 
distributes power through the system with 
the corrector's voltage levels and the re-
quired capacity. The Light Control System 
sends commands from the Topside to the 
lights. The Camera Synchronization Genera-
tor supplies both cameras with synchroniza-
tion signals, an essential component in ste-
reo vision. Lastly, the Fibre Optic Termination 
block connects the fibre optic cables from 
the cameras to the Topside umbilical. This 

hardware is encapsulated in a waterproof 
container with connectors to the topside 
umbilical for both cameras and both lights. 
Table 9 shows a figure of the developed 
casing and some specifications. 

Figure 46:Main Pod 

Length 320 mm 

Diameter 125 mm 

Weight in air 7.5 kg 

Weight in water 2.7 kg 

 

Table 9: Main Pod Specifications 
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Figure 47 shows the Main pod connector 
interface towards the topside umbilical. This 
is where the Y-Split is supposed to be con-
nected. The left connector is for the optical 
fibre and the right connector for copper.   
Figure 48 shows the Main pod connector 

Figure 47: Main pod connector interface to-
wards the topside umbilical 

Figure 48: Main pod connector interface towards the cameras and the lights. Connectors are identified 
by labels 

The Camera Housing is a waterproof encap-
sulation, which contains a camera and a 
video signal transmitter. The Camera Hous-
ing is connected to the Main Pod with two 
cables, a fibre optic cable for the video sig-
nals and a copper cable with 8 separate 
wires for power and synchronisation signals. 
The Camera Housing requires two connect-
ors, both for the fibre cable and the copper 
cable. Figure 49 shows the connector inter-
face of the stereo camera, consisting of two 
camera housings mounted together. The 
fibre connector used is OptoLink single fibre 
BCR drybox from Macartney and the copper 
connector is the Macartney MCBH8M.  

CAMERA HOUSING 

interface towards the cameras and the lights. 
The lights are connected to the two top con-
nectors. The two connectors at the bottom 
are the optical fibre connectors for the cam-
eras. Lastly, the two middle connectors are 
the copper connectors for providing power 
and sending steering-signals to the cameras.  
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Figure 49: Connector interface for the stereo 
camera 

The lights consist of a LED-chip encapsulated 
in a waterproof housing. Two of these are 
connected to the Main Pod, each using a 
subsea cable from Macartney with the con-
nector MCIL2F. These LEDs are able to pro-
duce a luminous flux of up to 8000 lumen 
per chip, they are dimmable and easy to 
integrate using a RS485 interface. Figure 50 
shows a single frame from a video recording 
at night-time within a fish cage. This light 
allows monitoring of salmon when daylight is 
absent, thus collecting information about the 
Salmon at night time, but also in winter time 
when daylight is limited.  

LIGHT 

Figure 50: Night-time video recording using SEALAB lights 

CAMERA HOUSING 

To be able to control the camera and lights 
from the topside, the system provides an 
interface to the user. Figure 51 illustrates the 
Topside Interface. Four fibre optic cables are 
available. These are distinguished by colours; 

green, blue, brown and orange. Green and 
blue are the stereo video channels. The 
brown cable is for the light control and the 
orange cable is currently not in use but avail-
able for additional functionality. To fetch 
frames from the camera channels, an optical 
fibre to HDMI converter was used. The HDMI 
outputs from this card is then connected to a 
grabber card inside a computer. This made 
the video streams available as devices in /
dev/video0 and /dev/video1 at the Linux 
operating system. Thus the user may access 
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Figure 51: Topside Interface 

INTEGRATION AND TESTING 

the next frame. It can be seen that the flash-
light of the mobile phone turns on when 
comparing the second to the first frame. 
Both cameras captured this transition of 
light, confirming that they are synchronised. 
No artefacts or unwanted effects were dis-
covered confirming the functionality of the 
system.  

Afterwards, all of the individual components 
were connected and tested together to con-
firm correct functionality. Figure 53 shows 
the stereo camera system integrated on the 
ROV.  During the field tests conducted at the 
SINTEF ACE facility Rataren on autonomous 
navigation control concepts, one of the fibre 
cables between the Main Pod and the Cam-
era got damaged and malfunctioned. There-
fore, it was not possible to do recordings 
with this setup during the field trials. Since 
all of the parts are customised and expensive 
which means long production time and thus 
full-scale validation of the system had to be 
postponed. However, to ensure the results 
of the project, a stereo setup with two Go-
pro cameras was used during the full-scale 
trials to obtain the images necessary for the 
validation of the developed image processing 
algorithms reported in the following sec-
tions. 

Figure 53: Stereo camera integrated on the ROV 

the streams as required by the application. It 
can be seen from Figure 51 that the comput-
er is connected with an ethernet cable to the 
Brown fibre cable. By connecting to the light 
control system located in the main pod via 
SSH, the user can control the lights. 

A test of the cameras was performed to en-
sure its correct functionality. This included 
verification that both cameras were synchro-
nised, and to see that the system did not 
produce any unwanted effects. Figure 52 
shows the result from this testing. The two 
upper images are the left and right camera 
frames recorded at the same time. The lower 
images are from the left and right camera at 
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Figure 52: Stereo camera test, showing two subsequent frames recoded by the left and right camera 
simultaneously 

In order to develop a vision system that is 
able to obtain high-quality data, there are 
R&D challenges related to the data quality 
analysis. Data quality is here defined as a 
term, not only related to image quality, but 
also to the extent that the obtained data is 
relevant and thus can be used to assess fish, 
structure and environment conditions. A 
study has been carried out to define objec-
tive criteria for data quality, as well as to 
develop the algorithms that assess data qual-
ity. Note that this is particularly demanding 
for identification of fish conditions, where 
the objective criteria, in addition to the im-
age quality of the fish, should ideally also 
assess the behaviour of the fish, including for 
example the flight response. For the struc-
ture conditions, it is vital to ensure that the 
images are of sufficient quality to enable, for 
example, the detection of holes in individual 
treads in the net.  Therefore, the task for this 
work package was to explore whether we 
are able to develop algorithms for analysing 
the quality of the recorded data from fish 
cages. This was performed in two stages: 1. 
the first stage consisted of a brief study to 
define the quality requirements of the data 
in relation to monitoring the condition of the 

