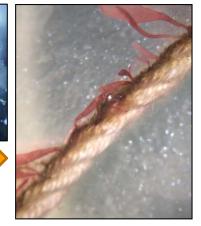

1. PhD project

Improve Palmaria palmata hatchery techniques

- from tetraspores to seedling lines


 $M2_{i} = \frac{\sum_{j} \frac{\mathrm{d}R}{\mathrm{d}t} N_{j} \frac{\varphi_{ji}}{\varphi_{j}}}{N \omega}$

DTU Aqua National Institute of Aquatic Resources

Norwegian University of

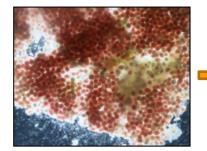
Science and Technology

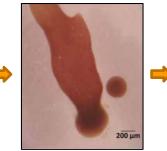
_{2.7182818284¹

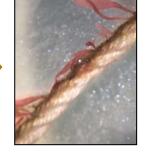
Experts in filter feeder cultivation and fisheries assessments Dessimination Centre and Kitchen, Oyster Tours

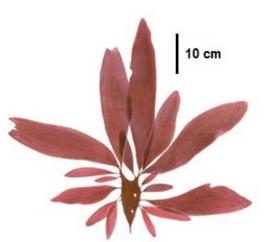
Palmaria in food found in high valued end-products

- Snack Food or dried Dulse (prices in Denmark up to 3-6 Euro/25g)
- Composition of polysaccharides, aminoacids and minerals (Mouritsen, 2013)
- Candidate as salmon feed supplement (Moroney et al 2014)
- Cultivation is not feasible with current cultivation techniques (Werner&Dring, 2011)




