Modeling of CO₂ systems with novel two-stage evaporator

Mihir Mouchum Hazarika, NTNU

Green technologies with natural refrigerants

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Heat transfer rate during evaporation:

- Increases for higher heat transfer coefficient
 - Lower vapor fraction (larger liquid contact with evaporator surface)

This leads to:

- Better overall performance
- Compact heat exchanger design

Goal:

• To design flooded heat exchangers

Flooded evaporator configurations

Can be classified into two broad categories:

Without liquid circulation

- Shell and tube heat exchanger is used.
- Tubes are entirely submerged.

Flooded evaporator with liquid circulation

Benefits of the flooded evaporators

- Refrigerant is 100% liquid at entry
- Better distribution of liquid
- Higher heat transfer rate
- Lesser pressure drop
- All phase change latent energy available
- Operated at higher evaporation temperature

Goal: Design flooded evaporator configurations

Working principle: Two-stage_evap.

- Designed for large temperature glide
- Different evaporation temperatures

 Gravity-fed evaporator operates = Suction pressure of the compressor

Ejector-supported evaporator operates = Suction pressure of ejector secondary nozzle

Applications: Hotels, large kitchens, fishing vessels, etc.

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Modeling of gravity-fed evaporator loop

- Model is developed in Modelica
- Individual models are selected from TIL library (TLK-Thermo Gmbh)
- To model the gravity-fed loop
 - Appropriate equations are derived (minor loss, major loss, and gravity term)
 - TIL models are upgraded
- Dymola 2021 is the modeling environment

Governing Eqs.: Gravity-fed evaporator loop

Dimensions of components

Evaporator (BPHX)				
Number of plates	40			
Plate length (mm)	420			
Plate width (mm)	155			
Pattern angle (°)	22.5			
Wall thickness (mm)	0.5			
Pattern amplitude (mm)	2.9			
Pattern wavelength (mm)	6			

CoolFish⁴

Simulation conditions

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop —> Simulation results
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Effect of liquid head 'H'

NTNU Norwegian University of Science and Technology

CoolFish[®]

Effect of liquid head 'H' 5 () Minor loss 8.4 5.08 Cooling capacity • 4.5 [uiu/ H_o 7 $\begin{array}{cccc} & 5. \\ & 5. \\ & 6. \\ & 6. \\ & 7. \\$ Sep L_o H 6 Evaporator L_i \dot{m}_{s-c} h Self-circulation Primary 0 ..**y**... -8.0 \dot{Q}_{ev} and \dot{m}_{s-c} corresponding to H=0.68 m 7.9 + 0.3• -2.00.50.91.31.1 0.7 Liquid head (H) [m]

- Higher the Riser diameter 'd'
 - Lower pressure drop in Riser

 \succ Lower \dot{x}_o

No reduction in ΔP beyond d=28 mm

 Riser diameter should be twice the size of Downcomer diameter

Simulation results summary

- Gravity-fed evaporator performs better as compared DX evaporator
- Gravity-fed evaporator performance
 - ≻ Liquid head 'H' and riser diameter 'd' are critical parameters
 - > H=0.68 m, gives desired capacity with $\dot{x}_o = 0.8$
 - > Riser diameter should be twice the size of downcomer diameter
- Gravity-fed evaporator: Simple and easy modification to enhance the performance

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Modeling of two-stage evaporator loop

- Model is developed in Modelica
- Models are selected from TIL library (TLK-Thermo Gmbh)
- Model for gravity-fed loop is extended using
 - ➢ Ejector
 - > BPHX as ejector-fed evap.
 - EXV to regulate the flow of ejector-fed evap.
- Dymola 2021 is the modeling environment

Two-stage evaporator loop dimensions

Two-stage evaporator (BPHX)			
Number of plates	40 (Gravity-fed) + 40 (Ejector-fed)		
Plate length (mm)	420		
Plate width (mm)	155		
Pattern angle (°)	22.5		
Wall thickness (mm)	0.5		
Pattern amplitude (mm)	2.9		
Pattern wavelength (mm)	6		

Boundary conditions and simulation results

Gas cooler				
High-side pressure (bar)	120.0			
Water temperature at inlet (°C)	24.0			
Water temperature at exit (°C)	88.5			
Heating capacity (kW)	17.9			
Approach temperature (K)	3			
Two-stage evaporator				
	Gravity-fed	Ejector-fed		
Water temperature at inlet (°C)	12.0	8.18		
Water temperature at exit (°C)	8.18	4.09		
Water flowrate (kg min ⁻¹)	24	24		
Evaporation pressure (bar)	42.3	38.0		
Cooling capacity (kW)	6.42	6.86		

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Fest-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Test-rig with two-stage evaporator

00				
	Two-stage Eva	aporator (BPH	X)	
	Number of Plates	Plate length (mm)	Plate width (mm)	101
4(40 (Gravity-fed) +) (Ejector-supported)	420	155	1211

CoolFish⁴

Test-rig with two-stage evaporator

lest conditions						
Secondary fluid	Secondary fluid	Evaporatior	n pressure (bar)			
temperature (°C)	flowrate (kg min ⁻¹)	Gravity-fed	Ejector-supported			
12 - 20	12 – 24	42 – 45	38 - 41			

• Steady-state results obtained for these test conditions are presented here

Test results

CoolFish ⁴⁴

SINTEF

Test results

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Validation of simulation results with test results

Outline

- Introduction
- Goal: to design flooded evaporator configurations
- Working principle: novel two-stage evaporator
- Objective
 - Modeling of gravity-fed evaporator loop
 - Modeling of two-stage evaporator loop
 - Test-rig with two-stage evaporator
 - Validation of numerical model
- Goals for further investigations
- Summary

Model-based investigations

To investigate how to regulate the water temperature to match the load requirement: Full load (10kW+10kW)=20kW -> part load

Higher the supply temp., higher will be the P_{evp} and higher will be the load shared by ejector-fed evap.

Experiment: To investigate the effect of static height on the performance of Gravity-fed loop

Experiment: To investigate the effect of riser dia. on the performance of Gravity-fed loop

Experiment: To compare the performance of top-fed and bottom-fed ejector-supported evaporator

Summary

- Proposed novel two-stage evaporator
 - > First stage: Gravity-fed mode; Second stage: Ejector-supported mode
- Large ΔT on water-side
- Higher heat transfer coefficient improves heat transfer rate (flooded HX)
- Overall performance improvement
 - Shared cooling capacity
 - Elevated suction pressure of the compressor

Reference

 Cheng, L., Ribatski, G., Thome, J.R., New prediction methods for CO₂ evaporation inside tubes: Part II – An updated general flow boiling heat transfer model based on flow patterns, *Int J Heat Mass Transf.* (2008) 51, 125 – 135.

Norwegian University of Science and Technology

Mihir Mouchum Hazarika | NTNU