fish, inspection of the cage facility and/or 
environment and 2. the second stage was to 
implement algorithms which evaluate the 
data towards the criteria set in stage one. In 
order to identify the quality requirements for 
videos for monitoring fish/structure and/or 
the environment within fish-cages, this study 
specifically provides insight into what mini-
mal quality requirements are needed to rec-
ord video-data that can be analysed auto-
matically by classic computer vision algo-
rithms and state-of-the-art machine learning 
algorithms. Generally, the quality analysis of 
captured video-data can be divided into two 
parts. The first part refers to the technical 
aspects of the image quality which depends 
mainly on the hardware, but also on some 
fixed camera parameters used during the 
recording, and the employed compression 
algorithms when sending the video-stream 
to any processing unit. The second part in-
volves the analysis of the quality of the rec-
orded video material itself.  Note that as the 
interpretation of the content of the videos is 
beyond the scope of this project, our analysis 
focused on measures that were able to work 
on the pixel level of the images.    

H2.2 REAL-TIME ANALYSIS OF DATA  
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TECHNICAL IMAGE DATA ASPECTS 

The resolution of the provided video-stream 
is one key-variable to evaluate the capability 
of the cameras. A higher resolution generally 
indicates that we can see more detail within 
an image. Digital cameras often allow to 
select a specific resolution. Image/Video 
resolutions that can be considered to be of 
good quality (from today's perspective)  
include: 

• HD [1280 × 720 progressive scan] 

• Full HDi [1920 × 1080 two interlaced 
fields of 540 lines] 

• Full HD [1920 × 1080 progressive 
scan] 

The progressive scan (vs. interlaced), i.e. 
consecutive image pixel lines being recorded 
subsequently, has the advantage that the 
image can be used “as it is” for image pro-
cessing and analysis. Interlaced recordings 
are performed by updating only every sec-
ond line in the video-image at each timestep. 
This effectively represents a reduction of the 
resolution in y (vertical) direction and re-
quires the images to be deinterlaced before 
processing. An example is shown in Figure 
54.  

Currently, many fish-farming companies still 
rely on grey-value-video-streams from the 
fish-cages that have a D1/DV PAL Wide-
screen resolution (i.e. 720x576). Such a low 
resolution combined with an interlaced 
mode makes the automatic analysis of the 
data difficult, even if some aspects can be 
seen by a human.  Examples are shown in 
Figure 55.   

Objects that one wishes to identify should 
cover a minimal area of about 32x32 to 
64x64 pixels in order to enable machine 

Figure 54: A small part of a net of a fish cage 
recorded in “interlaced” mode (upper image). ¨ 
A deinterlacing is necessary before the image 
can/should be further processed. Deinterlacing 
the upper image results in the image seen on 
the lower image 
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Figure 55: Example images from video-cameras 
commonly used for cage-observation. These 
often have a relatively low resolution (i.e 
720x576) and a low dynamic range that quickly 
leads to overexposed areas in the image 

learning approaches to be trained with la-
belled regions of that size. For underwater 
fish cage observations, a typical video frame 
rate is about 25 fps (frames per second), 
which is sufficient for many applications 
(higher frame rates are desired when fast 
motions are to be analyzed). A fixed focus 
defines the distance where the sharpness of 
an object is optimal. If the autofocus is 
switched on the intrinsic camera parameters 
may change. However, standard 3D recon-
struction methods require/assume that the 
intrinsic camera parameters do not change 
and autofocus is usually avoided in these 
cases. The Aperture, often represented by f 
(e.g., f2.8, f8.0 etc. where larger numbers 
correspond to smaller aperture openings), 
influences the amount of light that passes 
through the lens and is received by the im-
age sensor. The aperture size also has an 
impact on the sharpness-range. Smaller 
openings lead to a larger range where ob-
jects appear sharp in the image. Lower light 
conditions generally require longer shutter 
times and lead to observable motion blur in 
the images. In addition, this is dependent on 
the sensitivity of the image sensor, with a 
higher sensitivity increasing the observable 
noise in the images. For all scenarios consid-
ered, including  A) the State of the fish 
(behavior/welfare) in a fish cage, B) Inspec-
tion of structures in cages and/or C) the pro-
duction environment, one should aim to 
record images with the highest possible 
technical image quality. Note also that color 
cameras can provide additional information 
that is useful for special tasks (e.g. open 
wound detection). Size estimation, speed, 
distance and density related to the cases A-C 
may require underwater stereo imaging/3D 
cameras as these allow for metric measure-
ments. 
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COMON DEFECTS IN DIGITAL VIDEO  

STREAMS 

To set criteria for video data recorded in fish 
cages, a summary of common defects in 
digital video streams is necessary. Figure 56 
shows an overview of different compression 
artefacts that can be found in the literature. 
They are separated in two main branches, 

spatial artefacts and temporal artefacts. The 
former describes location-based artefacts 
while the latter describes time-based  
artefacts2.  In this section three common 
compression artefacts will be presented in 
detail and with examples. Further, a assess-
ment of the existing results with regard to 
how image quality affects Deep Neural Net-
work applications will be performed.  

Figure 56: Overview of different compression artefacts 

One of the most common video artefacts in 
real time video streams is blocking. This arte-
fact is recognisable as small squares or 
blocks in the video image instead of smooth 
edges and detail. It can be seen in Figure 57 
where the image has "square blocks" in the 

BLOCKING highlighted area within the black box. This 
can occur in small areas of the frame or be 
present in the whole frame. Often triggered 
by fast motion in the frame and when there 
is a lot of motion in the image sequence. The 
main reason for these artefacts is the com-
pression of the video stream. Figure 57 
shows blocking in the red highlighted 
squares. 

Figure 57 :Illustration of blocking indicated by the black rectangle 

2 https://blog.biamp.com/understanding-video-compression-artifacts/  

https://blog.biamp.com/understanding-video-compression-artifacts/
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PIXELATION ERROR 

A less common (compared to blocking) video 
artefact are Pixelation Errors. They typically 
occur when data is lost in transmission and 
the receiving end cannot correctly decode 
and recreate the correct pixel values.Figure 
58 shows an example where a keyframe was 
lost from the data transmission during the 
decoding of a video stream. This is recogniza-
ble in the subsequent video frames as many 
areas show the wrong color/grey values. 
Small transmission errors usually have a 
smaller effect but may still result in color-
values that are off compared to the sur-
roundings. 