In Nature Palmaria is often epi-phytic

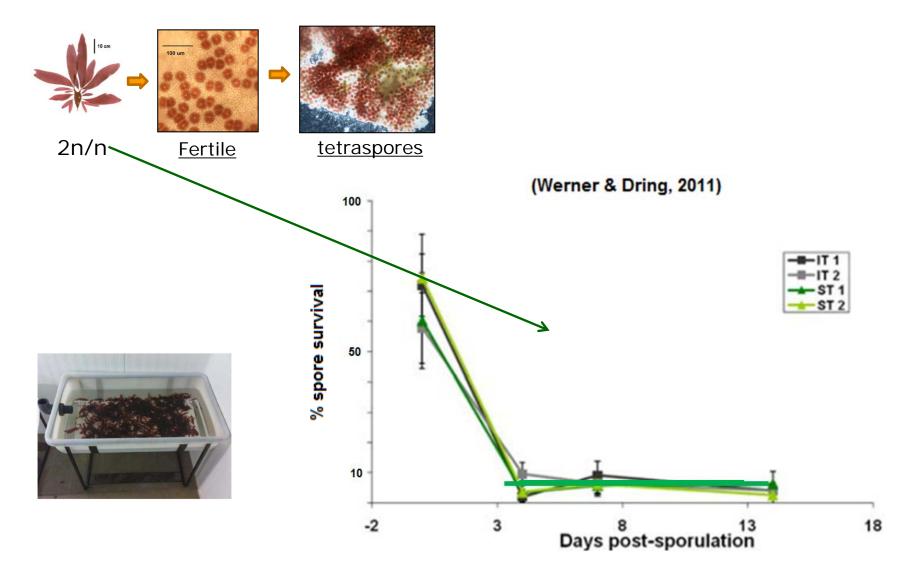


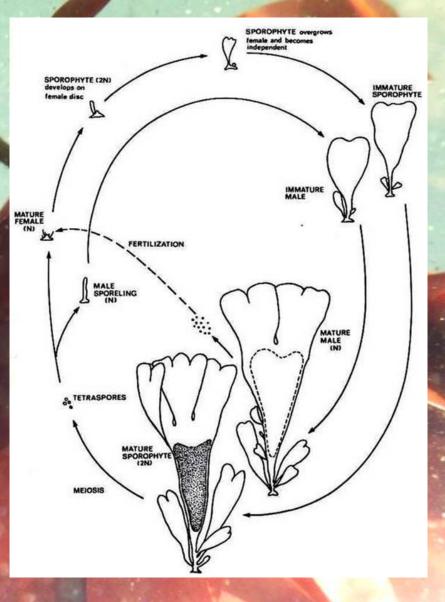


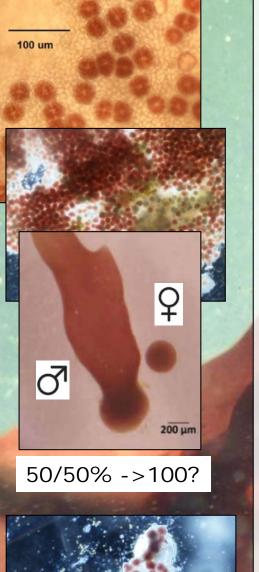
DTU Aqua, Technical University of Denmark

1 long-line of seeded nets 130 kg FW (1.8 t FW)

2-3 kg (2-5 t FW)


Cultivation Challenge: High input = relative low yield


High percentage spore mortality at low agitation



Hatchery steps based on life cycle of P. palmata

Tetrasporangia (fertility)

Can be found throughout the year Peak season is Jan-April (in Irish waters) - 40.000 spores per gram tissue!

My Objectives & Research Questions

Step 1. Prolong spore production.

Can we induce fertility during summer or pre-natural occurence to expand the season?

Step 2. Can we optimise spore release?

Release Experiment: What is the effect of spore release duration (time) and agitation?

Step 3. Investigate optimal use of spores.

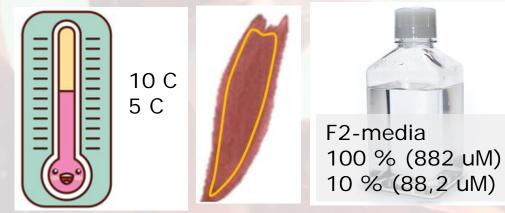
SporeUse1: Increase in seedling density by applying fertilisation step.

SporeUse2: Study surface preference of spores for settlement - effect of alginate coating and level of agitation.

SporeUse3: Q: Can we store, dispurse and get the spores to re-settle on substrate? Results on the effect of blending spores and rope type

1. Induction of spore formation

- 1. Attempt of pre-natural occurence
 - (69 days from 25.10.2016 to 04.01.2017)
 - Exposure of treatment combinations
 - (= 16 treatments, n=5)
- Binomial data (fertile/non-fertile)
- Proc Glimmix SAS model Class of variable:


Dates Replicate Fotoperiod Meristem Temp Nut Day

Fertility = Fotoperiod Meristem Temp Nut Day/ dist=binomial;random replicate*day;

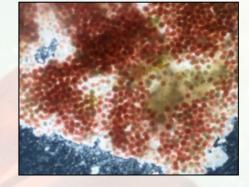
/* code for each container

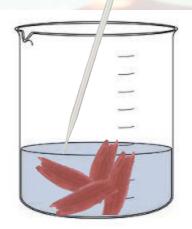
Two day lengths LD = 12:16 (L:D) SD = 5:19 (L:D) 40 PAR

Type III Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	$\mathbf{Pr} > \mathbf{F}$
Fotoperiod	1	347	0.16	0.6912
Meristem	1	347	2.10	0.1482
Temp	1	347	0.86	0.3553
Nut	1	347	11.88	0.0006
Day	4	44	0.71	0.5890