Figure 58: Illustration of a pixelation error. A 
missing key frame results in pixelation artefacts 
(snapshot from a feeding camera) 

ANALYSIS OF THE QUALITY OF CAPTURED (VIDEO)-DATA 

The aim of determining the 'image quality' of 
videos in the context of aquaculture is to 
evaluate how suitable a particular image 
sequence is to provide information for a 
specific computer vision task.  
Here we consider application tasks where we 
wish to obtain the information related to A) 
the State of the fish (behaviour/welfare) in a 
cage, B) Inspection of cages and/or C) the 
production environment. 

Towards this aim we designed an approach 
to analyse video data based on their spatial 

spectra resulting in an algorithm that can 
distinguish whether one is seeing a net of a 
fish cage or if the regular net structure is not 
present. Knowing the camera-parameters 
and the mesh size of the net, an estimate for 
the distance can be computed. An example 
from a test-video recorded with an ROV in a 
fish cage during the test trials is shown in 
Figure 59.  In addition to the specific net-
inspection quality analysis, we also searched 
for and explored approaches that may serve 
as a more generic indicator for the quality of 
recorded video-sequences.    

Figure 59: Analysis of an ROV video providing an indication whether a regular net-structure is visible or 
not 
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VISUAL SEQUENCE EXPERIMENTS 

For an initial evaluation of algorithms provid-
ing low level quality indicators, we concate-
nated six image/video-sequences (with in-
creasing quality [subjective opinion]) and 
evaluated some quality measurement candi-
date approaches on them. The six film parts 
(each part is 100 frames long, corresponding 
to a duration of ~4s) of the test video are 
illustrated in Figure 60. Note that we ordered 
the six video-segments based on our subjec-
tive opinion with increasing quality (i.e. the 
first very dark segment, represents the part 
with the lowest video-quality and the last 
segment corresponds to the part showing a 
high-quality underwater recording.) 

The measurement criteria of video-quality 
we finally tested include the following six 
approaches: 
 

Figure 60: Illustration of six concatenated video-segments ordered according to increasing video  
quality (subjective opinion). Each film-segment has 100 frames and was evaluated by six video-quality 
measurements candidates 

• Fast Noise Variance estimation 
(Immerkær96) 

•  Modified Laplacian (Nayar89) 

• Tenengrad: Sum/thresholded gradi-
ent measure (Tenenbaum70) 

• Variance of Laplacian LAPV 
(Pech2000) 

• Normalized Gray Level Variance 
(Santos97) 

We applied the above measures to the test 
video sequence.  Figure 61 shows the results 
we obtained for each of the six measure-
ment criteria of video-quality applied to the 
concatenated video-sequences. Each sub-
figure shows the measurement for a single 
criterion applied to the video-sequence with 
600 frames. As we ordered the video se-
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quences according to increasing quality, we 
searched for a criterion that would reflect 
this sequence. This means that the measure 
should increase (or decrease) for each of the 
subsequent video-segments.  However, the 
experiments did not consistently reflect our 
subjective ordering of video-quality. Regard-
ing the “expected” behaviour, the Tenengrad 
approach turned out to be closest to the 
desired outcome, but likely more advanced 
machine learning algorithms are necessary 
for mirroring a human quality assessment of 
such underwater videos. 

Figure 61: This figure shows the results of the five measurement criteria of video-quality applied to the 
concatenated video-sequences. None of the measures comply with an "expected" consistent increase 
(or decrease) of the measurement values 
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REAL-TIME CONSIDERATIONS 

In this section we briefly consider which of 
the explored algorithms can be applied in 
real time.  

Algorithms that perform on video-streams 
with a processing-rate faster or equal to 24 
frames per second are considered to run in 
“real-time”.  Note that a video-stream may 
be downscaled -- still showing the essential 
details we wish to analyse – before a quality 
measurement algorithm is applied. 

Below we list the processing speed we ob-
tained on a desktop-PC indicating that all are 
able to work close to real-time (except for 
two that would need some code optimiza-
tion): 

• “Fast Noise Variance Estimation:”  
//Realtime >=24fps 

•  "Modified Laplacian: " // ~10fps 

• "Tenengrad: " // ~15FPS   

• "GLVN: " // Realtime >=24fps 

• "LAPV: " // Realtime >=24fps 

H2.3  ESTIMATION OF THE DISTANCE AND 

ORIANTATION FROM THE INSPECTION 

OBJECT 

DECISIONS OF THE 3D CAMERA SYSTEM 

At the time of the project-application the 
most promising candidate for a 3D image 
acquisition system was the Raytrix camera 
(PRODUCER) that exploits the plenoptic cam-
era technology. Due to the costs of a single 
camera-system and additional difficulties of 
getting depth images of sufficient quality in 
real fish cage environments, Sealab AS decid-
ed to explore other solutions. One option 

The underwater camera system that was 
developed to obtain high-quality data from 
fish cages, will be used to measure the dis-
tance and the physical dimensions of inspec-
tion objects, which is central for several op-
erations in cages. In addition to the high-
quality data capture, the camera system will 
be used as the 'eye' of an underwater vehicle 
in order to estimate the distance, orientation 
and relative speed from the inspection ob-
ject. SEALAB has a vision to help fish farmers 
see and understand what happens under 
water. One of the problems fish farmers can 
have is the escape of fish from the cage due 
to damage of the net. Therefore, autono-
mous inspections of the net are a desired 
feature (Figure 62). One of the first problems 
to solve towards this aim is to estimate the 
distance to the net and the relative orienta-
tion to the two cameras placed on the Re-
motely Operated Vehicle (ROV). These inputs 
are crucial to the control system that enables 

MOTIVATION 

was the use of the ZED-camera (PRODUCER), 
but drawbacks such as the constraints re-
sulting from the use of an USB 3.0 adaptor 
and the difficulties to perform the underwa-
ter-calibration properly finally resulted in the 
decision to build a side-by-side underwater 
high-end  stereo camera from scratch. Unfor-
tunately, this led to a delay of a operational 
camera-system but finally resulted in likely 
the best 3D underwater-camera built for use 
in aquaculture (compare section 2.1).    

Figure 62: Picture of the net of a fish cage, record-
ed with a SEALAB AS camera 
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ESTIMATION OF  DISTANCE  AND ORIENTA-

TION FROM THE INSPECTION OBJECT 

the ROV to navigate autonomously inside the 
cage and inspect the whole net area. In a 
later stage when the steering is working 
robustly, the goal is to detect holes before 
the fish can escape, thereby decreasing the 
total amount of fish escapes. SEALAB is cur-
rently developing algorithms that can detect 
holes in the net.  

Multiple approaches are possible to estimate 
the distance from the ROV to the fish net. 
The approaches differ in hardware setup, 
e.g. single or multiple cameras. Because of 
the differences in the setup there are differ-
ent assumptions that drive the use of differ-
ent algorithms. 

Distance estimation using a single camera 

Initially, we investigated the potential of 
using a single camera to estimate the dis-
tance to the inspection object. We explored 
an algorithm based on a Fourier analysis to 
determine if a regular net structure is pre-
sent in an image.  Some of the strengths and 
limitations of the use of mono cameras are 
discussed here. The following two cases can 
be considered when using a single camera 
for estimating the distance to the net and its 
relative orientation to the camera:  

1. Knowing the size of the nets mesh 
openings and the intrinsic camera 
parameters, it is possible to calculate 
the real distance to the net. This 
approach requires some assumptions 
including that a single mesh opening 
can be approximated by a flat rectan-
gle/square. 

2. By taking two pictures at slightly 
different time and knowing or track-
ing corresponding features on the 
net, it is possible to calculate the 
distance to the net by so called 
"structure from motion" algorithms. 

Both cases are challenging with regard to a 
generic application in fish cages. The first 
one requires the knowledge of the mesh size 
which may vary from cage to cage. The sec-
ond approach requires a reliable tracking of 
feature points which is especially challenging 
for repeating regular structures like a net. An 
advantage of using a mono camera is that 
processing is typically faster as the amount 
of data from a single camera is lower than 
the amount of data from two cameras in a 
stereo setup.  

Distance estimation using stereo camera 

Within this project we decided to use a ste-
reo camera setup for the distance and orien-
tation estimation of an inspection object 
(Figure 63). This enables to calculate metric 
distances from images more easily and more 
reliably without making many assumptions. 
The necessary extrinsic parameters can be 
obtained by calibrating the stereo camera 
and include the distance between the two 
cameras (baseline) and the relative orienta-
tion of the two cameras (Figure 64). 

Figure 63: Illustration of the stereo camera  
architecture setup 
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Figure 64: Illustration of the approach adapted to calculate the distance with a stereo setup 

A simple example to for distance calcula-
tion3. 

Focal length f =4.3mm  
Baseline b =60 mm  
Disparity value ds =64  
Pixel size ps = 0.006 

 

 
This is a single calculation related to one 
point. However, if the calculation is repeated 
for an area in the two compared images, it 
will result in different measures for distance 
d.  

To calculate a disparity map which shows the 
difference between the two pictures, it is 
possible to use a block matching algorithm 
from OpenCV. OpenCV is a library that can 
be used either from C++ or Python and has 
many computer vision algorithms readily 
available4. Note that the calculation of dis-
parity maps generally requires more compu-
tational power than the computations with 
single image cameras, but it also depends on 
a number of other parameters such as image 
resolution, frame rate, etc.  

Following, we provide an illustrative example 
how one can in principle calculate the dis-
tance of an object seen in both images of a 
stereo camera. For the computations we 
exploited the following variables: 

Baseline, b: The distance between the two 
cameras used for distance calculation. 
Pixel size, ps: The size of the individual pixels 
in an image sensor given in μm. Note that 
the two cameras should have the same pixel 
size in the image sensor. The pixel size typi-
cally seen in most cameras is ranging be-
tween 6μm - 14μm. 
Focal length, f: The distance between lens 
and image sensor. 
Pixel disparity, ds: This refers to the relative 
pixel difference between the two pictures, 
creating a map that shows the differences 
which in turn can be used to calculate the 
distances.  
Depth calculation, d: The following equation 
can be used to calculate the distance to the 
object using the parameters above: 

 

 

 
3Vision-systems Depth Calculation - https://www.vision-systems.com/content/dam/VSD/NextGen/5-3D-2.pdf 
4OpenCV documentation - https://docs.opencv.org/3.0-beta/index.html  

https://www.vision-systems.com/content/dam/VSD/NextGen/5-3D-2.pdf
https://docs.opencv.org/3.0-beta/index.html
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DECISIONS OF THE 3D CAMERA SYSTEM 

As indicated earlier, due the technical issues 
the 3D vision system described in Section 2.1 
was not functional during the full-scale field 
trials. However, we attached two GoPro 
cameras on the ROV as a backup plan. Even 
though the GoPro cameras show more mo-
tion blur than SEALAB’s camera, the ad-hoc 
setup turned out to be sufficient for the aim 
of depth estimation and was able to show 
that the developed algorithms verify the 
underlying concept. The following procedure 
was adapted to estimate the depth using the 
recordings from the full-scale trials: 

1. Stereo camera calibration 

2. Rectification of stereo image  
exploiting the epipolar Geometry 

3. Determine the disparity map and 
estimate 3D position 

 STEREO CAMERA CALIBRATIONS 

A chessboard of known size can be used to 
perform the stereo camera calibration under 
water when the relative position and relative 
orientation of the two cameras are fixed. In 
addition, the intrinsic camera calibration 
parameters are used to correct for image 
distortions. 