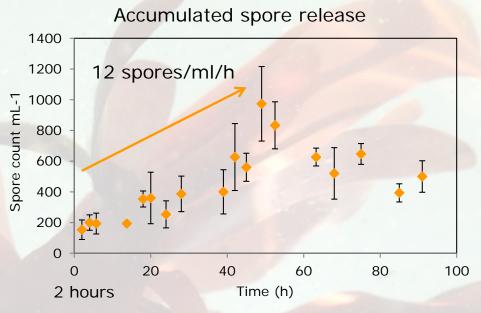
1. Induction of spore formation off-season (summer)


- Collection
 - Palmaria collected and start of experiment in early July
 - Additional tissue collected in late August
- Laboratory treatments:
 - Edge removal, dessication, temp cycles, red light, connection to basal frond
 - Allantoin and Spermidine addition (metabolites) to medium
- Sporangia has yet to be induced!


2. Spore Release Experiment

- Pre-treatment of triplicate plants (4 hours vs 24 h dehydration)
- 4h: Spore release at 10° C for 98 hours with no agitation
- Same amount of tissue

Pre-treatment


3 subsamples per replicate mean

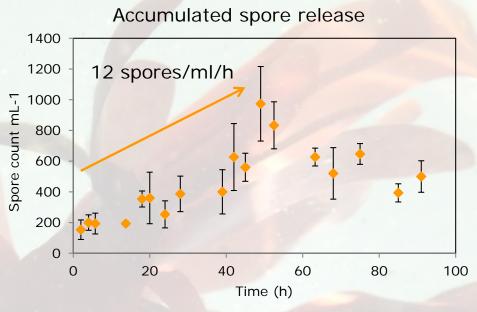
2. Release Experiment

- Pre-treatment
 (4 h dehydration)
- Spore release at 10 ° C for 98 hours with no agitation
- Same amount of tissue (n=3)

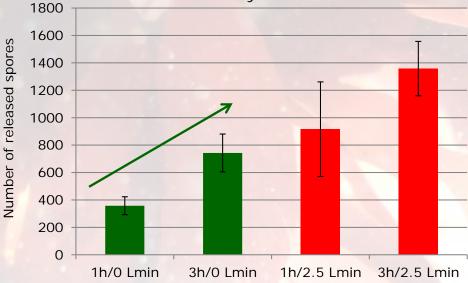
24 h dehydration

- show positive effect
- No agitation
- ~ 195 spores/ml/g/h
- Higher release rate compared to 4 hours pre-treatment.

The effect of Time and Agitation of spore release yield



2. Release Experiment


- Pre-treatment
 (4 h dehydration)
- Spore release at 10 ° C for 98 hours with no agitation
- Same amount of tissue (n=3)

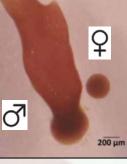
24 h dehydration + agitation

- show positive effect
- No agitation
- ~ 195 spores/ml/g/h
- Higher release rate compared to 4 hours pre-treatment.
- With agitation
- Higher concentration
- Higher release rate
 - ~ 202 spores/ml/g/h

The effect of Time and Agitation of spore release yield

3. Applying a fertilization step (SporeUse1) ð 15 mL \star х б Air +: addition of 10 mL of - : addition of 10 mL water 12 h drying 1. Data collection 500 mL Spore release & Inculation Addition Addition Addition

Davo Dav3 Dav1 Dav9 Dav1!


ę

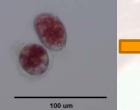
200 µm

3. Result: Applying fertilization step

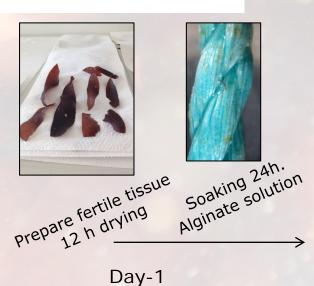
14 Count (# per 10 cm rope) 12 10 8 + 6 4 2 0 $(n=6) \pm SE$ Day 11 Day 18 Day 29 Day 40 -2 Spore release <u>Bainculation</u> Addition Addition Data collection Davo Dav Dav Dav Dav Dav Dav11