After image distortion correction and stereo 
camera calibration, the baseline and relative 
orientation are known, and can be used to 
rectify the stereo image. Note that functions 
for 

1. finding chessboard corner locations 

2. single camera calibration 

3. stereo camera calibration 

were exploited to obtain the results in this 
report. The chessboard pattern was placed in 
front of the stereo camera set to obtain un-
derwater video recordings. Afterwards, the 

images from these recordings were used to 
calibrate the 3D vision camera system. Some 
samples of images can be seen in Figure 65. 
The right image is suitable for calibration 
while the left image is less suitable due to 
motion blur. To filter suitable calibration 
images, we created a program to extract the 
frames from the stereo camera recordings 
while sorting out blurry images. We extract-
ed 60 frame-pairs and a total of 120 images 
were used for calibration. Afterwards, the 60 
images from left camera were used to cor-
rect the distortion of the left camera, and 
the 60 images of the right camera were used 
to correct the distortion of the right camera. 
Then, we used the image pairs to perform 
stereo calibration. For this purpose, one 
needs to know the size of the chessboard 
pattern. This also determines the unit of the 
measured metric distance results. In our 
case, the square length of our chessboard 
was 31.1 mm. Note that the quality of the 
calibration is crucial to the following estima-
tion of depth. 

RECTIFICATION AND EPOPOLAR LINE  
CORRESPONCENCE: 

After the rectification of the stereo images, 
epipolar lines are drawn parallel to the x-axis 
of the image and corresponding features 
should lie on the same horizontal line. Figure 
66 shows an example of an undistorted and 
rectified stereo image pair.  

An example for a stereo recording in a fish 
cage is shown in Figure 67. For any point in 
the image of the left camera, the corre-
sponding point can be found at the same 
horizontal axis in the right image and vice 
versa, except for occlusion. This is guaran-
teed by the "Epipolar Geometry". The dis-
placement in the horizontal axis needs to be 
identified to calculate the depth.  
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Figure 65: Samples of recordings of the chess board from the GoPro cameras 

Figure 66: Visualization of the stereo image pair corrected for distortion and rectified.  
Corresponding features lie on the same horizontal epipolar line (green) 

Figure 67:. An example of a stereo recording close to the net of a fish cage 
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DETERMINING THE DISPARITY MAP 

The stereo block matching was used to calcu-
late the disparity map after rectifying the 
undistorted stereo images. OpenCV provides 
functions like “stereoBM” and “stereoSGBM” 
to do this. How well these algorithms per-
form is decided by visual inspection. Two 
methods were tested in this project: 1. Block 
matching and 2. Interactive matching. 

The functions for block matching depend on 
many parameters (compare Figure 69) that 
all need to be optimized simultaneously. 
Automation is difficult to obtain and specific 
sets of parameters may work acceptably in 
specific lighting conditions. Even after tuning, 
it is still very hard to obtain a point cloud 
representing the cage net, as shown in Fig-
ure 70. However, the same set of parameters 
does not work equally well for other cases 
with different light conditions. In many net-
related scenarios the net can appear very 
regular, which makes it difficult to find the 
correct correspondences in the images. As-
suming the ground truth of the disparity is 

, and the disparity  
gave us equally good visual results due to the 
spatial repeating pattern of the net struc-
ture. Subsequently, the distance to the net 
was estimated to be closer to the camera 
than it is (factor 1/2).  In addition, noise due 
to ocean particles cause the block matching 
algorithm to ignore the net. Towards a more 

automated solution, a module for estimating 
the distance and orientation of an object was 
created. As input, this module required 3 
corresponding stereo points. The 3D plane 
that is defined by these 3 points is used to 
compute the orientation of this plane. In a 
later step we plan to obtain these 3 points 
automatically.     

To summarize the problems that need solv-
ing, the algorithms need to be more robust 
against lighting changes and noise originating 
from floating particle and the water turbidi-
ty. In addition, the disparity estimation 
needs to be more consistent when the ambi-
guity – due to a regular net structure – is 
high.  

The manual labelling allows a distance and 
orientation estimation of any object in the 
stereo images as long as we are able to find 
3 corresponding features on the object. Note 
that corresponding features in the rectified 
stereo images lie on the same horizontal line 
(i.e. the green line in Figure 66). For an auto-
mated approach to determine the distance 
and orientation of a net, one needs to deter-
mine 3 unique features on the net. Fortu-
nately, some net nodes have fouling organ-
isms on them, and such easily identifiable 
and unique features help to avoid ambigui-
ties resulting from the regularity of the net.  
Figure 68 demonstrates an example of the 
interactive interface that lets user label cor-
responding features in two mouse clicks.  

Figure 68: Demonstration of the interactive interface (the interface is waiting for the user to click on the 
corresponding feature in the right image after marking a feature (red dot) in the left image) 
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Figure 69:  Example of OpenCV stereo SGBM being used to produce the 3D point cloud 

Figure 70: A point cloud of the fishnet using block matching 
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Once the labelling of three points of interest 
is finalized, we can define their 3D coordi-
nate in units of the checkerboard measure-
ment and estimate the distance and orienta-
tion of the triangle build by these three 
points. Based on optical physics and multiple 
view geometry we are able to use the follow-
ing equation: 

5Pinhole camera model https://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html#camera-calibration-and-3d-reconstruction  

vector of the plane, this corresponds to the 
orientation (see Figure 71).  
 
In Figure 71 3 points of different colour are 
marked (blue, green and red). The deter-
mined 3D position is shown in the form p:
[x,y,z] and D is the computed distance (in 
millimetre). The x and y axes are shown in 
bright grey. The yellow plane is the triangle 
plane of BGR points. The orientation of this 
plane is illustrated by the purple arrow (The 
displayed number is normalized to 1) in Fig-
ure 71 where the 3D orientation vector is 
projected onto the x-y plane. Note that the 
orientation has two solutions and we choose 
the one which points forward to the camera 
(e.g. with z component being negative).  

 to calculate the real-world position of any 
point in the image pair that is visible in both 
images. Vector A includes x,y,d(x,y) , where 
x,y  are the pixel-coordinates and d(x,y) is 
the disparity. Vector B has X,Y,Z,W parame-
ters with the real-world coordinate of the 
object being X/W,Y/Z,Z/W. Note that both 
A and B are provided in homogeneous coor-
dinates. In the matrix Q, xc and yc represent 
the principal points5 of the left image in pixel 
coordinates. f  is the focal length, T is the 
base line and x’c is the x-coordinate of the 
principal point in the right image. In our 
case, x’c is equal to xc. From this information, 
we are able to calculate the 3D real-world 
position of the object/point. We can obtain 
the matrix Q during the calibration process 

and x,y and d(x,y) is determined from the 
stereo-image pair. 

Orientation requires three linear independ-
ent points on an object as such three points 
lie in a plane that can be described by two 
vectors in R3 space. When these two vectors 
are linearly independent, it will span a plane 
in R3 space. When we calculate the normal 

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#camera-calibration-and-3d-reconstruction
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#camera-calibration-and-3d-reconstruction
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Figure 71: Demonstration of orientation calculation using three points defined on an object 
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VALIDATION OF THE RESULT 

Even though the objects position, distance 
and orientation seem visually correct, we 
wish to verify these estimations. Based on 
the ground truth of the calibration board  
that identify the side length of a single 
square (e.g. 31.1 mm), we can select a plane 
(by defining 3 points with color “BGR”) on 
the calibration board of known size and get 
an estimate of the accuracy of the used ap-
proach. 

In the following, we selected three examples 
and computed the corresponding errors to 
validate the obtained results. 

In Figure 73, the 3D vector formed by the 
blue and the green point is:[82,-13,54] , and 
the vector formed by the blue to the red 
point is: [1,160,34]   The Euclidean norm for 
these vectors covering 3 and 5 calibration 
squares are 99 mm and 164 mm, respective-
ly. Based on the square side length of 31.1 
mm, one expects a ground truth of 93.3mm 
and 155.5 mm, respectively. The error in this 
case is 5.7%. 

Two other measurements at longer distances 
and orientations to the calibration board are 
shown in Figure 74 and Figure 75 and result-
ed in increasing errors of 8.5% and 15%, 
respectively, with the depth estimation be-
coming more inaccurate with increasing 
distance. This is also understandable based 
on fact that the depth d is computed as value 
proportional to 1/disparity (zero disparity 
indicates that the point lies at infinity). In 
particular if we look at the matrix Q, we find 
that real-world coordinates (x, y, z) are in-

versely proportional to d(x,y). When an ob-
ject is far away, a small error in disparity shift 
will increase the depth error as follows: 

 

Here, we can see that with the same △d, a 
smaller d will result in a larger error △z.  

Figure 72 illustrates the importance of an 
accurate stereo calibration. An inaccurate 
calibration quickly leads to a misalignment, 
resulting in different y-coordinates for corre-
sponding points expected to lie on the same 
horizontal epipolar line. However, we note 
that the observed error is in a range that is 
still acceptable to guide autonomous under-
water operations in a fish cage using robotic 
vehicles.    

Figure 72: Downward epipolar line shift due to the 
imperfection in the calibration 
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Figure 73: The errors per square length are 1.9 mm, and 1.7 mm (the error is around 6%) 

Figure 74: The errors per square length are 2.65 mm, and 1.9 mm (the error is around 8.5%) 

Figure 75: The errors per square length are 4.65 mm, and 4.1 mm (the error is around 15%) 
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FEATURE TRACKING CONCEPT 

If the labelled points have distinct features 
and do not move very fast (> 10 pixels per 
frame) between each frame, one can track 
them for a couple of frames. Sealab AS ex-
plored the performance of the feature track-
ing function. Figure 76 shows some results 
for a net image sequence where we were 
able to track the points on the net. The blue 
dots are automatically detected feature 
points, and the red dots in the second image 
are the feature points closest to our selected 
points in the first image. If the motion of the 
net relative to the camera is not large (< than 
the length of one mesh opening), we can 
follow the net junctions. In this way, we can 
track the positions of the triangle points, 
thus determining the distance and orienta-
tion of the triangle. 

We have recorded different video sequences 
in order to test the efficacy of the methods 
by determining the number of frames we can 
track the selected points. The first video 
sample was recorded with 20 frames per 
second and has a total number of 50 frames 
(see video). For this video we were able to 
track a group of points reliable for 36 frames 
[Note, at frame 37, one of the points jumps 
to the neighbourhood net junction]. We 

observed that the tracking fails when the 
motion or the motion blur are too large. In 
this case, motion blur from the used GoPro 
cameras is the reason for discontinued track-
ing. We believe that using the SEALAB cam-
era with very low motion blur would enable 
much longer tracking. In an additional test 
with a ZED stereo camera we followed the 
same procedure as for the GoPros (i.e. cali-
bration is included). In this test we moved 
the net very slowly, and were able to reduce 
the motion blur significantly (see video). 
Thus, we were able to reliably track features 
on the net for approximately 200 frames. We 
conclude that the reliable tracking of net-
features required for an industrial fish cage 
inspection needs the development of dedi-
cated software modules.    

 

 

 

 

 

Figure 76: Feature tracking of cage net junctions (GoPro on ROV) 

https://drive.google.com/file/d/1GZM7yObrLm3eFUrMOoyp95a99CLsUECE/view?usp=sharing
https://drive.google.com/open?id=1YONE5nLsNk7aIGowDJH6NS-q0rp6WnFl
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In our experiments we also observed that 
the orientation vector is 'jiggling' because 
the features tracking detects the corner of a 
net junction randomly in the upper left, up-
per right, lower left and lower right. This 
happens particularly when the net is too 
close, and the size of the net junction in-
creases. However, the ZED stereo camera is a 
consumer stereo-camera that has its own 
dedicated stereo-matching algorithm and 3D 
point cloud viewer. Figure 77 shows results 
obtained with the ZED-camera when it is 
used for underwater recordings (a cage net 
placed in a smaller tank). The depth estima-
tion from the ZED is not ideal and subse-

quently most of 3D structure of the net were 
missing. It appears that the ZED camera may 
not be ideal for underwater use and that the 
parameters are optimized for "in-air" record-
ings, and that a simple recalibration for un-
derwater-conditions is not possible.  And 
even in areas of the image where distortion 
appears to be small (in the middle), it is still 
hard for ZED’s matching algorithm to find 
correct correspondences. In the future, the 
developed side-by-side stereo system dis-
cussed in Section 2.1 will be tested thor-
oughly and compared with results obtained 
using the GoPro-setup and ZED-camera sys-
tem. 