Number of seedlings

4. Spore settlement (SporeUse2)

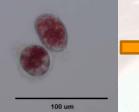

- Preference study
- Assess effect of alginate coating and agitation

Agitation 0 Lmin⁻¹


0.5 Lmin⁻¹ 2.5 Lmin⁻¹

- Clean rope
- Coated rope
- Spores in excess
- N = 3

4. Spore settlement (SporeUse2)

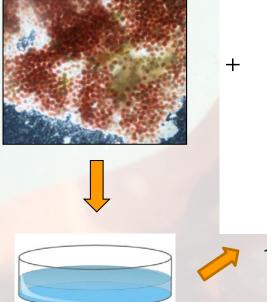

- Preference study
- Assess effect of alginate coating and agitation

Agitation

0 Lmin⁻¹ 0.5 Lmin⁻¹ 2.5 Lmin⁻¹

- Clean rope
- Coated rope
- Spores in excess
- N=3

Air Agitation 0 Lmin⁻¹ 0.5 Lmin⁻¹ 2.5 Lmin⁻¹


4. Results: Spore settlement Alginate coating + agitation

Number of seedlings dependent on agitation

4. Spore settlement (SporeUse3)

Can we store, dispurse and re-settle spores to substrate?

1 minute

30 days Low light 5° C

5 mm Danline (PV)

Ropes

15 mL

Air agitation 0.5 Lmin⁻¹ 2.5 Lmin⁻¹

on

4. Results: Spore settlement (SporeUse3)

Spore count (per 10 cm rope)

80

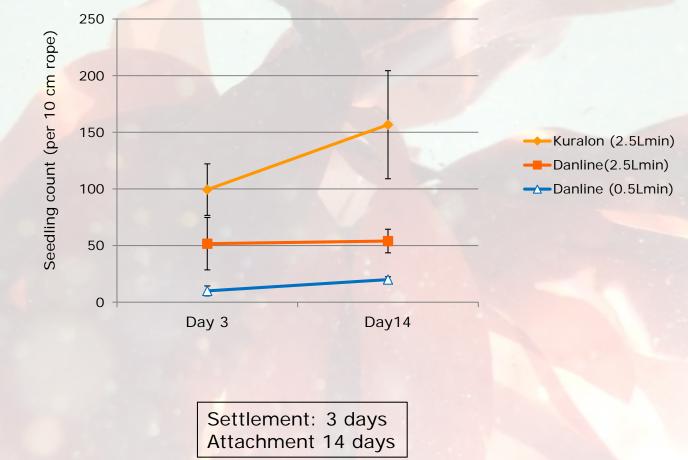
Settlement and attachment of *Tetraspores*

70 60 Kuralon (2.5Lmin) 50 Danline(2.5Lmin) 40 Danline (0.5Lmin) 30 20 10 0 Day3 Day14 Settlement: 3 days Attachment 14 days

Kuralon

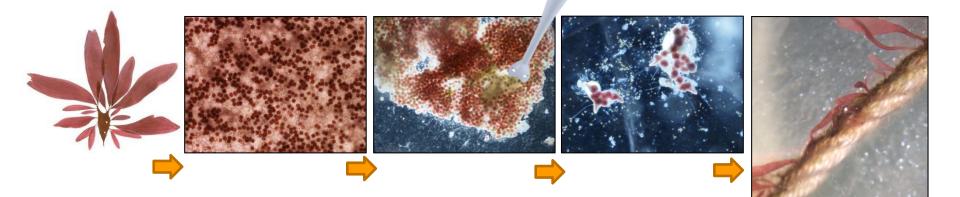
4. Results: Spore settlement (SporeUse3)

120 Spore count (per 10 cm rope) 100 80 Kuralon (2.5Lmin) Danline(2.5Lmin) 60 -----Danline (0.5Lmin) 40 20 0 Day3 Day14 Settlement: 3 days Attachment 14 days