Figure 77: Disparity map and 3D point cloud from dedicated software of ZED 
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RESULTS FROM SEALAB STEREO CAMERA 

After repairs, some initial calibration tests 
could be conducted with the Sealab stereo 
cameras. The tests showed that a low 
shutter time, strong LEDs, and a 4K resolu-
tion were able to resolve any issues related 
to motion blur. As a consequence, all images 
of the chessboard show sharp corners, indi-
cating successful calibration is possible.   

Figure 78: Calibration of the Sealab stereo cameras 

Figure 79: Distance and orientation measured using the Sealab camera 

In Figure 78, the stereo image after calibra-
tion and correction is shown. However, the 
chessboard lines were almost straight lines 
already before correction. This indicates that 
the Sealab stereo cameras has a very low 
distortion underwater. Both left and right 
stereo images have an almost parallel orien-

tation, indicated by the two optical axes 
being parallel to each other.  
In Figure 79, the Euclidean norms are 193.5 
mm and 95.8 mm, and the ground truths are 
186.6 mm and 93.3 mm, respectively. The 
error per square are 1.15 mm and 0.83 mm. 
The error is around 3.6%. 
Recall the fact that d(x,y) are constraint to 
integers in this case since the distance  

between two pixel positions is an integer. 
With the Sealab stereo camera having a 4K 
resolution, this will expand d(x,y) domain 
and consequently expand the range of the z- 
axis. This will decrease the error (and higher 
z-resolution) when estimating an object that 
is far away. 
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In this section, the progress of the developed 
algorithms for distance and orientation cal-
culation using a stereo setup was reported. 
Initially, we investigated the use of a stereo 
block matching algorithm to compute the 
disparity map that could then be used to 
generate a 3D point cloud. However, the 
method proved not to be suitable for the 
considered underwater environments and 
will need to be adapted significantly to pro-
vide meaningful result. Furthermore, it was 
difficult to tune all relevant parameters using 
the stereo block matching algorithm, even 
for just a single frame. Therefore, we decid-
ed to postpone the automatic selection of 
features on a particular object (e.g., the net) 
to future work. However, we successfully 
implemented a module for the distance and 
orientation computation with an interactive 
matching as input. This gives accurate result 

DISCUSSION 

and it is mathematically rigorous. Therefore, 
we believe that we can estimate the distance 
and the orientation of any object given we 
are able to determine corresponding fea-
tures in both images of the stereo camera. In 
frames containing nets, repetitive regular 
patterns are a problem for an automated net 
feature matching approach. This challenge 
may be overcome by selecting unique points 
such as biofouling organisms growing on the 
net or repaired net features causing irregu-
larities to use as reference points.  

Considering this challenge, the use of a laser 
could be a beneficial solution as it can pro-
duce a unique, recognizable point in the 
image. This will enable the algorithm to find 
and track correct correspondences also in 
areas with a very regular net structure and 
few unique features. 
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H2.4 RESULTS FROM FIVE MASTER THESES RELATED TO CAGEREPORTER 

Towards Underwater Biomass Estimation using Plenoptic Technology (Malin Kildal, June 
2017: Supervisor: Annette Stahl, NTNU, Department of Engineering Cybernetics (ITK))  

This thesis investigated the capabilities of 3D 
plenoptic camera technology to determine 
whether it can provide decent depth infor-
mation of objects underwater. As there was 
no documentation of this technology work-
ing in underwater conditions, the underwa-
ter calibration procedure and metric meas-
urements were performed. The plenoptic 
camera technology has been developed as a 
tool for 3D monitoring in stable and still envi-
ronments and this thesis explored, by analys-
ing the calibration process and by verifying 
measured depth points from the determined 
depth map, if the technology has the poten-
tial to be used in an ocean fish farm for 
measuring the biomass of several hundred 
thousand Atlantic Salmon. 

Results from this thesis show that this tech-
nology must be further developed and test-
ed before a complete biomass estimation 
system can be build, but the results also 
indicate that this technology indeed has 
potential for biomass estimation in fish 
farms. Figure 80 shows the Raytrix camera 
attached to an aquapod test rig. The best 
choice for an underwater housing for this 
system is a flat port. To obtain good results 
in applied underwater conditions, the fish 
should be close to the camera as fish farms 
produce a lot of noise in form of many parti-
cles in the water from food and excrement, 
which degrade the quality of the recorded 
depth map. A normal field-of-view lens is 
preferable, even if a narrow field-of-view 
lens provided a more accurate depth-map. 

Figure 80: The SEALAB Aquapod with the Raytrix R42 camera attached at the Kåholmen test facility on 
Hitra. Photo: SEALAB AS 
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Stabilization of an underwater camera (Thomas Norum Ur, June 2017: Supervisor: Annette 
Stahl, NTNU, Department of Engineering Cybernetics (ITK), Co-Supervisors: Per Rundtop 
and Christian Schellewald, SINTEF Ocean) 

This thesis describes the development, im-
plementation and testing of a full-scale un-
derwater camera system for surveillance 
purposes in aquaculture. The mechanical 
development was carried out using Solid-
works, and the software implementation was 
based on ROS (Robotic Operating System), in 
which several open source libraries have 
been incorporated. A mathematical model of 
the camera system has been derived as well 
as a simulation tool in Matlab for simulation. 
Suspended from a single rope, the camera 
system is equipped with a water jet propul-

sion system that allows the yaw (heading) to 
be controlled by the use of a PID controller 
(Figure 81).  

A gimbal inspired mechanism enables con-
trol of the camera pitch (tilt). Experiments at 
a full-scale fish farm facility yielded promis-
ing results for the yaw-control, whereas the 
pitch control needs to be further developed. 
The work presented in this thesis has been 
carried out during the spring of 2017 in col-
laboration with Sealab Ocean Group and 
SINTEF Ocean. 