Settlement and attachment of *Tetraspores*

Kuralon

4. Results: Spore settlement (SporeUse3)



Settlement and attachment of *seedlings*

Kuralon

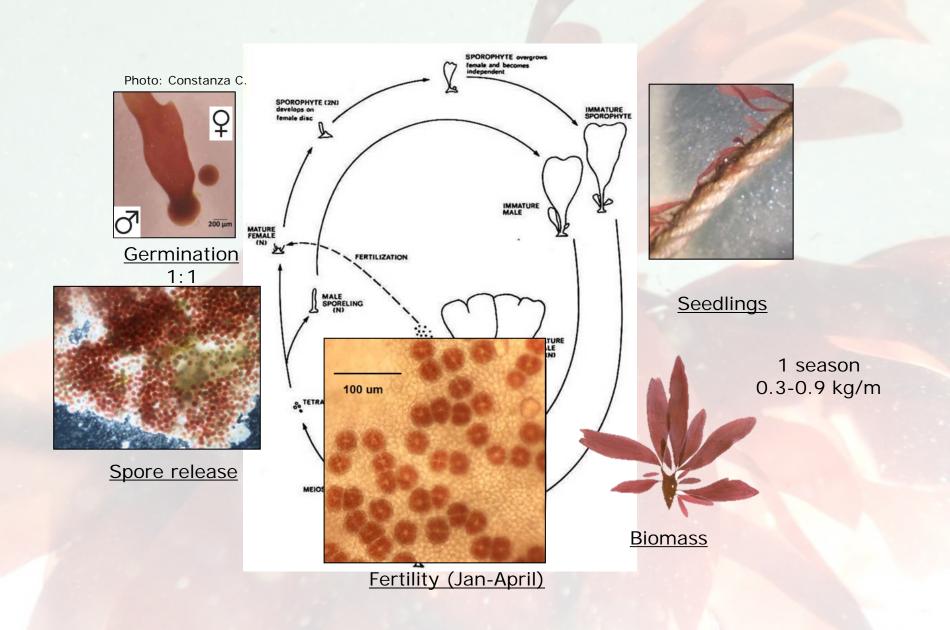
Findings and suggestions for improved *P. palmata* hatchery

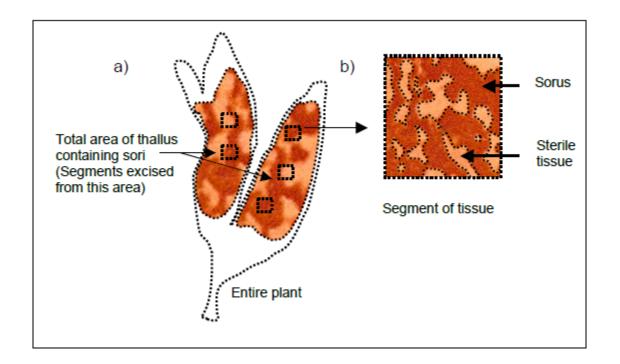
- Time duration and agitation increase spore release and agitation resulted in higher seedling density
- Blending the spore release provide dispersal of spores and seedlings Kuralon rope show higher density compared to Danline rope
- Fertilization step; adding male gamets increase numbers of seedlings
- No clear effect of Alginate pretreatment

DTU Aqua

National Institute of Aquatic Resources

{2.7182818284


Thanks for listening!


facebook.com/skaldyrcenter www.skaldyrcenter.dk/ www.skaldyrcenter.aqua.dtu.dk/

 $M2_{i} = \frac{\sum_{j} \frac{\mathrm{d}R}{\mathrm{d}t} N_{j} \frac{\varphi_{ji}}{\varphi_{j}}}{\sum_{j} \frac{\varphi_{ji}}{\mathrm{d}t}}$

3

DTU Aqua National Institute of Aquatic Resources