Figure 81: The developed stabilization rig with a camera attached in the SEALAB wet lab. Photo: SEALAB 
AS 
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Classification of fish body parts in an underwater environment (Thorbjørn Sømod, July 
2017: Supervisor: Annette Stahl, NTNU, Department of Engineering Cybernetics (ITK), Co-
Supervisors: Per Rundtop and Christian Schellewald, SINTEF Ocean) 

This master thesis investigated a possible 
approach to recognizing fish parts in a video 
stream from a camera system situated in an 
underwater environment. This task can be 
seen as the first part of a three-step scheme 
for implementing an automatic system for 
fish health assessment in the fish farming 
industry. This thesis describes the work done 
in setting up an interface to an IP camera 
that is situated in an underwater environ-
ment, collecting and labelling image material 
from the camera system for training and 
testing object classifiers, and training the 
object classifiers for multi-class object recog-
nition based on image descriptors suitable 
for an underwater environment. Finally, a 
complete object recognition framework was 
implemented and performance tests were 
conducted based on the pre-trained classifi-
ers.  

The results are analysed in Figure 82. The 
results of this thesis show that it is possible 
to create a system that is able to perform 
this classification by relying on Support Vec-
tor Machine (SVM) classifiers based on  

adaptations of the Local Binary Pattern (LBP) 
image patch descriptor. By using a linear 
SVM classifier, good results are achieved. 
Surprisingly, the non-linear SVM classifiers 
relying on the RBF kernel achieve much low-
er performance than most of the linear SVM 
classifiers. 

The final goal of a complete system for the 
recognition of fish parts in a live video 
stream could not been reached with this 
classical computer vision and machine learn-
ing approach. The classifiers trained on the 
training images acquired at the test facility at 
Kåholmen on Hitra, Norway, were not able 
to classify image patches acquired from vid-
eo streams taken at a later time. It is sus-
pected that this is because the image patch-
es used for training are not representative of 
a larger population. We note that state-of-
the-art neural network-based approaches 
show more promising performance in de-
tecting parts of fish. In particular, we refer to 
results achieved within the IPN project IN-
DISAL.  

Figure 82: Exemplary results from the developed fish part detection algorithm. After a final non-maxima 
suppression (NMS) the desired parts of the fish can be detected 
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Saliency based methods for camera orientation in aquaculture (Magnus Conrad Harr, June 
2018: Supervisor: Annette Stahl, NTNU, Department of Engineering Cybernetics (ITK), Co-
Supervisors: Christian Schellewald, SINTEF Ocean) 

The aim of this thesis was to develop and 
provide insights into a saliency-based ap-
proach for automatic orientation of an un-
derwater camera such that interesting/
relevant regions are always captured. Ex-
isting algorithms for this purpose are not 
suitable for separating interesting and non-
interesting objects in a sea-cage. Therefore, 
modifications/additions to these algorithms 
were implemented and tested. For the per-
formance comparison, several saliency esti-
mation techniques were used, combined 
with different extensions aiming specifically 
to work for aquaculture underwater record-
ings. The results are based on footage from 
an underwater camera system developed by 
Sealab (Figure 83). This project lays the foun-
dations for future 24/7 surveillance in sea-
cages using computer-vision algorithms. 
Such algorithms can also provide an image 

quality guarantee to operators with remote 
system access, even when the site is  
unmanned. The results presented in this 
thesis indicate that performing general cam-
era orientation based on visual saliency in a 
sea-cage is difficult. It is expected that for a 
saliency-based orientation algorithm to func-
tion it will have to either be operated only 
when the camera is sufficiently far from the 
cage net or be used in tandem with a cage-
net detector. As an alternative to a cage-net 
detector, one could implement a fish detec-
tor instead and use that as the basis for an 
automatic orientation. In conclusion, visual 
saliency can provide a basis for camera ori-
entation. However, it is likely that other ap-
proaches based on machine learning (i.e. 
learning what is considered interesting or 
learning which objects should be looked at) 
would perform better. 

Figure 83: Example for a saliency detection algorithm applied to an underwater image containing salmon 
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Unsupervised Learning of Motion Patterns for Object Classification in Aquaculture (Øyvind 
Rognerud Karlstad, June 2018: Supervisor: Annette Stahl, NTNU, Department of Engineering 
Cybernetics (ITK), Co-Supervisors: Christian Schellewald, SINTEF Ocean)  

In this thesis the possibility of using unsuper-
vised learning based on motion patterns to 
automatically classify the main groups of 
objects in a fish farm were investigated. The 
focus was on separating fish from feed. The 
approach is based on the hypothesis that fish 
and feed have distinct motion patterns that 
can serve as criteria to distinguish the two. 
The implemented approach is based on opti-
cal flow using KLT-tracking to estimate the 
motion in the image sequences. Similar mo-
tion patterns are automatically grouped to-
gether using cluster analysis. Mean shift and 
DBSCAN were chosen as the algorithms to be 
used in the experiments, based on a prelimi-
nary analysis of the motion data. Mean shift 
is centroid based, while DBSCAN is density 
based which provided a useful combination 
of differing properties to compare. Further, 
the effect of increasing object sizes to the 

clustering results was studied.  

Results showed that automatically distin-
guishing fish and feed based on motion 
patterns is plausible under certain conditions 
(Figure 84). There are some requirements for 
the camera position that improve the classifi-
cation accuracy. For instance, the clustering 
performance increases when numerous ob-
jects are simultaneous visible. Appropriately 
determining the clustering parameters is also 
necessary to avoid cluster merging. In cases 
where several clusters are merged together, 
valuable information about the objects gets 
lost. We found that the number of available 
data samples were too small to draw a con-
clusion, but for the tested image sequences 
we were able to distinguish visible motion 
patterns. 

Figure 84: Example for automatic clustering of motion patterns visible in an underwater image-sequence 
containing salmon and feed pellets 
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CONCLUSIONS 

This report presents the development and validation of a 3D vision system to be used for data 
capture in fish cages. In particular, a compact and robust sensor with optical components and 
lighting system was developed to capture high-quality vision data. In addition, methods to 
evaluate the quality of the captured data were investigated and subsequently validated using 
vision data obtained from 24/7 video streams from a full-scale fish cage. This report further-
more includes the development of image processing algorithms to estimate the distance and 
orientation relative to the inspected object of interest, such as the fish or the net. The devel-
oped algorithms have been validated based on vision data obtained during laboratory and  
full-scale tests. 
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